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ABSTRACT

Few-shot learning aims to recognize unseen images of new classes
with only a few training examples. While great progress has been
made with deep learning technology, most metric-based works rely
on the measurement based on global feature representation of im-
ages, which is sensitive to background factors due to the scarcity of
training data. Given this, we propose a novel method that chooses
representative local features to facilitate few-shot learning. Specif-
ically, we propose a “task-specific guided” strategy to mine local
features that are task-specific and discriminative. For each task, we
first mine representative local features for labeled images by a loss
guided mechanism. Then these local features are used to guide a clas-
sifier to mine representative local features for unlabeled images. In
this way, task-specific representative local features can be selected for
better classification. We empirically show our method can effectively
alleviate the negative effect introduced by background factors. Exten-
sive experiments on two few-shot benchmarks show the effectiveness
of the proposed method.

Index Terms— Few-shot learning, representative local features,
feature mining, metric-based learning

1. INTRODUCTION

In recent years, deep neural networks [1–6] have made significant
progress in the image classification task, due to their great capacities
for learning knowledge from abundant labeled training examples.
As a contrast, the human visual system can learn to recognize new
classes with only a few labeled examples. Such a few-shot learning
challenge has attracted great attention in research. However, in few-
shot learning situation, the number of samples of each class is limited;
therefore, it is difficult for the visual model to obtain the sample
distribution of each class.

To tackle the few-shot learning problem, various methods have
been put forward. A recently effective solution [7–11] is to train a
model on the seen classes to learn a generalizable feature embedding
space, where can determine the similarity of two images according
to their corresponding feature embeddings by utilizing a metric (like
Euclidean distance), and further apply it to images in unseen classes.
This kind of method falls into the metric-based paradigm. Although
great progress has been made, metric-based methods generally rely
on global feature representation of images, which ignore spatial in-
formation. As this type of representation is mixed with too many
background factors, the model may be not robust to this unrelated
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information due to the scarcity of labeled examples in few-shot learn-
ing.

To address the aforementioned weakness, some recent works [12–
15] resort to the local feature representation of images. Different
from methods rely on the global feature, local feature based meth-
ods will take a further step to more fine-grained local information,
which can highlight semantical parts. However, existing local feature
based methods suffer from mainly two limitations: (1) Discovered
knowledge about local features from seen classes are equally effec-
tive for any tasks which comprise of unseen classes. We argue that
each task should explore discriminative knowledge specialized for
this task in addition to the generalized one from seen classes for
better classification. (2) They use the information of all local features
contain no matter semantical parts or background factors. Although
some works [14, 15] have put more weight on semantical parts and
less weight on background parts through different attention mecha-
nisms, background factors can still more or less confuse model in the
situation of a few labeled samples.

Towards this, we propose a “task-specific guided” strategy to find
local features that are task-specific and representative. To support
this strategy, we develop a Prototype Selection Module (PSM) and
a Task Adaption Module (TAM) for labeled and unlabeled images
respectively. Concretely, for each particular task, PSM first finds
representative local features for labeled images by a loss guided
mechanism through a simple image classification task. We assume
image labels are strong supervision information, as they can directly
reflect objects in images. Therefore, If a local feature can contribute
to image classification, it is representative. If removing a local feature
does not affect the corresponding image classification, then we think
it useless. For example, given a ‘cat’ image, if we remove all local
features which mainly contains background factors, and only keep
local features mainly depict the ‘cat’ object. We can still classify this
image into the ‘cat’ class. Through this finding, we further propose
a local feature importance algorithm based on Taylor expansion to
achieve loss guided mechanism easily. After getting representative
local features of labeled images through PSM, TAM will use these
features to adapt a classifier, especially for the current task. Through
the guidance of local features from labeled images, the classifier will
be able to select representative (discriminative) local features for
unlabeled images in each particular task.

Through our “task-specific guided” strategy, we can further tailor
the visual knowledge extracted from the seen classes to the unseen
ones according to a particular task. In this way, we can generate
local features more discriminative and representative as they are cus-
tomized according to each particular task. What’s more, we discard
all local features which mainly contain background information at the



same time. Therefore, we achieve to explicitly mitigate the negative
effect of background factors. Extensive experiments on two few-shot
benchmarks show the effectiveness of our method.

The main contributions of this work are summarized as two folds:
(1) We develop a novel metric-learning based model for few-shot
learning, which can adapt to each particular task to find represen-
tative local features and discard irrelevant ones. (2) We propose a
“task-specific guided” strategy, which can guide the model find repre-
sentative local features for labeled images first through a loss guided
mechanism, and then further guide the model to find representative
local features for unlabeled images in each particular task.

2. PRELIMINARIES

In few-shot learning (FSL), we are given a base class set Cb and a
novel class set Cn. Specifically, each class in Cb has sufficient labeled
images, while only a few labeled samples are obtained for each class
in Cn. Note that Cb and Cn are disjoint. In this setting, the goal of
FSL is to obtain a good classifier for novel classes.

Following the previous work [8], we adopt the episode-based
training scheme to facilitate few-shot learning. In each episode, each
classification task is performed on a support set S and query set Q.
In particular, S follows a N -way K-shot setting. N is the number
of classes and K is the number of labeled examples in each class,
where K is a small integer, such as 1 or 5. So the support set and
query set can be respectively defined as S = {(xsi , ysi )ns

i=1} and
Q =

{
(xqi , y

q
i )
nq

i=1

}
, where ns = N × K and nq are the sample

numbers of support/query set. In training episodes, we optimize
our model with S/Q sampled from Cb. During the testing episodes,
we measure the generalization performance of a model with S/Q
sampled from Cn, where labels in S are known and those in Q are
unknown. The predicted category of a query image is determined by
taking the class with the highest similarity score.

3. METHOD

In this work, we propose a novel framework for few-shot learning,
which mines task-specific representative local features for images.
As shown in Fig. 1, our framework consists of four components,
including a CNN-based feature extractor, a prototype selection mod-
ule (PSM), a task adaption module (TAM), and a similarity com-
putation module. In particular, our whole framework is optimized
according to a “task-specific guided” strategy. Specifically, given a
task, our PSM first mines representative local features for support
set according to a classification loss guided mechanism, based on
the observation that given the strong supervision of labels, the more
local vectors are conducive to correct image classification, the more
representative they are. Then, our TAM utilizes the features selected
from PSM to train a binary classifier to discover similar local features
for the query set. In this way, we can automatically guide the model
to find representative local features that are more suitable for each
particular task.

3.1. CNN-based Feature Extractor

Given a support/query image X , we first feed it into a convolutional
neural network (CNN) to extract image-level feature. For conve-
nience, the feature of X is represented as fθ(X) ∈ Rc×h×w, where
fθ(·) is a CNN-based feature extractor (e.g., ResNet [4]), θ is the set
of its corresponding learnable parameters, and c, h, w are the channel
number, height, width of feature respectively. In this way, we can get
m (m = h × w) c-dimensional local features for the given image

as: fθ(X) = [x1, x2, ..., xm]. It should be noted that local features
contain spatial information. Thus, we can mitigate the interference of
irrelevant background factors by just selecting the most representative
local features to represent the target objects.

3.2. Prototype Selection Module

The proposed PSM is used to mine a fixed number (kpsm) of repre-
sentative local features for each image in the support set. We view
representative local features of all labeled images of each class as its
corresponding prototype. The most important factor that distinguishes
each task is the image category, as different tasks have different image
categories. Therefore, if we can make the model more suitable for
selecting representative local features of the current task categories,
it is equivalent to make the model adapt to this task. Further, image
label is a strong supervision information as it reflects image category
directly, and image classification is the most relevant task. Based on
these inspirations, PSM is modeled as a simple classification task.
Intuitively, if a local feature is helpful for image classification, it is
representative. To select local features efficiently, we further propose
a local feature importance algorithm based on Taylor expansion

We can use the impact on the classification loss to reflect whether
a local feature is helpful for image classification. Specifically, if the
loss value changes a lot when removing a local feature, we argue
this local feature is important for classification. In other words, this
local feature is representative as it contains the information of the
target object. If removing a local feature has no effect on the loss
value, we can think this local feature is useless. Towards this, for
an image-level feature, we multiply each local feature by a factor ρ.
When the ρ is equal to 0, it is equivalent to remove the corresponding
local feature, and if it is 1, it is equivalent to keep this local feature.
To ensure that the model can be updated by gradient descent, we
limit ρ to continuous values in the interval of 0 to 1 ( ρ ∈ [0, 1])
as a trainable scaling factor. Then we can define the function to
evaluate the importance of a local feature according to the impact on
the classification loss as:

g(ρ) = |∆LΩ| = |LΩ(ρ)− LΩ(0)|, (1)

where L means the classification loss value, where Ω includes all
examples and parameters in PSM except ρ.

We can further get a simpler and easier form to implement by
applying the Taylor expansion, which is:

LΩ(x) = LΩ(ρ) +
L(1)

Ω (ρ)

1!
(x− ρ) + ...+

L(n)
Ω (ρ0)

n!
(x− ρ)n +Rn(x).

We then estimate LΩ(0) as a function of ρ:

LΩ(0) = LΩ(ρ)− ρL(1)
Ω (0) +R1(ρ). (2)

In this way, the Eq. (1) can be rewritten as (we remove the Lagrange
remainder R1(ρ) for approximation) :

g(ρ) = |ρL(1)
Ω (ρ)−R1(ρ)| ≈ |ρL(1)

Ω (ρ)|. (3)

Towards this end, we use g(ρ) to represent the importance of each
local feature. According to Eq. (3), g(ρ) can be obtained by simply
multiplying ρ and its gradient which can be calculated automatically
in some machine learning frameworks, such as PyTorch.

In Fig. 1, we implement our PSM as a classifier with a one-layer
fully-connected layer. The trainable scaling factor ρ for each local
feature can be learned with msub1 iterations of this classifier, where
for msub1, a small number (such as 5) is enough due to the small
number of training examples. To make the model more stable, we
add up g(ρ) in each iteration as the final importance score of a local
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Fig. 1. Overview of the proposed framework for N -way K-shot few-shot learning task. Specifically, our framework consists of a CNN-based
feature extractor, a prototype selection module (PSM), a task adaption module (TAM) and a similarity computation module.

feature. Then g(ρ) can be described as:

g(ρ) =

msub∑
i=1

gi(ρi) =

msub∑
i=1

|ρiL(1)
Ω i

(ρi)|, (4)

After getting the importance store for each local feature, we rank
all local features in descending order according to their importance
stores, followed by selecting the first kpsm local features for every
image. Then in an N -way K-shot setting, we cluster K ∗ kpsm local
features for each of N classes as its prototype.

3.3. Task Adaption Module

The proposed TAM is used to mine representative local features for
query set images. In our work, TAM is implemented as a binary
classifier with one fully-connected layer, and it learns to distinguish
representative local features for query images. As mentioned in
the Section 3.2, the key to adapt the model to a given task is the
class category in this task. However, image labels in the query set
are agnostic. What is certain is that the category of an image in
the query set must belong to a certain category in the support set.
As the PSM generates representative local features for support set
specialized for the current task, we can view these features as the
weak supervision information in a feature level, instead of the strong
supervision information directly from labels.

Specifically, we define the subnet of TAM as a binary classifier.
During classifier training, the input involves two kinds of local fea-
tures. The first kind is from representative local features selected
by PSM, these local features are viewed as positive samples; the
second is from local features discarded by PSM, these local features
mainly contain background information and are viewed as negative
samples. The classifier will be trained to classify positive samples
into label 1 and 0 for negative samples with msub2 iterations. It is
worth noting that msub2 is also a small number just like msub1 in
PSM. Actually, in the experiment setting, both msub1 and msub2 are
set to 5. Therefore, the subnet training process is efficient. During
classifier inference, given an image-level feature, it would output a
score between 0 to 1 for each local feature. Different from PSM that
selects a fixed number of local features, our TAM would keep its all
local features whose scores are greater than a defined threshold ε.,
because different objects have different sizes. Large objects may have
more representative local features compared with relatively small
objects that have less representative local features.

3.4. Similarity Computation

For convenience, the representative local features of a query exam-
ple xq are denoted as [xq1, x

q
2, ..., x

q
m] ∈ Rc×m, where m is the

number of representative local features. To determine the category
of xq , we need to calculate the similarity between its representa-
tive features and the prototype P of each specific category, where
P =

[
x̃1, x̃2, ..., x̃K∗kpsm

]
∈ Rc×(K∗kpsm). However, directly us-

ing the local features of different semantic information may bring
unreliable results. Therefore, we need to align the representative local
features in the query example with those in the prototype, before
computing their similarities.

In this work, the k-nearest neighbor algorithm is used to achieve
semantic alignment. Specifically, when comparing a representative
local feature xqi from a query image with the prototype of a category,
we first use the similarity function φ(·) calculate the similarity score
between xqi and all local features in prototype, Then, we find the
k-nearest neighbors x̃j |kj=1 of xqi in this prototype, and take the sum
of k similarity scores with taking scores from TAM as weights. The
weighted sum is the similarity between the xqi and prototype. Finally,
we sum the similarity scores of all representative local features in a
query example as its similarity score of the category corresponding
to this prototype. Mathematically, the final similarity score SScore
is computed as:

SScore (query → category) =

m∑
i=1

k∑
j=1

score(xqi ) ∗ φ(xqi , x̃
j
i ),

where score(xqi ) is the score of xqi output by TAM and the similarity
function φ(·) is cosine similarity.

4. EXPERIMENTS

4.1. Dataset

We conduct experiments on two benchmark datasets: miniIma-
geNet [8] and CUB [16]. The miniImageNet is a subset of the
ImageNet dataset [17]. It consists of 100 classes, each of which
contains 600 labeled images of size 84 × 84. We adopt the common
setup introduced by [18], which defines a split of 64, 16 and 20
classes for training, validation and testing respectively. The CUB
dataset contains 200 classes and 11,788 images in total. We used
the splits from [19], where 100 classes are used for training, 50 for
validation, and 50 for testing.



Table 1. Validation of the effectiveness of our proposed PSM and
TAM. The result is the 5-way 5-shot mean accuracy (%) with a 95%
confidence interval on the CUB (top) and miniImageNet (bottom)
dataset.

Method Backbone Used Modules 5-way 5-shot

Baseline Conv-64 - 80.83 ± 0.60
Baseline+PSM Conv-64 + PSM 82.94 ± 0.56
Baseline+PSM+TAM Conv-64 + PSM,TAM 84.53 ± 0.65
Baseline ResNet-18 - 78.92 ± 0.66
Baseline+PSM ResNet-18 + PSM 80.13 ± 0.72
Baseline+PSM+TAM ResNet-18 + PSM,TAM 81.21 ± 0.55

Table 2. Time consuming comparison with MAML and ProtoNet on
5-way 5-shot setting.

Method Backbone training phase test phase

ProtoNet Conv-64 0.394s/iteration 0.264s/iteration
MAML Conv-64 0.511s/iteration 0.301s/iteration
Our method Conv-64 0.473s/iteration 0.281s/iteration

4.2. Training Details

We evaluate our method on 5-way 1-shot and 5-way 5-shot settings.
Following the standard training strategy, we train 60,000 episodes
in total for miniImageNet and 40,000 episodes for CUB. During the
test phase, 600 test episodes are generated. We report the average
accuracy as well as the corresponding 95% confidence interval over
these 600 episodes. We consider Conv-64 [8], ResNet-18 [4] as our
CNN-based embedding models for a fair comparison. The remaining
parameters were selected based on the validation set.

4.3. Ablation Study

To better demonstrate the effectiveness of the proposed PSM and
TAM, we develop a baseline for our method. Specifically, the proto-
type of each class is the average value of local features of all labeled
images. During inference, we do not select representative local fea-
tures for query examples but use all local features.

We first conduct experiments on CUB and miniImageNet with
the backbone of Conv-64 and ResNet-18 respectively, with constantly
adding PSM and TAM to the baseline method to see the effect of these
two modules. As shown in Table 1, by comparing with our baseline,
adding the PSM can obtain a 2.11% gain on CUB and 1.21% gain
on miniImageNet. Adding the TAM, then the whole model is guided
by our “task-specific guided” strategy, which can further improve the
performance from 82.94% to 84.53% on CUB and 80.13% to 81.21%
on miniImageNet. It indicates that unrelated background factors have
side effects on performance, and our method can effectively reduce
this interference by mining representative local features.

We further evaluate the computational complexity of our model
by comparing it with two classical methods by testing the time con-
sumption in each episode. From Table 2, Our method is efficient than
MAML [20] which also needs “sub-training” as it requires second
derivative to update model parameters, while achieves competitive
time efficiency compared to ProtoNet [9]. Our method is developed
based on ProtoNet. It is just mainly two more classifiers (each is
a fully connected layer) than ProtoNet. One is trained to get the
scaling factor ρ for each local feature in PSM, the other one in TAM
is trained as a binary classifier to distinguish representative local
features for query images. As both classifiers only need to train 5
epochs, therefore, our method is efficient both from theory and result.

Table 3. The mean accuracies (%) with a 95% confidence interval on
the CUB dataset.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 55.92 ± 0.95 72.09 ± 0.76
Matching Net [8] Conv-64 61.16 ± 0.89 72.86 ± 0.70
Prototypical Net [9] Conv-64 51.31 ± 0.91 70.77 ± 0.69
RelationNet [10] Conv-64 62.45 ± 0.98 76.11 ± 0.69
Baseline++ [19] Conv-64 60.53 ± 0.83 79.34 ± 0.61
SAML [13] Conv-64 69.33 ± 0.22 81.56 ± 0.15
DN4 [12] Conv-64 53.15 ± 0.84 81.90 ± 0.60

Ours Conv-64 70.13 ± 0.62 84.53 ± 0.65

Table 4. The mean accuracies (%) with a 95% confidence interval
on the miniImageNet dataset. * means the confidence interval is not
reported by the original work.

Method Backbone 5-way 1-shot 5-way 5-shot

MAML [20] Conv-64 48.70 ± 1.75 63.15 ± 0.91
Meta-SGD [21] Conv-64 50.47 ± 1.87 64.03 ± 0.94
Reptile [22] Conv-64 47.07 ± 0.26 62.74 ± 0.37
LEO [23] WRN-28 [24] 61.76 ± 0.08 77.59 ± 0.12
Matching Net [8] Conv-64 43.56 ± 0.84 55.31 ± 0.73
Prototypical Net [9] Conv-64 49.42 ± 0.78 68.20 ± 0.66
RelationNet [10] Conv-64 50.44 ± 0.82 65.32 ± 0.70
GNN [11] Conv-64 50.33 ± 0.36 66.41 ± 0.63
Baseline++ [19] Conv-64 48.24 ± 0.75 66.49 ± 0.63
SAML [13] Conv-64 52.22 ± * 66.34 ± *
DN4 [12] Conv-64 51.24 ± 0.74 71.02 ± 0.64
STANet-S [14] Conv-64 53.11 ± 0.60 67.16 ± 0.66
CMT [15] ResNet-18 62.05 ± 0.55 78.63 ± 0.06
FEAT [25] Conv-64 55.15 ± * 71.61 ± *

Ours Conv-64 53.98 ± 0.72 72.13 ± 0.63
Ours ResNet-18 62.79 ± 0.67 81.21 ± 0.55

4.4. Comparison with State-of-the-art

We focus more on metric-based methods as our approach belongs to
this kind. Based on comparison results on CUB and miniImageNet,
which are shown in Table 3 and Table 4 respectively. Our method
can achieve better or competitive performance compared to previous
approaches. Especially DN4, SAML, STANet-S, and CMT, which
also use local features, our method outperforms them by a sizable
margin. Moreover, our method can achieve competitive accuracy
to the recent FEAT with fewer parameters, as FEAT applies a more
complicated Transformer [26] on the top of its backbone.

4.5. Conclusion

In this paper, we propose a simple and effective metric learning
method based on local features to solve the few-shot learning problem.
We propose a “task-specific guided” strategy to find local features
that task-specific and discriminative according to the characteristics
of each task. PSM and TAM are developed for support and query set
respectively to support our strategy. Extensive experiments on the
CUB, miniImageNet datasets verify the effectiveness of our method.
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