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Abstract

Crowd counting is a fundamental yet challenging task,
which desires rich information to generate pixel-wise crowd
density maps. However, most previous methods only used
the limited information of RGB images and cannot well
discover potential pedestrians in unconstrained scenarios.
In this work, we find that incorporating optical and ther-
mal information can greatly help to recognize pedestrians.
To promote future researches in this field, we introduce
a large-scale RGBT Crowd Counting (RGBT-CC) bench-
mark, which contains 2,030 pairs of RGB-thermal images
with 138,389 annotated people. Furthermore, to facili-
tate the multimodal crowd counting, we propose a cross-
modal collaborative representation learning framework,
which consists of multiple modality-specific branches, a
modality-shared branch, and an Information Aggregation-
Distribution Module (IADM) to capture the complementary
information of different modalities fully. Specifically, our
IADM incorporates two collaborative information transfers
to dynamically enhance the modality-shared and modality-
specific representations with a dual information propaga-
tion mechanism. Extensive experiments conducted on the
RGBT-CC benchmark demonstrate the effectiveness of our
framework for RGBT crowd counting. Moreover, the pro-
posed approach is universal for multimodal crowd counting
and is also capable to achieve superior performance on the
ShanghaiTechRGBD [22] dataset. Finally, our source code
and benchmark are released at http://lingboliu.
com/RGBT_Crowd_Counting.html.

1. Introduction

Crowd counting [18, 10] is a fundamental computer vi-
sion task that aims to automatically estimate the number of
people in unconstrained scenes. Over the past decade, this
task has attracted a lot of research interests due to its huge

*The corresponding author is Liang Lin. Lingbo Liu and Jiaqi Chen
share first-authorship.

application potentials (e.g., traffic management [62, 28] and
video surveillance [52]). During the recent COVID-19 pan-
demic [47], crowd counting has also been employed widely
for social distancing monitoring [11].

In the literature, numerous models [64, 43, 27, 56, 1,
21, 26, 34, 30, 32] have been proposed for crowd counting.
Despite substantial progress, it remains a very challenging
problem that desires rich information to generate pixel-wise
crowd density maps. However, most previous methods only
utilized the optical information extracted from RGB images
and may fail to accurately recognize the semantic objects
in unconstraint scenarios. For instance, as shown in Fig. 1-
(a,b), pedestrians are almost invisible in poor illumination
conditions (such as backlight and night) and they are hard
to be directly detected from RGB images. Moreover, some
human-shaped objects (e.g., tiny pillars and blurry traffic
lights) have similar appearances to pedestrians [59] and they
are easily mistaken for people when relying solely on opti-
cal features. In general, RGB images cannot guarantee the
high-quality density maps, and more comprehensive infor-
mation should be explored for crowd counting.

Fortunately, we observe that thermal images can greatly
facilitate distinguishing the potential pedestrians from clut-
tered backgrounds. Recently, thermal cameras have been
extensively popularized due to the COVID-19 pandemic,
which increases the feasibility of thermal-based crowd
counting. However, thermal images are not perfect. As
shown in Fig. 1-(c,d), some hard negative objects (e.g., heat-
ing walls and lamps) are also highlighted in thermal images,
but they can be eliminated effectively with the aid of optical
information. Overall, RGB images and thermal images are
highly complementary. To the best of our knowledge, no
attempts have been made to simultaneously explore RGB
and thermal images for estimating the crowd counts. In this
work, to promote further researches of this field, we propose
a large-scale benchmark “RGBT Crowd Counting (RGBT-
CC)”, which contains 2,030 pairs of RGB-thermal images
and 138,389 annotated pedestrians. Moreover, our bench-
mark makes significant advances in terms of diversity and
difficulty, as these RGBT images were captured from un-
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(a) Backlight (b) Darkness (c) Heating negative objects  by day (d) Heating negative objects at night

Figure 1. Visualization of RGB-thermal images in our RGBT-CC benchmark. When only using optical information of RGB images, we
cannot effectively recognize pedestrians in poor illumination conditions, as shown in (a) and (b). When only utilizing thermal images,
some heating negative objects are hard to be distinguished, as shown in (c) and (d).

constrained scenes (e.g., malls, streets, train stations, etc.)
with various illumination (e.g., day and night).

Nevertheless, capturing the complementarities of multi-
modal data (i.e., RGB and thermal images) is non-trivial.
Conventional methods [22, 67, 37, 15, 54, 46] either feed
the combination of multimodal data into deep neural net-
works or directly fuse their features, which could not well
exploit the complementary information. In this work,
to facilitate the multimodal crowd counting, we intro-
duce a cross-modal collaborative representation learning
framework, which incorporates multiple modality-specific
branches, a modality-shared branch, and an Information
Aggregation-Distribution Module (IADM) to fully capture
the complementarities among different modalities. Specifi-
cally, our IADM is integrated with two collaborative com-
ponents, including i) an Information Aggregation Trans-
fer that dynamically aggregates the contextual information
of all modality-specific features to enhance the modality-
shared feature and ii) an Information Distribution Trans-
fer that propagates the modality-shared information to sym-
metrically refine every modality-specific feature for further
representation learning. Furthermore, the tailor-designed
IADM is embedded in different layers to learn the cross-
modal representation hierarchically. Consequently, the pro-
posed framework can generate knowledgeable features with
comprehensive information, thereby yielding high-quality
crowd density maps.

It is worth noting that our method has three appealing
properties. First, thanks to the dual information propaga-
tion mechanism, IADM can effectively capture the multi-
modal complementarities to facilitate the crowd counting
task. Second, as a plug-and-play module, IADM can be
easily incorporated into various backbone networks for end-
to-end optimization. Third, our framework is universal for

multimodal crowd counting. Except for RGBT counting,
the proposed method can also be directly applied for RGB-
Depth counting. In summary, the major contributions of this
work are three-fold:

• We introduce a large-scale RGBT benchmark to pro-
mote the research of crowd counting, in which 138,389
pedestrians are annotated in 2,030 pairs of RGB-
thermal images captured in unconstrained scenarios.

• We develop a cross-modal collaborative representation
learning framework, which is capable of fully learning
the complementarities among different modalities with
a Information Aggregation-Distribution Module.

• Extensive experiments conducted on two multimodal
benchmarks (i.e., RGBT-CC and ShanghaiTechRGBD
[22]) greatly demonstrate that the proposed method is
effective and universal for multimodal crowd counting.

2. Related Works
Crowd Counting Benchmarks: In recent years, we

have witnessed the rapid evolution of crowd counting
benchmarks. UCSD [3] and WorldExpo [57] are two early
datasets that respectively contain 2,000 and 3,980 video
frames with low diversities and low-medium densities. To
alleviate the limitations of the aforementioned datasets,
Zhang et al. [64] collected 1,198 images with 330,165 anno-
tated heads, which are of better diversity in terms of scenes
and density levels. Subsequently, three large-scale datasets
were proposed in succession. For instance, UCF-QNRF
[14] is composed of 1,535 high density images images with
a total of 1.25 million pedestrians. JHU-CROWD++ [45]
contains 4,372 images with 1.51 million annotated heads,
while NWPU-Crowd [50] consists of 2.13 million annota-
tions in 5,109 images. Nevertheless, all the above bench-
marks are based on RGB optical images, in which almost



all previous methods fail to recognize the invisible pedes-
trians in poor illumination conditions. Recently, Lian et
al. [22] utilized a stereo camera to capture 2,193 depth im-
ages that are insensitive to illumination. However, these im-
ages are coarse in outdoor scenes due to the limited depth
ranges (0∼20 meters), which seriously restricts their de-
ployment scopes. Fortunately, we find that thermal im-
ages are robust to illumination and have large perception
distance, thus can help to recognize pedestrians under vari-
ous scenarios. Therefore, we propose the first RGBT crowd
counting dataset in this work, hoping that it would greatly
promote the future development in this field.

Crowd Counting Approaches: As a classics problem
in computer vision, crowd counting has been studied ex-
tensively. Early works [4, 5, 13] directly predict the crowd
count with regression models, while subsequent methods
usually generate crowd density maps and then accumulate
all pixels’ values to obtain the final counts. Specifically, a
large number of deep neural networks with various archi-
tectures [9, 57, 49, 48, 41, 17, 43, 21, 55, 29, 39, 16, 53]
and loss functions [2, 14, 34, 26] are developed for still
image-based crowd counting. Meanwhile, some methods
[60, 52, 40, 31] perform crowd estimation from multi-view
images or surveillance videos. However, all aforementioned
methods estimate crowd counts with the optical information
of RGB images/videos and are not effective when working
in poor illumination conditions. Recently, depth images are
used as auxiliary information to count and locate human
heads [22]. Nevertheless, depth images are coarse in out-
door scenarios, thus depth-based methods have relatively
limited deployment scopes. Nevertheless, depth images are
coarse in outdoor scenarios, thus depth-based methods have
relatively limited deployment scopes.

Multi-Modal Representation Learning: Multi-modal
representation learning aims at comprehending and repre-
senting cross-modal data through machine learning. There
are many strategies in cross-modal feature fusion. Some
simple fusion methods [19, 22, 46, 8] obtain a fused feature
with the operations of element-wise multiplication/addition
or concatenation in the “Early Fusion” and “Late Fusion”
way. To exploit the advantages of both early and late fu-
sion, various two-stream-based models [51, 38, 66, 63] pro-
pose to fuse hierarchical cross-modal features, achieving
the fully representative shared feature. Besides, a few ap-
proaches [33] explore the use of a shared branch, mapping
the shared information to common feature spaces. Further-
more, some recent works [7, 35, 58] are presented to ad-
dress RGBD saliency detection, which is also a cross-modal
dense prediction task like RGBT crowd counting. How-
ever, most of these works are one-way information transfer,
just using depth modality as auxiliary information to help
the representation learning of RGB modality. In this work,
we propose a symmetric dynamic enhancement mechanism
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Figure 2. The statistics histogram of people distribution in the pro-
posed RGBT Crowd Counting benchmark.

Table 1. The training, validation and testing sets of our RGBT-CC
benchmark. In each grid, the first value is the number of images,
while the second value denotes the average count per image.

Training Validation Testing
#Bright 510 / 65.66 97 / 63.02 406 / 73.39
#Dark 520 / 62.52 103 / 67.74 394 / 74.88
#Total 1030 / 64.07 200 / 65.45 800 / 74.12
Scene malls, streets, train/metro stations, etc

that can take full advantage of the modal complementarities
in crowd counting.

3. RGBT Crowd Counting Benchmark
To the best of our knowledge, there is currently no pub-

lic RGBT dataset for crowd counting. To promote the fu-
ture research of this task, we propose a large-scale RGBT
Crowd Counting (RGBT-CC) benchmark. Specifically, we
first use an optical-thermal camera to take a large number
of RGB-thermal images in various scenarios (e.g., malls,
streets, playgrounds, train stations, metro stations, etc). Due
to the different types of electronic sensors, original RGB
images have a high resolution of 2,048×1,536 with a wider
field of view, while thermal images have a standard resolu-
tion of 640×480 with a smaller field of view. On the basis
of coordinate mapping relation, we crop the corresponding
RGB regions and resize them to 640×480. We then choose
2,030 pairs of representative RGB-thermal images for man-
ual annotations. Among these samples, 1,013 pairs are cap-
tured in the light and 1,017 pairs are in the darkness. A total
of 138,389 pedestrians are marked with point annotations,
on average 68 people per image. The detailed distribution of
people is shown in Fig. 2. Finally, the proposed RGBT-CC
benchmark is randomly divided into three parts. As shown
in Table 1, 1030 pairs are used for training, 200 pairs are
for validation and 800 pairs are for testing. Compared with
those Internet-based datasets [14, 50, 45] with serious bias,
our RGBT-CC dataset has closer crowd density distribution
to realistic cities, since our images are captured in urban
scenes with various densities. Therefore, our dataset has
wider applications for urban crowd analysis.
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Figure 3. The architecture of the proposed cross-modal collaborative representation learning framework for multimodal crowd counting.
Specifically, our framework consists of multiple modality-specific branches, a modality-shared branch, and an Information Aggregation-
Distribution Module (IADM).

4. Method

In this work, we propose a cross-modal collaborative
representation learning framework for multimodal crowd
counting. Specifically, multiple modality-specific branches,
a modality-shared branch, and an Information Aggregation-
Distribution Module are incorporated to fully capture the
complementarities among different modalities with a dual
information propagation paradigm. In this section, we adopt
the representative CSRNet [21] as a backbone network to
develop our framework for RGBT crowd counting. It is
worth noting that our framework can be implemented with
various backbone networks (e.g., MCNN [64], SANet [2],
and BL [34]), and is also universal for multimodal crowd
counting, as verified in Section 5.4 by directly applying it
to the ShanghaiTechRGBD [22] dataset.

4.1. Overview

As shown in Fig. 3, the proposed RGBT crowd count-
ing framework is composed of three parallel backbones and
an Information Aggregation-Distribution Module (IADM).
Specifically, the top and bottom backbones are developed
for modality-specific (i.e. RGB images and thermal images)
representation learning, while the middle backbone is de-
signed for modality-shared representation learning. To fully
exploit the multimodal complementarities, our IADM dy-
namically transfers the specific-shared information to col-
laboratively enhance the modality-specific and modality-
shared representations. Consequently, the final modality-
shared feature contains comprehensive information and fa-
cilitates generating high-quality crowd density maps.

Given an RGB image R and a thermal image T , we
first feed them into different branches to extract modality-
specific features, which maintain the specific information
of individual modality. The modality-shared branch takes
a zero-tensor as input1 and aggregates the information of

1When the input of modality-shared branch is set to 0, Eq.3 at Conv1 2

is simplified as F̂ 1,2
s = I1,2r �Conv1∗1(I

1,2
r ) + I1,2t �Conv1∗1(I

1,2
t ).

In other words, the initial modality-shared feature is generated by directly
aggregating the information of RGB and thermal features.

modality-specific features hierarchically. As mentioned
above, each branch is implemented with CSRNet, which
consists of (1) a front-end block with the first ten convo-
lutional layers of VGG16 [42] and (2) a back-end block
with six dilated convolutional layers. More specifically, the
modality-specific branches are based on the CSRNet front-
end block, while the modality-shared branch is based on
the last 14 convolutional layers of CSRNet. In our work,
the j-th dilated convolutional layer of back-end block is re-
named as “Conv5 j”. For convenience, the RGB, thermal,
and modality-shared features at Convi j layer are denoted
as F i,j

r , F i,j
t , and F i,j

s , respectively.
After feature extraction, we employ the Information

Aggregation-Distribution Module described in Section 4.2
to learn cross-modal collaborative representation. To ex-
ploit the multimodal information hierarchically, the pro-
posed IADM is embedded after different layers, such as
Conv1 2, Conv2 2, Conv3 3, and Conv4 3. Specifically,
after Convi j, IADM dynamically transfers complementary
information among modality-specific and modality-shared
features for mutual enhancement. This process can be for-
mulated as follow:

F̂ i,j
s , F̂ i,j

r , F̂ i,j
t = IADM(F i,j

s , F i,j
r , F i,j

t ), (1)

where F̂ i,j
s , F̂ i,j

r , and F̂ i,j
t are the enhanced features of

F i,j
s , F i,j

r , and F i,j
t respectively. These features are then

fed into the next layer of each branch to further learn high-
level multimodal representations. Thanks to the tailor-
designed IADM, the complementary information of the in-
put RGB image and the thermal image is progressively
transferred into the modality-shared representations. The fi-
nal modality-shared feature F 5,6

s contains rich information.
Finally, we directly feed F 5,6

s into a 1*1 convolutional layer
for prediction of the crowd density map M .

4.2. Collaborative Representation Learning

As analyzed in Section , RGB images and thermal im-
ages are highly complementary. To fully capture their com-
plementarities, we propose an Information Aggregation and
Distribution Module (IADM) to collaboratively learn cross-
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Figure 4. (a) Information Aggregation Transfer: we first extract the contextual information Ir/It from modality-specific features Fr/Ft,
and then propagate them dynamically to enhance the modality-shared feature Fs. (b) Information Distribution Transfer: the contextual
information Îs of the enhance feature F̂s is distributed adaptively to each modality-specific feature for feedback refinement. “+” denotes
element-wise addition and “-” refers to element-wise subtraction.

modal representation with a dual information propagation
mechanism. Specifically, our IADM is integrated with two
collaborative transfers, which dynamically propagate the
contextual information to mutually enhance the modality-
specific and modality-shared representations.

1) Contextual Information Extraction: In this mod-
ule, we propagate the contextual information rather than
the original features, because the later manner would cause
the excessive mixing of specific-shared features. To this
end, we employ a L-level pyramid pooling layer to ex-
tract the contextual information for a given feature F i,j ∈
Rh×w×c. Specifically, at the lth level (l=1,...,L), we apply a
2l−1×2l−1 max-pooling layer to generate a h

2l−1× w
2l−1 fea-

ture, which is then upsampled to h×w with nearest neigh-
bor interpolation. For convenience, the upsampled feature
is denoted as F i,j,l. Finally, the contextual information
Ii,j ∈ Rh×w×c of feature F i,j is computed as:

Ii,j = Conv1∗1(F
i,j,1 ⊕ F i,j,2 ⊕ ...⊕ F i,j,L), (2)

where ⊕ denotes an operation of feature concatenation and
Conv1∗1 is a 1*1 convolutional layer. This extraction has
two advantages. First, with a larger receptive field, each po-
sition at Ii,j contains more context. Second, captured by
different sensors, RGB images and thermal images are not
strictly aligned, as shown in Figure 1. Thanks to the transla-
tion invariance of max-pooling layers, we can eliminate the
misalignment of RGB-thermal images to some extent.

2) Information Aggregation Transfer (IAT): In our
work, IAT is proposed to aggregate the contextual infor-
mation of all modality-specific features to enhance the
modality-shared feature. As shown in Fig. 4-(a), instead
of directly absorbing all information, our IAT transfers
the complementary information dynamically with a gat-
ing mechanism that adaptively filters useful information.
Specifically, given features F i,j

r , F i,j
t and F i,j

s , we first ex-
tract their contextual information Ii,jr , Ii,jt , and Ii,js with
Eq. 2. Similar to [61, 65], we then obtain two residual infor-
mation Ii,jr2s and Ii,jt2s by computing the differences between
Ii,jr /Ii,jt and Ii,js . Finally, we apply two gating functions to

adaptively propagate the complementary information for re-
fining the modality-shared feature F i,j

s . The enhanced fea-
ture F̂ i,j

s is formulated as follow:

Ii,jr2s = Ii,jr − Ii,js , wi,j
r2s = Conv1∗1(I

i,j
r2s),

Ii,jt2s = Ii,jt − Ii,js , wi,j
t2s = Conv1∗1(I

i,j
t2s),

F̂ i,j
s = F i,j

s + Ii,jr2s�w
i,j
r2s + Ii,jt2s�w

i,j
t2s,

(3)

where the gating functions are implemented by convolu-
tional layers, wi,j

r2s and wi,j
t2s are the gating weights. � refers

to an operation of element-wise multiplication. With such
a mechanism, the complementary information is effectively
embedded into the modality-shared representation, thus our
method can better exploit the multimodal data.

3) Information Distribution Transfer (IDT): After
information aggregation, we distribute the information of
the new modality-shared feature to refine each modality-
specific feature respectively. As shown in Fig. 4-(b), with
the enhanced feature F̂ i,j

s , we first extract its contextual in-
formation Îi,js , which is then dynamically propagated to
F i,j
r and F i,j

t . Simialr to IAT, two gating functions are
used for information filtering. Specifically, the enhanced
modality-specific features are computed as follow:

Ii,js2r = Îi,js − Ii,jr , Ii,js2t = Îi,js − Ii,jt ,

wi,j
s2r = Conv1∗1(I

i,j
s2r), wi,j

s2t = Conv1∗1(I
i,j
s2t),

F̂ i,j
r = F i,j

r + Ii,js2r�w
i,j
s2r, F̂ i,j

t = F i,j
t + Ii,js2t�w

i,j
s2t.

Finally, all enhanced features F̂ i,j
r , F̂ i,j

t , and F̂ i,j
s are fed

into the following layers of the individual branch for further
representation learning.

5. Experiments
5.1. Implementation Details & Evaluation Metrics

In this work, the proposed method is implemented with
PyTorch [36]. Here we take various models (e.g., CSR-
Net [21], MCNN [64], SANet [2], and BL [34]) as back-
bone to develop multiple instances of our framework. To
maintain a similar number of parameters to original mod-



Table 2. The performance of different inputs and different representation learning approaches on our RGBT-CC benchmark.
Input Data Representation Learning GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

RGB - 33.94 40.76 47.31 57.20 69.59
T - 21.64 26.22 31.65 38.66 37.38

RGBT

Early Fusion 20.40 23.58 28.03 35.51 35.26
Late fusion 19.87 25.60 31.93 41.60 35.09

W/O Gating Mechanism 19.76 23.60 28.66 36.21 33.61
W/O Modality-Shared Feature 18.67 22.67 27.95 36.04 33.73
W/O Information Distribution 18.59 23.08 28.73 36.74 32.91

IADM 17.94 21.44 26.17 33.33 30.91

Table 3. The performance under different illumination conditions on our RGBT-CC benchmark. The unimodal data is directly fed into
CSRNet, while the multimodal data is fed into our proposed framework based on CSRNet.

Illumination Input Data GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓

Brightness
RGB 23.49 30.14 37.47 48.46 45.40

T 25.21 28.98 34.82 42.25 40.60
RGBT 20.36 23.57 28.49 36.29 32.57

Darkness
RGB 44.72 51.70 57.45 66.21 87.81

T 17.97 23.38 28.39 34.95 33.74
RGBT 15.44 19.23 23.79 30.28 29.11

els for fair comparisons, the channel number of these back-
bones in our framework is respectively set to 70%, 60%,
60%, and 60% of their original values. The kernel param-
eters are initialized by Gaussian distribution with a zero
mean and a standard deviation of 1e-2. At each iteration,
a pair of 640×480 RGBT image is fed into the network.
The ground-truth density map is generated with geometry-
adaptive Gaussian kernels [64]. The learning rate is set to
1e-5 and Adam [20] is used to optimize our framework. No-
tice that the loss function of our framework is the same as
that of the adopted backbone network.

Following [25, 44, 24], we adopt the Root Mean Square
Error (RMSE) as an evaluation metric. Moreover, Grid Av-
erage Mean Absolute Error (GAME [12]) is utilized to eval-
uate the performance in different regions. Specifically, for
a specific level l, we divide the given images into 4l non-
overlapping regions and measure the counting error in each
region. Finally, the GAME at level l is computed as:

GAME(l) =
1

N

N∑
i=1

4l∑
j=1

|P̂ j
i − P j

i |, (4)

where N is the total number of the testing samples, P̂ j
i and

P j
i are the estimated count and the corresponding ground-

truth count in the jth region of the ith image. Note that
GAME(0) is equivalent to Mean Absolute Error (MAE).

5.2. Ablation Studies

We perform extensive ablation studies to verify the ef-
fectiveness of each component in our framework. In this
subsection, CSRNet is utilized as the backbone network to
implement our proposed method.

1) Effectiveness of Multimodal Data: We first explore
whether the multimodal data (i.e., RGB images and thermal

images) is effective for crowd counting. As shown in Ta-
ble 2, when only feeding RGB images into CSRNet, we ob-
tain less impressive performance (e.g., GAME(0) is 33.94
and RMSE is 69.59), because we cannot effectively rec-
ognize people in dark environments. When utilizing ther-
mal images, GAME(0) and RMSE are sharply reduced to
21.64 and 37.38, which demonstrates that thermal images
are more useful than RGB images. In contrast, various mod-
els in the bottom six rows of Table 2 achieve better perfor-
mance, when considering RGB and thermal images simul-
taneously. In particular, our CSRNet+IADM has a relative
performance improvement of 17.3% on RMSE, compared
with the thermal-based CSRNet.

To further verify the complementarities of multimodal
data, the testing set is divided into two parts to measure the
performance in different illumination conditions separately.
As shown in Table 3, using both RGB and thermal images,
our CSRNet+IADM consistently outperforms the unimodal
CSRNet in both bright and dark scenarios. This is attributed
to the thermal information that greatly helps to distinguish
potential pedestrians from the cluttered background, while
optical information is beneficial to eliminate heating nega-
tive objects in thermal images. Moreover, we also visualize
some crowd density maps generated with different modal
data in Fig. 4. We can observe that the density maps and es-
timated counts of our CSRNet+IADM are more accurate.
These quantitative and qualitative experiments show that
RGBT images are greatly effective for crowd counting.

2) Which Representation Learning Method is Better?
We implement six methods for multimodal representation
learning. Specifically, “Early Fusion” feeds the concatena-
tion of RGB and thermal images into CSRNet. “Late Fu-
sion” extracts the RGB and thermal features respectively
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(a) RGB images (b) Thermal images (c) RGB results (d) Thermal results (e) Early fusion results (g) Ground-truth(f) Our results
Figure 5. Visualization of the crowd density maps generated in different illumination conditions. (a) and (b) show the input RGB images
and thermal images. (c) and (d) are the results of RGB-based CSRNet and thermal-based CSRNet. (e) shows the results of CSRNet that
takes the concatenation of RGB and thermal images as input. (f) refers to the results of our CSRNet+IDAM. And the ground-truths are
shown in (g). We can observe that our density maps and estimated counts are more accurate than those of other methods. (Best to zoom in
to view this figure.)

Table 4. Performance of different methods on the proposed RGBT-CC benchmark. All the methods in this table utilize both RGB images
and thermal images to estimate the crowd counts.

Backbone GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓
UCNet [58] 33.96 42.42 53.06 65.07 56.31

HDFNet [35] 22.36 27.79 33.68 42.48 33.93
BBSNet [7] 19.56 25.07 31.25 39.24 32.48
MVMS [60] 19.97 25.10 31.02 38.91 33.97

MCNN 21.89 25.70 30.22 37.19 37.44
MCNN + IADM 19.77 23.80 28.58 35.11 30.34
SANet 21.99 24.76 28.52 34.25 41.60
SANet + IADM 18.18 21.84 26.27 32.95 33.72

CSRNet 20.40 23.58 28.03 35.51 35.26
CSRNet + IADM 17.94 21.44 26.17 33.33 30.91

BL 18.70 22.55 26.83 34.62 32.67
BL + IADM 15.61 19.95 24.69 32.89 28.18

Table 5. Performance of different level numbers of the pyramid
pooling layer in IADM.

#Level GAME(0) GAME(1) GAME(2) GAME(3) RMSE
L=1 18.94 23.05 28.03 35.88 33.01
L=2 18.35 22.56 27.84 35.90 31.94
L=3 17.94 21.44 26.17 33.33 30.91
L=4 17.80 21.39 25.91 33.20 31.48

with two CSRNet and then combines their features to gen-
erate density maps. As shown in Table 2, these two models
are better than unimodal models, but their performance still
lags far behind various variants of our IADM. For instance,
without gating functions, the variant “W/O Gating Mecha-
nism” directly propagates information among different fea-
tures and obtains an RMSE of 33.61. The variant “W/O
Modality-Shared Feature” obtains a GAME(0) of 18.67 and
an RMSE of 33.73, when removing the modality-shared
branch and directly refining the modality-specific features.
When using the modality-shared branch but only aggregat-
ing multimodal information, the variant “W/O Information
Distribution” obtains a relatively better RMSE 32.91. When
using the full IADM, our method achieves the best perfor-
mance on all evaluation metrics. This is attributed to our
tailor-designed architecture (i.e., specific-shared branches,

dual information propagation) that can effectively learn the
multimodal collaborative representation, and fully capture
the complementary information of RGB and thermal im-
ages. These experiments demonstrate the effectiveness of
the proposed IADM for multimodal representation learning.

3) The Effectiveness of Level Number of Pyramid
Pooling Layer: In the proposed IDAM, an L-level pyra-
mid pooling layer is utilized to extract contextual informa-
tion. In this section, we explore the effectiveness of the
level number. As shown in Table 5, when L is set to 1, the
GAME(3) and RMSE are 35.88 and 33.01, respectively. As
the level number increases, our performance also becomes
better gradually, and we can achieve very competitive re-
sults when the pyramid pooling layer has three levels. More
levels over 3 will not bring additional performance gains.
Thus, the level number L is consistently set to 3 in our work.

5.3. Comparison with State-of-the-Art Methods

We compare the proposed method with state-of-the-art
methods on the large-scale RGBT-CC benchmark. The
compared methods can be divided into two categories. The
first class is the specially-designed models for crowd count-
ing, including MCNN [64], SANet [2], CSRNet [21], and



Table 6. Performance of different methods on the ShanghaiTechRGBD benchmark. All the methods in this table utilize both RGB images
and depth images to estimate the crowd counts.

Method GAME(0) ↓ GAME(1) ↓ GAME(2) ↓ GAME(3) ↓ RMSE ↓
UCNet [58] 10.81 15.24 22.04 32.98 15.70

HDFNet [35] 8.32 13.93 17.97 22.62 13.01
BBSNet [7] 6.26 8.53 11.80 16.46 9.26
DetNet [23] 9.74 - - - 13.14

CL [14] 7.32 - - - 10.48
RDNet [22] 4.96 - - - 7.22

MCNN 11.12 14.53 18.68 24.49 16.49
MCNN + IADM 9.61 11.89 15.44 20.69 14.52

BL 8.94 11.57 15.68 22.49 12.49
BL + IADM 7.13 9.28 13.00 19.53 10.27

SANet 5.74 7.84 10.47 14.30 8.66
SANet + IADM 4.71 6.49 9.02 12.41 7.35

CSRNet 4.92 6.78 9.47 13.06 7.41
CSRNet + IADM 4.38 5.95 8.02 11.02 7.06

BL [34]. These methods are reimplemented to take the con-
catenation of RGB and thermal images as input in an “Early
Fusion” way. Moreover, MVMS [60] is also reimplemented
on RGBT-CC and pixel-wise attention map [6] is utilized
to fuse the features of optical view and thermal view. The
second class is several best-performing models for multi-
modal learning, including UCNet [58], HDFNet [35], and
BBSNet [7]. Based on their official codes, these methods
are reimplemented to estimate crowd counts on our RGBT-
CC dataset. As mentioned above, our IADM can be incor-
porated into various networks, thus here we take CSRNet,
MCNN, SANet, and BL as backbone to develop multiple
instances of our framework.

The performance of all comparison methods is shown
in Table 4. As can be observed, all instances of our
method outperform the corresponding backbone networks
consistently. For instance, both MCNN+IADM and
SANet+IADM have a relative performance improvement
of 18.9% on RMSE, compared with their “Early Fusion”
models. Moreover, our CSRNet+IADM and BL+IADM
achieve better performance on all evaluation metrics, com-
pared with other advanced methods (i.e., UCNet, HDFNet,
and BBSNet). This is because our method learns specific-
shared representations explicitly and enhances them mutu-
ally, while others just simply fuse multimodal features with-
out mutual enhancements. Thus our method can better cap-
ture the complementarities of RGB images and thermal im-
ages. This comparison has demonstrated the effectiveness
of our method for RGBT crowd counting.

5.4. Apply to RGBD Crowd Counting

We apply the proposed method to estimate crowd counts
from RGB images and depth images. In this subsection, we
also take various crowd counting models as backbone to de-
velop our framework on ShanghaiTechRGBD [22] bench-
mark. The implementation details of the compared meth-
ods are similar to the previous subsection. As shown in

Table 6, all instances of our framework are superior to
their corresponding backbone networks by obvious mar-
gins. Moreover, our SANet+IADM and CSRNet+IADM
outperform three advanced models (i.e., UCNet, HDFNet,
and BBSNet) on all evaluation metrics. More importantly,
our CSRNet+IADM achieves the lowest GAME(0) 4.38
and RMSE 7.05, and becomes the new state-of-the-art
method on ShanghaiTechRGBD benchmark. This experi-
ment shows that our approach is universal and effective for
RGBD crowd counting.

6. Conclusion
In this work, we propose to incorporate optical and ther-

mal information to estimate crowd counts in unconstrained
scenarios. To this end, we introduce the first RGBT crowd
counting benchmark with 2,030 pairs of RGB-thermal im-
ages and 138,389 annotated people. Moreover, we de-
velop a cross-modal collaborative representation learning
framework, which utilizes a tailor-designed Information
Aggregation-Distribution Module to fully capture the com-
plementary information of different modalities. Extensive
experiments on two real-world benchmarks show the effec-
tiveness and universality of the proposed method for multi-
modal (e.g., RGBT and RGBD) crowd counting.
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