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Abstract
Social relationships (e.g., friends, couple etc.) form
the basis of the social network in our daily life. Au-
tomatically interpreting such relationships bears a
great potential for the intelligent systems to under-
stand human behavior in depth and to better inter-
act with people at a social level. Human beings in-
terpret the social relationships within a group not
only based on the people alone, and the interplay
between such social relationships and the contex-
tual information around the people also plays a sig-
nificant role. However, these additional cues are
largely overlooked by the previous studies. We
found that the interplay between these two factors
can be effectively modeled by a novel structured
knowledge graph with proper message propagation
and attention. And this structured knowledge can
be efficiently integrated into the deep neural net-
work architecture to promote social relationship
understanding by an end-to-end trainable Graph
Reasoning Model (GRM), in which a propagation
mechanism is learned to propagate node message
through the graph to explore the interaction be-
tween persons of interest and the contextual ob-
jects. Meanwhile, a graph attentional mechanism is
introduced to explicitly reason about the discrimi-
native objects to promote recognition. Extensive
experiments on the public benchmarks demonstrate
the superiority of our method over the existing lead-
ing competitors.

1 Introduction
Social relationships are the foundation of the social network
in our daily life. Nowadays, as intelligent and autonomous
systems become our assistants and co-workers, understand-
ing such relationships among persons in a given scene en-
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Figure 1: Two examples of the correlation between social relation-
ship and the contextual objects in the scene.

ables these systems to better blend in and act appropriately.
In addition, as we usually communicate via social media like
Facebook or Twitter, we leave traces that may reveal social
relationships in texts, images, and video [Fairclough, 2003].
By automatically capturing this hidden information, the sys-
tem would inform users about potential privacy risks. In im-
age analysis tasks, most works are dedicated to recognizing
visual attributes [Huang et al., 2016] and visual relationships
[Lu et al., 2016]. However, the aforementioned applications
require recognizing social attributes and relationships, which
receives less attention in the research community. In this
work, we aim to address the task of recognizing the social
relationships of person pairs in a still image.

Reasoning about the relationship of two persons from a still
image is non-trivial as they may enjoy different relationships
in different occasions that contain different contextual cues.
For example in Figure 1, given several persons with business
wear and with some office supplies such as keyboard around,
they are likely to be colleagues. In contrast, if the persons
are sitting in a room that has some household supplies like
the bed, they tend to be family members. Thus, modeling
such correlations between social relationships and contextual
cues play a key role in social relationship recognition. Ex-
isting works either merely fixate on the regions of persons of
interest [Sun et al., 2017] or exploit category-agnostic pro-
posals as contextual information [Li et al., 2017] to perform
prediction. Despite acknowledged successes, they ignore the



semantic of contextual objects and the prior knowledge of
their correlations with the social relationships. Besides, the
interaction between the contextual objects and the persons of
interest is also oversimplified.

Different from these works, we formulate a Graph Reason-
ing Model (GRM) that unifies the prior knowledge with deep
neural networks for handling the task of social relationship
recognition. Specifically, we first organize the prior knowl-
edge as a structured graph that describes the co-occurrences
of social relationships and semantic objects in the scene. The
GRM then initializes the graph nodes with corresponding
semantic regions, and employ a Gated Graph Neural Net-
work (GGNN) [Li et al., 2015b] to propagate model message
through the graph to learn node-level features and to explore
the interaction between persons of interest and the contextual
objects. As some contextual objects are key to distinguish
different social relationships while some are non-informative
or even interferential, we further introduce a graph attention
mechanism to adaptively select the most discriminative nodes
for recognition by measuring the importance of each node. In
this way, the GRM can also provide an interpretable way to
improve social relationship recognition by explicitly reason-
ing about relevant objects that provide key contextual cues.

In summary, the contributions can be concluded to three-
fold. 1) We propose an end-to-end trainable and inter-
pretable Graph Reasoning Model (GRM) that unifies high-
level knowledge graph with deep neural networks to facilitate
social relationship recognition. To the best of our knowledge,
our model is among the first to advance knowledge graph for
this task. 2) We introduce a novel graph attention mechanism
that explicitly reasons key contextual cues for better social
relationship understanding. 3) We conduct extensive exper-
iments on the large-scale People in Social Context (PISC)
[Zhang et al., 2015] and the People in Photo Album Relation
(PIPA-Relation) [Sun et al., 2017] datasets and demonstrate
the superiority of our methods over the existing state-of-the-
art methods.

2 Related Work
We review the related works in term of two research streams:
social relationship recognition and graph neural network.

2.1 Social Relationship Recognition
Social relationships form the basic information of social net-
work [Li et al., 2015a]. In computer vision community, social
information has been considered as supplementary cues to
improve various tasks including multi-target tracking [Choi
and Savarese, 2012], human trajectory prediction [Alahi et
al., 2016] and group activity analysis [Lan et al., 2012;
Deng et al., 2016]. For instance, [Alahi et al., 2016] implic-
itly induce social constraint to predict human trajectories that
fit social common sense rules. [Lan et al., 2012] and [Deng
et al., 2016] exploit social roles and individual relation to aid
group activity recognition, respectively.

The aforementioned works implicitly embed social infor-
mation to aid inference, and there are also some efforts ded-
icated to directly predicting social roles and relationships.
As a pioneering work, [Wang et al., 2010] use familial so-
cial relationships as context to recognize kinship relations

between pairs of people. To capture visual patterns exhib-
ited in these relationships, facial appearance, attributes and
landmarks are extensively explored for kinship recognition
and verification [Dibeklioglu et al., 2013; Xia et al., 2012;
Chen et al., 2012]. To generalize to general social relation-
ship recognition and enable this research, recent works [Li et
al., 2017] and [Sun et al., 2017] construct large-scale datasets
and employ deep models to directly predict social relation-
ships from raw image input. Concretely, [Sun et al., 2017]
build on Bugental’s domain-based theory [Bugental, 2000]
which partitions social life into 5 domains. They derive 16 so-
cial relationships based on these domains and extend the Peo-
ple in Photo Album (PIPA) dataset [Zhang et al., 2015] with
26,915 relationship annotations between person pairs. A sim-
ple two-stream model is proposed for social domain/relation
recognition. Concurrently, [Li et al., 2017] follow relational
models theory [Fiske, 1992] to define a hierarchical social
relationship categories, which involve 3 coarse-level and 6
fine-level relationships. They also build a People in Social
Context (PISC) dataset that consists of 22,670 images with
76,568 manually annotated person pairs from 9 types of so-
cial relationships, and propose a dual-glance model that ex-
ploits category-agnostic proposals as contextual cues to aid
recognizing the social relationships.

2.2 Knowledge Representation
Representing extr/prior knowledge in the form of graph struc-
ture [Schlichtkrull et al., 2017; Lin et al., 2017] and incor-
porating this structure for visual reasoning [Malisiewicz and
Efros, 2009; Zhu et al., 2014; Teney et al., 2017] has received
increasingly attention. For example, Malisiewicz et al. [Mal-
isiewicz and Efros, 2009] build a large graph, with the nodes
referring to object instances and the edge corresponding to as-
sociated types between nodes, to represent and reason about
object identities and their contextual relationships. Lin et al.
[Lin et al., 2017] introduce And-Or graphs for task represen-
tation, which can effectively regularize predictable semantic
space for effective training. These methods usually involve
hand-crafted features and manually-defined rules.

Recently, more works are dedicated to explore message
propagation by learnable neural networks like [Chen et al.,
2018; Wang et al., 2017] or neural network variants like
Graph LSTM [Liang et al., 2016; 2017] and Graph CNN
[Duvenaud et al., 2015; Schlichtkrull et al., 2017; Kipf and
Welling, 2016]. [Wang et al., 2017] exploits LSTM network
to capture label dependencies by remembering previous in-
formation step by step. [Liang et al., 2016] proposes a Graph
LSTM network that propagates message through super-pixels
over different level to model their contextual dependencies.
Gated Graph Neural Network (GGNN) [Li et al., 2015a]
is a fully differential recurrent neural network architecture
for handling graph-structured data, which iteratively propa-
gate node message through the graph to learn node-level or
graph-level representation. Several works have successfully
developed GGNN variants for various vision tasks including
3DGNN for RGBD semantic segmentation [Qi et al., 2017],
and GSNN for multi-label image recognition [Marino et al.,
2016]. For example, GSNN learns knowledge representa-
tion and concatenates it with image feature to improve multi-
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Figure 2: An overall pipeline of our proposed graph reasoning model. Given an image and a person pair, the GRM initializes the relationship
nodes with features extracted from regions of person pair and the object nodes with features extracted from corresponding semantic regions in
the image. Then it employs the GGNN to propagate node message through the graph to compute node-level features, and introduces a graph
attention mechanism to attend to the most discriminative object nodes for recognition by measuring their importance to each relationship
node.

label classification. Different from these works, we apply the
GGNN to encode the prior knowledge graph and explore the
interaction between the person pair of interest and contextual
objects to address a newly-raised problem, i.e., social rela-
tionship recognition.

3 Graph Reasoning Model
The graph refers to an organization of the correlations be-
tween social relationships and semantic objects in the scene,
with nodes representing the social relationships and seman-
tic objects, and edges representing the probabilities of their
co-occurrences. Given an image and a person pair of interest
from the image, the GRM follows [Li et al., 2017] to extract
features from the regions of the person pair and initializes
the relationship nodes with these features. And it uses a pre-
trained Faster-RCNN detector [Ren et al., 2015] to search
the semantic objects in the image and extract their features
to initialize the corresponding object nodes. Then, the GRM
employs the GGNN [Li et al., 2015b] to propagate node mes-
sage through the graph to fully explore the interaction of the
persons with the contextual objects, and adopts the graph at-
tention mechanism to adaptively select the most informative
nodes to facilitate recognition by measuring the importance
of each object node. Figure 2 presents an illustration of the
GRM.

3.1 Knowledge Graph Propogation
GGNN [Li et al., 2015b] is an end-to-end trainable net-
work architecture that can learn features for arbitrary graph-
structured data by iteratively updating node representation in
a recurrent fashion. Formally, the input is a graph represented
as G = {V,A}, in which V is the node set and A is the ad-
jacency matrix denoting the connections among these nodes.
For each node v ∈ V, it has a hidden state ht

v at timestep
t, and the hidden state at t = 0 is initialized by input feature
vectors xv that depends on the task at hand. At each timestep,
we update the representation of each node based on its history
state and the message sent by its neighbors. Here, we follow

the computational process of the GGNN to learn the propa-
gation mechanism.

The graph contains two types of nodes, i.e., social relation-
ship and object nodes, and we initialize their input feature
with different contents from the image. Since the regions of
the person pair maintain the basic information for recogni-
tion, we extract features from these regions to serve as the
input features for the social relationship nodes. Similar to [Li
et al., 2017], we first crop three regions, among which one
covers the union of the two persons and the other two contain
the two persons respectively, and extract three feature vectors
from these three regions. These feature vectors, together with
the position information encoding the geometry feature of the
two persons, are concatenated and fed into a fully connected
layer to produce a d-dimension feature vector fh ∈ Rd. fh
is then served as the input features for all the social relation-
ship nodes. For the object nodes, we detect the object re-
gions in the image using a pre-trained detector and extract
features from these detected regions to initialize the nodes
that refer to corresponding categories. As social relationship
datasets, e.g., PISC [Li et al., 2017] and PIPA-Relation [Sun
et al., 2017], do not provide object category and their posi-
tion annotations, the detector cannot be directly trained on
these datasets. Fortunately, COCO [Lin et al., 2014] is a
large-scale dataset for object detection, and it covers 80 com-
mon categories of objects that occur frequently in our daily
life; thus we get a faster RCNN detector [Ren et al., 2015]
trained on this dataset for the collection of semantic objects
. And we regard the object with a detected score higher than
a pre-defined threshold ε1 as the semantic objects existed in
the given image. For the node referring to the object o that
is detected in the image, its input feature is initialized by the
features extracted from the corresponding region fo ∈ Rd,
and otherwise, it is initialized by a d-dimension zero vector.
In addition, we use a one-hot vector to explicitly distinguish
the two node types, with [1, 0] and [0, 1] denoting the social
relationship and object nodes, respectively, and concatenate
them with the corresponding features to initialize the hidden



state at timestep t = 0, expressed as

h0
v =


[[1, 0], fh] if v refers to a relationship
[[0, 1], fo] if v refers to category o that is detected
[[0, 1],0d] otherwise

,

(1)
where 0d is a zero vector with dimension of d. At each
timestep, the nodes first aggregate message from its neigh-
bors, expressed as

atv = A>v [h
t−1
1 . . .ht−1

|V| ]
> + b, (2)

where Av is the sub-matrix of A that denotes the connec-
tion of node v with its neighbors. Then, the model incorpo-
rates information from the other nodes and from the previous
timestep to update each node’s hidden state through a gating
mechanism similar to the Gated Recurrent Unit [Cho et al.,
2014; Li et al., 2015b], formulated as

ztv =σ(Wzatv +Uzht−1
v )

rtv =σ(Wratv +Urht−1
v )

h̃t
v =tanh

(
Watv +U(rtv � ht−1

v )
)

ht
v =(1− ztv)� ht−1

v + ztv � h̃t
v

(3)

where σ and tanh are the logistic sigmoid and hyperbolic
tangent functions, respectively, and � denotes the element-
wise multiplication operation. In this way, each node can ag-
gregate information from its neighbors while transfer its own
message to its neighbors, enabling the interaction among all
nodes. An example propagation process is illustrated in Fig-
ure 2. After T interactions, the node message has propagated
through the graph, and we can get the final hidden state for
each node, i.e., {hT

1 ,h
T
2 , . . . ,h

T
|V|}. Similar to [Li et al.,

2015b], we employ an output network that is implemented
by a fully-connected layer, to compute node-level feature, ex-
pressed by

ov = o(
[
hT
v ,xv

]
), v = 1, 2, . . . , |V|. (4)

3.2 Graph Attention Mechanism
After computing features for each node, we can directly ag-
gregate them for recognition. However, we found that some
contextual objects play key roles to distinguish different re-
lationships while some objects are non-informative or even
incur interference. For example, the object “desk” co-occurs
frequently with most social relationships; thus it can hardly
provide information for recognition. To address this issue, we
introduce a novel graph attention mechanism that adaptively
reasons about the most relevant contextual objects according
to the graph structure. For each social relationship and neigh-
bor object pair, the mechanism takes their last hidden states
as input and computes a score denoting the importance of this
object to the relationship. We describe this module formally
in the following.

For illustration convenience, we denote the social rela-
tionship nodes as {r1, r2, . . . , rM} and the object node as
{o1, o2, . . . , oN}, where M and N is the number of the
two type nodes, respectively. And their hidden states can

be denote as {hT
r1 ,h

T
r2 , . . . ,h

T
rM } and {hT

o1 ,h
T
o2 , . . . ,h

T
oN }

accordingly. Given a relationship ri and an object oj , we
first fuse their hidden states using low-rank bilinear pooling
method [Kim et al., 2016]

hij = tanh(Uahri)� tanh(Vahoj ), (5)

whereUa and Va are the learned parameter matrixes. Then,
we can compute the attention coefficient

eij = a(hij) (6)

that indicates the importance of object node oj to relation-
ship node ri. a is the attentional mechanism that is used to
estimate the attention coefficient and it is implemented by a
fully-connected layer. The model allows to attend on every
object nodes but such mechanism ignores the graph structure.
In this work, we inject the structure information into the atten-
tion mechanism by only computing the attention coefficient
eij for object nodes j ∈ Ni, where Ni is the neighbor set of
node i in the graph. The coefficients are then normalized to
(0, 1) using a sigmoid function

αij = σ(eij). (7)

αij is assigned to zero if object node j does not belong toNi.
Once obtained, we utilize the normalized attention coef-

ficients to weight the output features of the corresponding
nodes and aggregate them for final recognition. Specifi-
cally, we denote the output features of the social relation-
ship nodes and the object nodes as {or1 ,or2 , . . . ,orM } and
{oo1 ,oo2 , . . . ,ooN }. For relationship ri, we concatenate the
features of its own node and the weighted features of context
nodes to serve as its final features, that is

fi = [ori , αi1oo1 , αi2oo2 , . . . , αiNooN ]. (8)

Then the feature vector fi is fed into a simple fully-connected
layer to compute a score

si = Wfi + b (9)

that indicates how likely the person pair is of social relation-
ship ri. The process is repeated for all the relationship nodes
to compute the score vector s = {s1, s2, . . . , sM}.

3.3 Optimization
We employ the cross entropy loss as our objective function.
Suppose there are K training samples, and each sample is
annotated with a label yk. Given the predicted probability
vector pk

pki =
exp(ski )∑M

i′=1 exp(s
k
i′)

i = 1, 2, . . . ,M, (10)

the loss function is expressed as

L = − 1

K

K∑
k=1

K∑
i=1

1(yk = i) log pki , (11)

where 1(·) is the indicator function whose value is 1 when
the expression is true, and 0 otherwise.
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Figure 3: An example knowledge graph for modeling the co-
occurrences between social relationships (indicated by the red cir-
cles) and semantic objects (indicated by the blue circles) on the PISC
dataset.

4 Experiments
4.1 Knowledge Graph Building
The knowledge graph describes the co-occurrences of social
relationships and semantic objects in the scene. Building such
a graph requires annotations of both social relationships for
person pairs and objects existed in the images. However,
there is no dataset that meets these conditions. As discussed
above, detector trained on the COCO [Lin et al., 2014] dataset
can well detect semantic objects that occur frequently in our
daily life. Thus, we also use the faster RCNN [Ren et al.,
2015] detector trained on COCO dataset to detect objects of
the image on the social relationship dataset. We regard the
detected object with a confidence score higher than a thresh-
old ε2 as the semantic objects in the given image. Here, we
utilize a high threshold to avoid incurring too much false pos-
itive samples (i.e., ε2 = 0.7). In this way, we can obtain sev-
eral pseudo object labels for each image. We then count the
frequency of the co-concurrences of each relationship-object
pair over the whole training set. All scores are normalized to
[0, 1] and the edge with a small normalized score is pruned.
Despite the mistakenly predicted labels, the obtained knowl-
edge graph can basically describe the correlation between re-
lationship and object by counting their co-occurrence over a
quite large dataset. Besides, by explicitly reasoning about
the most important nodes, our GRM can leverage the noise
knowledge graph to aid recognition. Figure 3 illustrate an
example knowledge graph for the PISC dataset.

4.2 Experiment Setting
Dataset. We evaluate the GRM and existing competing
methods on the large-scale People in Social Context (PISC)
[Li et al., 2017] and the People in Photo Album Rela-
tion (PIPA-Relation) [Sun et al., 2017] datasets. The PISC
dataset contains 22,670 images and involves two-level rela-
tionship recognition tasks: 1) Coarse-level relationship fo-
cuses on three categories of relationship, i.e., No Relation,
Intimate Relation, and Non-Intimate Relation; 2) Fine-level
relationship focuses on six finer categories of relationship,
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Figure 4: Samples and their relationship annoations from the PISC
(the first line) and PIPA-Relation (the second line) datasets.

i.e., Friend, Family, Couple, Professional, Commercial and
No relation. For fair comparisons, we follow the standard
train/val/test split released by [Li et al., 2017] to train and
evaluate our GRM. Specifically, for the coarse level relation-
ship, it divides the dataset into a training set of 13,142 im-
ages and 49,017 relationship instances, a validation set of
4,000 images and 14,536 instances and a test set of 4,000
images and 15,497 instances. For the fine level relationship,
the train/val/test set consist of 16,828 images and 55,400 in-
stances, 500 images and 1,505 instances, 1,250 images and
3,961 instances, respectively. The PIPA-Relation dataset par-
titions social life into 5 domains and derives 16 social rela-
tions based on these domains. Still, we focus on recognizing
16 relationships in the experiment. As suggested in [Sun et
al., 2017], this dataset contains 13,729 person pairs for train-
ing, 709 for validation, and 5,106 for test. Serval examples of
the samples and their relationship annotations from both two
datasets are shown in Figure 4.
Implementation details. For the GGNN propagation model,
the dimension of the hidden state is set as 4,098 and that of
the output feature is set as 512. The iteration time T is set as
3. During training, all components of the model are trained
with SGD except that the GGNN is trained with ADAM fol-
lowing [Marino et al., 2016]. Similar to [Li et al., 2017],
we utilize the widely used ResNet-101 [He et al., 2016] and
VGG-16 [Simonyan and Zisserman, 2014] to extract features
for person regions and semantic object regions respectively.

4.3 Comparisons with State-of-the-Art Methods
We compare our proposed GRM with existing state-of-the-art
methods on both PISC and PIPA-Relation datasets.

Performance on the PISC dataset
We follow [Li et al., 2017] to compare our GRM with base-
line and existing state-of-the-art methods on the PISC dataset.
Concretely, the competing methods are listed as follow:
Union CNN generalizes the model [Lu et al., 2016], which
predicates general relations, to this task. It feeds the union re-
gion of the person pair of interest to a single CNN for recog-
nition.
Pair CNN [Li et al., 2017] consists of two identical CNNs
that share weights to extract features for cropped image
patches for the two individuals and concatenate them for
recognition.
Pair CNN + BBox + Union [Li et al., 2017] aggregates fea-
tures from pair CNN, union CNN and BBox that encode the
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Union CNN [Lu et al., 2016] 72.1 81.8 19.2 58.4 29.9 58.5 70.7 55.4 43.0 19.6 43.5
Pair CNN [Li et al., 2017] 70.3 80.5 38.8 65.1 30.2 59.1 69.4 57.5 41.9 34.2 48.2

Pair CNN + BBox + Union [Li et al., 2017] 71.1 81.2 57.9 72.2 32.5 62.1 73.9 61.4 46.0 52.1 56.9
Pair CNN + BBox + Global [Li et al., 2017] 70.5 80.0 53.7 70.5 32.2 61.7 72.6 60.8 44.3 51.0 54.6

Dual-glance [Li et al., 2017] 73.1 84.2 59.6 79.7 35.4 68.1 76.3 70.3 57.6 60.9 63.2
Ours 81.7 73.4 65.5 82.8 59.6 64.4 58.6 76.6 39.5 67.7 68.7

Table 1: Comparisons of our GRM with existing state-of-the-art and baseline methods on the PISC dataset. We present the per-class recall
for each relationships and the mAP over all relationships (in %).

geometry feature of the two bounding boxes for recognition.
We also use these features to describe the person pair of in-
terest and initialize the relationship nodes in the graph.

Pair CNN + BBox + global [Li et al., 2017] extracts the fea-
tures of the whole image as contextual information to improve
Pair CNN.

Dual-glance [Li et al., 2017] performs coarse prediction us-
ing features of Pair CNN + BBox + Union and exploits sur-
rounding proposals as contextual information to refine the
prediction.

We follow [Li et al., 2017] to present the per-class recall
and the mean average precision (mAP) to evaluate our GRM
and the competing methods on both two tasks. The results are
reported in Table 1. By incorporating contextual cues, both
Pair CNN + BBox + Union and Pair CNN + BBox + Global
can improve the performance. Dual-glance achieves more no-
table improvement as it exploits finer-level local contextual
cues (object proposals) rather than global context. Different
from these methods, our GRM incorporates high-level knowl-
edge graph to reason about the relevant semantic-aware con-
textual information that can provide a more direct cue to aid
social relationship recognition, leading to the performance
improvement. Specifically, the GRM achieves an mAP of
82.8% for the coarse-level recognition and 68.7% for the
fine-level recognition, improving the previous best method
by 3.1% and 5.5% respectively. It is noteworthy that more
notable improvement over other methods for the fine-level
recognition is achieved than that for the coarse-level recog-
nition. One possible reason is that recognizing fine-level so-
cial relationships is more challenging and thus depends more
heavily on prior knowledge.

It is noteworthy that the GRM uses the Faster RCNN
[Ren et al., 2015] pre-trained on the COCO dataset [Lin et
al., 2014] to detect semantic objects to build the knowledge
graph. We also use the same detector to detect semantic ob-
jects for initializing the contextual object nodes during both
training and test stages. Similarly, work [Li et al., 2017] also
uses the Faster RCNN pre-trained on the ImageNet detection
data for proposal generation and it involves the ImageNet de-
tection data as extra annotation. Thus, both methods incur
extra detection annotations and their comparisons are fair.

Methods accuracy
Two stream CNN [Sun et al., 2017] 57.2

Dual-Glance [Li et al., 2017] 59.6
Ours 62.3

Table 2: Comparison of the accuracy (in %) of our proposed GRM
with existing methods on the PIPA-Relation dataset.

Performance on the PIPA-Relation dataset
On this dataset, we compare our proposed GRM with two
existing methods, i.e., Two stream CNN [Sun et al., 2017]
that has reported the results on this dataset and Dual-Glance
[Li et al., 2017] that performs best among existing methods
on the PISC dataset (see Table 1). As dual-glance does not
present their results on this dataset, we strictly follow [Li et
al., 2017] to implement it for evaluation. The results are pre-
sented in Table 2. Still, our GRM significantly outperforms
previous methods. Specifically, it achieves an accuracy of
62.3%, beating the previous best method 2.7%.

4.4 Ablation Study

Significance of knowledge graph
The core of our proposed GRM is the introduction of the
knowledge graph as extra guidance. To better verify its ef-
fectivity, we conduct an experiment that randomly initializes
the adjacency matrix of the graph and re-train the model in
a similar way on the PISC dataset. As shown in Table 3,
the accuracies drop from 82.8% to 81.4% on the coarse-level
task and from 68.7% to 63.5% on the fine-level task. These
obvious performance drops clearly suggest incorporating the
prior knowledge can significantly improve social relationship
recognition.

Methods coarse-level fine level
Random matrix 81.4 63.5

Ours 82.8 68.7

Table 3: Comparison of the mAP (in %) of our GRM that initialize
the adjacency matrix by scores counting on the training set and by
random scores.



Analysis on the graph attention mechanism
Graph attention mechanism is a crucial module of our GRM
that can reason about the most relevant contextual objects.
Here, we further implement two baseline methods for com-
parison to demonstrate its benefit. First, we simply remove
this module and directly concatenate features of the relation-
ship nodes and all object nodes for recognition. As shown in
Table 4, it suffers from an obvious drop in mAP, especially
for the fine-level social relationship recognition that is more
challenge. Second, we replace the learnt attention coefficients
with randomly-selected scores and retrain the model in an
identical way. It shows that the performance is even worse
than that using features of all nodes as it may attend to nodes
that refer to non-informative or interferential objects.

Methods coarse-level fine level
Random score 82.0 66.8

Ours w/o attention 82.6 67.8
Ours 82.8 68.7

Table 4: Comparison of the mAP (in %) of ours without attention,
ours with random score and our full model.

Analysis on the semantic object detector
The detector is utilized to search the semantic objects with
confidence scores higher than threshold ε1. Obviously, a
small threshold may incur false detected objects while a high
threshold may lead to contextual cue missing. Here, we con-
duct experiments with different threshold values for selecting
an optimal threshold. As shown in Table 5, we find that a
relative threshold (i.e., 0.3) lead to best results despite dis-
turbance incurred by the false detected objects. One possible
reason is that setting ε1 as 0.3 can recall most contextual ob-
jects and the attentional mechanism can well suppress this
disturbance, thus leading to better performance.

ε1 0.1 0.3 0.5 0.7
mAP 67.8 68.7 67.2 67.3

Table 5: Comparison of the mAP (in %) of our GRM model using
different .

4.5 Qualitative Evaluation
In this subsection, we present some examples to illustrate how
our GRM recognizes social relationships in Figure 5. Consid-
ering the first example, the semantic objects including desk,
laptop, cup etc., are first detected and utilized to initialize the
corresponding object nodes in the graph. However, the ob-
jects like desk and cup, co-occur frequently with most social
relationships, and thus they can hardly provide informative
message to distinguish these relationships. In contrast, office
supplies like laptop provide strong evidence for the “profes-
sional” relationship. Thus, the attention mechanism assigns
higher scores to these two nodes, and perform prediction suc-
cessfully. For the second example, our GRM attends to the
bowl and pizza that are the key cues for recognizing “friend”
relationship.

professional

family

0.28 0.38
0.34 0.65

0.29 0.73

handbag

professional bottle

cup

chair

desk laptop

0.74
0.64

0.57 0.96

0.52
0.91

0.83

Book

family

desk pizza

bottlechair

cup bowl

Figure 5: Two examples of how our GRM recognize social relation-
ships. We visualize the original image, the regions of two persons
(indicated by the red boxes), the regions of detected objects (indi-
cated by green boxes) and the ground truth relationships in the left
and predicted relationship and nodes referring to the detected ob-
jects in the right. The object nodes with top-2 highest scores are
highlighted in orange. Best view in color.

5 Conclusion
In this work, we propose a Graph Reasoning Model (GRM)
that incorporates common sense knowledge of the correlation
between social relationship and semantic contextual cues in
the scene into the deep neural network to address the take of
social relationship recognition. Specifically, the GRM con-
sists of a propagation model that propagates node message
through the graph to explore the interaction between the per-
son pair of interest and contextual objects, and a graph at-
tention module that measures the importance of each node to
adaptively select the most discriminative objects to aid recog-
nition. Extensive experiments on two large-scale benchmarks
(i.e., PISC and PIPA-Relation) demonstrate the superiority of
the proposed GRM over existing state-of-the-art methods.
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