
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 1

A Hamiltonian Monte Carlo Method for
Probabilistic Adversarial Attack and Learning

Hongjun Wang, Guanbin Li, Xiaobai Liu and Liang Lin

Abstract—Although deep convolutional neural networks (CNNs) have demonstrated remarkable performance on multiple computer
vision tasks, researches on adversarial learning have shown that deep models are vulnerable to adversarial examples, which are crafted
by adding visually imperceptible perturbations to the input images. Most of the existing adversarial attack methods only create a single
adversarial example for the input, which just gives a glimpse of the underlying data manifold of adversarial examples. An attractive
solution is to explore the solution space of the adversarial examples and generate a diverse bunch of them, which could potentially
improve the robustness of real-world systems and help prevent severe security threats and vulnerabilities. In this paper, we present an
effective method, called Hamiltonian Monte Carlo with Accumulated Momentum (HMCAM), aiming to generate a sequence of adversarial
examples. To improve the efficiency of HMC, we propose a new regime to automatically control the length of trajectories, which allows the
algorithm to move with adaptive step sizes along the search direction at different positions. Moreover, we revisit the reason for high
computational cost of adversarial training under the view of MCMC and design a new generative method called Contrastive Adversarial
Training (CAT), which approaches equilibrium distribution of adversarial examples with only few iterations by building from small
modifications of the standard Contrastive Divergence (CD) and achieve a trade-off between efficiency and accuracy. Both quantitative and
qualitative analysis on several natural image datasets and practical systems have confirmed the superiority of the proposed algorithm.

Index Terms—Adversarial Example, Adversarial Training, Robustness and Safety of Machine Learning.

F

1 INTRODUCTION

W ITH the rapid development and superior performance
achieved in various vision tasks, deep convolutional

neural networks (CNNs) have eventually led to pervasive
and dominant applications in many industries. However,
most deep CNN models could be easily misled by natural
images with imperceptible but deceptive perturbations.
These crafted images are known as adversarial examples,
which have become one of the biggest threats in real-world
applications with security-sensitive purposes [1], [2], [3].
Devising an effective algorithm to generate such deceptive
examples can not only help to evaluate the robustness of
deep models, but also promote better understanding about
deep learning for the future community development.

In the past literature, most state-of-the-art methods are
well-designed for generating a single adversarial example
only, for example, by maximizing the empirical risk mini-
mization (ERM) over the target model, and might not be
able to exhaustively explore the solution space of adversarial
examples. In our opinion, adversarial examples of a deep
model might form an underlying data manifold [4], [5],
[6], [7] rather than scattered outliers of the classification
surface. Therefore, we argue that it is desirable and critical for

This work was supported in part by the National Key Research and Development
Program of China under Grant No.2018YFC0830103, in part by the National
Natural Science Foundation of China under Grant No.61976250, No.61702565
and No.U1811463, in part by the Guangdong Basic and Applied Basic Research
Foundation under Grant No.2020B1515020048, in part by National High Level
Talents Special Support Plan (Ten Thousand Talents Program). This work was
also sponsored by CCF-Tencent Open Research Fund. (Corresponding author:
Guanbin Li)
H. Wang, G. Li and L. Lin are with the school of Data and Com-
puter Science, Sun Yat-sen University, Guangzhou 510006, China (e-mail:
wanghq8@mail2.sysu.edu.cn; liguanbin@mail.sysu.edu.cn; linliang@ieee.org).
X. Liu is with the Department of Computer Science, San Diego State University,
San Diego, CA, 92182, USA (e-mail: xiaobai.liu@sdsu.edu).

Airplane Automobile Bird Cat Deer Dog Frog Horse Ship Trunk

MI-FGSM

HMCAM
PGD

(a) Adversarial Space (b) Diversity of Adversarial Examples

Fig. 1. Iterative Deterministic Generator vs. Stochastic MCMC-based
Generator. We choose a natural image to generate 500 adversarial exam-
ples and visualize these samples by t-SNE [8]. In contrast to two typical
iterative deterministic methods (PGD [9] with 500 random restarts and MI-
FGSM [10] selecting samples at the final 500 iterations), MCMC-based
method explores the solution space of adversarial examples and finds out
the decision boundary of target classifier which is easily misled to erratic
discrimination, then generates multiple diverse adversarial examples
to attack. It is clear that our method automatically generates all of the
500 samples for a certain category in the untargeted attack scenario.
When gradually increasing the number of MCMC sampling, the generated
sequence of adversarial examples and their corresponding frequencies
collectively depict the true underlying distribution of adversarial examples.

adversarial attack and learning methods to have the ability of
generating multiple diverse adversarial examples in one run
for the following reasons. First, the diversity of adversarial
examples can fully verify the robustness of an unknown
system. Second, developing an attack with multiple distinct
adversarial examples would enable adversarial training with
such examples, which could make the model more robustness
against white-box attacks. Third, it is necessary to preserve
multiple adversarial examples since the solution space of

ar
X

iv
:2

01
0.

07
84

9v
1

 [
cs

.C
V

]
 1

5
O

ct
 2

02
0

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 2

adversarial examples only depends on the targeted model
and its input image even if the objective energy function
of adversarial examples is constantly being improved [11],
[12], [13], [14], e.g. mapping the clipped gradient descent
into tanh space or adding KL-divergence term. A series of
adversarial samples can better depict the manifold of the
solution space than a single global optimal, which can also
bring more stable and superior performance on attacking.
In fact, training these representative generative models also
suffers from instability due to the difficulty of finding the
exact Nash equilibrium [15], [16] or tackling memorization
[17], [18], [19].

Motivated by the aforementioned observations, we re-
think the generation of adversarial examples from the view
of probabilistic distribution and develop an innovative
paradigm called Hamiltonian Monte Carlo with Accumu-
lated Momentum (HMCAM) for generating a sequence of
adversarial examples in one run. Given the attack objective
energy function, the HMCAM method first constructs a joint
distribution by Hamiltonian equations and the Metropolis-
Hastings algorithm is used to determine whether to transition
to the candidate sample via the acceptance function based
upon the proposal distribution and the candidate-generating
density. To improve the efficiency of HMC, we further
propose a new regime called accumulated momentum to
adaptively control the step sizes, which allows the algorithm
to move with different step sizes along the search direction
at different positions. Conceptually, our HMCAM paradigm
also reveals the roles of the well-known FSGM family
algorithms, including FSGM [20], I-FGSM [21], PGD [9]
and MI-FGSM [10]. These methods can be considered as
special cases of HMC with minor modifications. Inspired by
our new paradigm, we further design a new generative
method, called Contrastive Adversarial Training (CAT) ,
which approaches equilibrium distribution of adversarial
examples with only few iterations by building from small
modifications of the standard Contrastive Divergence [22].
We verify the effectiveness of both the adversarial attack
and the training algorithms in multiple scenarios. For the
investigation of adversarial attack, we test our algorithm
on single and ensemble models in both white-box and
black-box manners. Extensive experiments conducted on
the CIFAR10 dataset show that our method achieves much
higher success rates with fewer iterations for black-box
models and maintains similar success rates for white-box
models. We also evaluate the proposed HMCAM on the
CAAD 2018 defense champion solution [23]. It outperforms
the official baseline attack and M-PGD (PGD with momen-
tum) by a large margin, which clearly demonstrates the
effectiveness of the proposed adversarial method. To further
show the practical applicability of our proposed method,
we launch our attack on the real-world celebrity recognition
system such as Clarifai, AWS and Azure. Compared with
traditional iterative attack methods, HMCAM is able to
generate more successful malicious examples to fool the
systems through sampling from the likelihood models. For
adversarial training, our CAT algorithm achieves much
higher robustness than any other state-of-the-art adversarial
training methods on both the CIFAR-10 and MNIST datasets
and reaches a balance of performance and efficiency. In
summary, this paper has the following contributions:

• We formulate the problem of generating adversarial
examples in a HMC framework, which can produce
multiple fair samples and better represent the under-
lying distribution of the adversarial examples. These
fair samples can well reflect the typical state of the
underlying system.

• We design a new regime called accumulated momen-
tum to adaptively control the step sizes, which allows
the algorithm to move with different step sizes along
the search direction at different positions, and thus
improves the efficiency of HMC.

• We thoroughly compare the effectiveness of our
algorithms in various settings against several iterative
attack methods on both CIFAR10 and ImageNet,
including the champion solution in the defense track
of CAAD 2018 competitions. We also investigate the
high efficiency of HMC framework in adversarial
training and show the practical applicability of our
HMCAM by successfully attacking the real-world
celebrity recognition system.

2 RELATED WORK

Adversarial Attacks. Since Szegedy et al. [20] first revealed
that deep learning models were vulnerable to adversarial
attacks, learning how to generate adversarial examples has
quickly attracted wide research interest. Goodfellow et al.
[24] developed a single gradient step method to generate
adversarial examples, which was known as the fast gradient
sign method (FGSM). Kurakin et al. [21] extended FGSM to
an iterative version and obtained much stronger adversarial
examples. Based on their works, Madry et al. [9] started
projected gradient descent (PGD) from several random points
in the L∞-ball around the natural example and iterate PGD.
Dong et al. [10] proposed to add the momentum term into
iterative process to boost adversarial attacks, which won
the first places in the NIPS 2017 Adversarial Attacks and
Defenses Competition. Due to the high efficiency and high
success rates, the last two methods have been widely used as
baseline attack models in many competitions. Our method
also belongs to the iterative attack family but has much
faster convergence and better transferability than alternative
methods. When compared with recent similar works on
distributional attack [13], [25], our HMC-based methods
can better explore the distribution space of adversarial
samples and reveal the reason for the high computational
cost of adversarial training from the perspective of MCMC.
Adversarial Defense. To deal with the threat of adversarial
examples, different strategies have been studied with the
aim of finding countermeasures to protect ML models. These
approaches can be roughly categorized into two main types:
(a) detection only and (b) complete defense. The goal of
the former approaches [26], [27], [28], [29], [30], [31], [32]
is to reject the potential malignant samples before feeding
them to the ML models. However, it is meaningless to
pinpoint the defects for developing more robust ML models.
Complimentary to the previous defending techniques, the
latter defense methods often involve modifications in the
training process. For example, gradient masking [33], [34],
[35] or randomized models [36], [37], [38], [39], [40] obfuscate
the gradient information of the classifiers to confuse the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 3

attack mechanisms. There are also some add-on modules
[23], [41], [42], [43], [44], [45] being appended to the targeted
network to protect deep networks against the adversarial
attacks. Besides all the above methods, adversarial training
[9], [21], [24], [46], [47] is the most effective way, which
has been widely verified in many works and competitions.
However, limited works [48], [49] focus on boosting robust
accuracy with reasonable training time consumption.

Markov Chain Monte Carlo Methods. Markov chain
Monte Carlo (MCMC) [50] established a powerful frame-
work for drawing a series of fair samples from the target
distribution. But MCMC is known for its slow convergence
rate which prevents its wide use in time critical fields. To
address this issue, Hamiltonian (or Hybrid) Monte Carlo
method (HMC) [51], [52] was introduced to take advantages
of the gradient information in the target solution space and
accelerate the convergence to the target distribution. Multiple
variants of HMC [53], [54], [55] were also developed to
integrate adaptive strategies for tuning step size or iterations
of leapfrog integrator. Recently, the fusion of MCMC and
machine learning hastens wide range of applications, includ-
ing data-driven MCMC [56], [57], adversarial training [58],
cooperative learning [59], which shows great potential of
MCMC in deep learning.

3 METHODOLOGY

In this section, we briefly review the Markov chain Monte
Carlo (MCMC) method [50] and Hamiltonian Monte Carlo
(HMC) methods [51], [52]. Then we will explain that most
of the existing methods for generating adversarial examples
are the specializations of HMC. Finally, we illustrate how to
modify the update policy of the momentum item in HMC to
obtain a better trajectory.

3.1 Review: MCMC and Hamiltonian Monte Carlo

We now give the overall description of Metropolis-Hasting
based MCMC algorithm. Suppose p is our target distribution
over a space D, MCMC methods construct a Markov Chain
that has the desired distribution p as its stationary distribu-
tion. At the first step, MCMC chooses an arbitrary point x0
as the initial state. Then it repeatedly performs the dynamic
process consisting of the following steps: (1) Generate a
candidate sample x̃ as a “proposed” value for xt+1 from
the candidate-generating density Q(xt|x̃), which generates
a value x̃ from Q(xt|x̃) when a process is at the state xt. (2)
Compute the acceptance probability ξ = min(1, p(x̃)Q(xt|x̃)

p(xt)Q(x̃|xt)
),

which is used to decide whether to accept or reject the
candidate. (3) Accept the candidate sample as the next state
with probability ξ by setting xt+1 = x̃. Otherwise reject the
proposal and remain xt+1 = xt. Although MCMC makes it
possible to sample from any desired distributions, its random-
walk nature makes the Markov chain converge slowly to the
stationary distribution p(x).

In contrast, HMC employs physics-driven dynamics to
explore the target distribution, which is much more efficient
than the alternative MCMC methods. Before introducing
HMC, we start out from an analogy of Hamiltonian systems
in [52] as follows. Suppose a hockey puck sliding over a
surface of varying height and both the puck and the surface

Algorithm 1 Hamiltonian Monte Carlo

Inputs: Target distribution p(θ), initial position θ(1) and step
size α

1: /*Hamiltonian system construction*/
2: U(θ) = − log p(θ), K(v) = vT I−1v/2
3: for s = 1, 2, · · · do
4: v0 ∼ N (0, I), θ0 = θ(s)

5: /*Leapfrog integration*/
6: v0 ← v0 − α

2∇U (θ0)
7: for t = 1 to T do
8: θt ← θt−1 + α∇K (vt−1)
9: vt ← vt−1 − α∇U (θt)

10: end for
11: vT ← vT − α

2∇U (θT)
12: /*Metropolis-Hastings correction*/
13: u ∼ Uniform(0,1)
14: if u < min(1, eH(θT ,vT)−H(θs,vs)) then
15: θ(s+1) ← θT
16: else
17: θ(s+1) ← θ(s)

18: end if
19: end for

are frictionless. The state of the puck is determined by
potential energy U(θ) and kinetic energy K(v), where θ and
v are the position and the momentum of the puck. The
evolution equation is given by the Hamilton’s equations:{

∂θ
∂t = ∂H

∂v = ∇vK(v)
∂v
∂t = ∂H

∂θ = −∇θU(θ).
(1)

Due to the reversibility of Hamiltonian dynamics, the total
energy of the system remains constant:

H(θ, v) = U(θ) +K(v). (2)

As for HMC, it contains three major parts: (1) Hamil-
tonian system construction; (2) Leapfrog integration; (3)
Metropolis-Hastings correction. Firstly, the Hamiltonian is
an energy function for the joint density of the variables
of interest θ and auxiliary momentum variable v, so HMC
defines a joint distribution via the concept of a canonical
distribution:

p(θ, v) ∝ exp

(−H(θ, v)

τ

)
, (3)

where τ = 1 for the common setting. Then, HMC discretizes
the system and approximately simulates Eq. (1) over time
via the leapfrog integrator. Finally, because of inaccuracies
caused by the discretization, HMC performs Metropolis-
Hastings [60] correction without reducing the acceptance
rate. A full procedure of HMC is described in Algorithm 1.

According to Eq. (2) and (3), the joint distribution can be
divided into two parts:

p(θ, v) ∝ exp

(−U(θ)

τ

)
exp

(−K(v)

τ

)
. (4)

Since K(v) is an auxiliary term and always setting K(v) =
vT I−1v/2 with identity matrix I for standard HMC, our aim
is that the potential energy U(θ) can be defined as U(θ) =
− log p(θ) to explore the target density pmore efficiently than

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 4

using a proposal probability distribution. If we can calculate
∇θU(θ) = −∂ log(p(θ))

∂θ , then we can simulate Hamiltonian
dynamics that can be used in an MCMC technique.

3.2 Simulating Adversarial Examples Generating by
HMC
Considering a common classification task, we have a dataset
D that contains normalized data x ∈ [0, 1]d and their one-hot
labels y. We identify a target DNN model with an hypothesis
f(·) from a space F . The cross entropy loss J function is used
to train the model. Assume that the adversarial examples
for x with label y are distributed over the solution space Ω.
Given any input pair (x, y), for a specified model f(·) ∈ F
with fixed parameters, the adversary wants to find such
examples x̃ that can mislead the model:

Ω = arg max
N(x)⊂N (x)

∫
J (x̃, y) p (x̃|x, y) dx̃, (5)

where N (x) is the neighboring regions of x and defined as
x′ ∈ N (x) :=

{
‖x′ − x‖1,2,or∞ ≤ ε

}
. From the perspective

of Bayesian statistics, we can make inference about adver-
sarial examples over a solution space Ω from the posterior
distribution of x̃ given the natural inputs x and labels y.

x̃ ∼ p(x̃|x, y) ∝ p(y|x̃)p(x̃|x), x̃ ∈ Ω. (6)

In Hamiltonian system, it becomes to generate samples from
the joint distribution p(θ, v). Let θ = x̃, according to Eq.
(6) and (4), we can express the posterior distribution as a
canonical distribution (with τ = 1) using a potential energy
function defined as:

U =
1

N

N∑
i=1

− log p(y(i)|x̃(i))− log p(x̃|x)

= J (x̃, y)− log p(x̃|x).

(7)

Since J (x̃, y) is the usual classification likelihood measure,
the question remains how to define p(x̃|x). A sensible choice
is a uniform distribution over the Lp ball around x, which
means we can directly use a DNN classifier to construct a
Hamiltonian system for adversarial examples generating as
the base step of HMC.

Recall that the development of adversarial attacks is
mainly based on the improvement of the vanilla fast gradient
sign method, which derives I-FGSM, PGD and MI-FGSM.
For clarity, we omit some details about the correction due to
the constraint of adversarial examples. The core policy of the
family of fast gradient sign methods is:

x̃t = x̃t−1 + α · sign(gt), (8)

where gt is the gradient of J at the t-th iteration, i.e.,
∇xJ(x̃t−1, y). It is clear that the above methods are the
specialization of HMC by setting:

θt = x̃t, vt = gt

H(θ, v) =J(θ) + |v|.
(9)

More specifically, I-FGSM can be considered as the de-
generation of HMC, which explicitly updates the position
item θ but implicitly changes the momentum item v at
every iteration. One of the derivation of I-FGSM, MI-FGSM,
has explicitly updated both θ and v by introducing gt =

Algorithm 2 HMCAM
Inputs: Target DNN model f(·) with loss function J , initial
position θ(0) = x, step size α, sampling transition S,
updating iteration T , magnitude of perturbation ε and small
constant δ
Inputs: exponential decay rates for the moment estimates
β1 = 0.95, β2 = 0.999

1: /*Hamiltonian system construction*/
2: U(θ) = J , K(v) = |v|
3: for s = 1 to S do
4: Initialize v0 ← 0; e0 ← 0; ê0 ← 0
5: /*Accumulated Momentum*/
6: for t = 1 to T do
7: b1 ← 1− βt1, b2 ← 1− βt2
8: vt ← β1 · vt−1 − (β1 − 1) · ∇θJ(θt−1, y)
9: et ← β2 · et−1 − (β2 − 1) · ∇2

θJ(θt−1, y)
10: êt ← max(et, êt)
11: θt ← θt−1 + min(ε, α

b1(
√

êt
b2

+δ)
)∇vK(vt)

12: θt ← Pε-ball(θt)
13: end for
14: /*Metropolis-Hastings correction*/
15: u ∼ Uniform(0,1)
16: if u < min(1, eH(θT ,vT)−H(θs,vs)) then
17: θ(s+1) ← θT
18: else
19: θ(s+1) ← θ(s)

20: end if
21: end for
22: Return A sequence of adversarial examples {θ}

µgt−1 + 1
||∇J(x̃t−1,y)||1∇J(x̃t−1, y) after Eq. (8) at each step

with the decay factor µ = 1. The other derivative PGD runs
Eq. (8) on a set of initial points x̃0 ∈

{
x̃
(1)
0 , x̃

(2)
0 , · · · , x̃(S)0

}
adding different noises, which can be treated as a parallel
HMC but the results are mutually independent.

3.3 Adaptively Exploring the Solution Space with Accu-
mulated Momentum

Although the above formulation has proved that HMC can
be used to simulate adversarial examples generating, one
major problem of these methods is that θ and v are not
independent because of vt = ∇J(θt−1) as discussed in Eq.
(9). The other disadvantage is in optimization: SGD scales the
gradient uniformly in all directions, which can be particularly
detrimental for ill-scaled problems. Like the need to choose
step size in HMC, the laborious learning rate tuning is also
troublesome.

To overcome the above two problems, we present a
Hamiltonian Monte Carlo with Accumulated Momentum
(HMCAM) for adversarial examples generating. The result-
ing HMCAM algorithm is shown in Algorithm 2. The core of
our accumulated momentum strategy is using exponential
moving average (EMA) to approximate the first and second
moment of the stochastic gradient by weighted accumulating
the history moment information. Let us initialize the expo-
nential moving average as v0 = e0 = 0. After t inner-loop

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 5

Methods Hamiltonian system construction Iteration Metropolis-Hastings
correctionpotential energy? kinetic energy? sampling? θ update? v update?

FGSM [24] X, but implicit X, but implicit x x x x
I-FGSM [21] X, but implicit X, but implicit x X x x
PGD [9] X, but implicit X, but implicit X, but independent X x x
MI-FGSM [10] X, but implicit X, but implicit x X X x

TABLE 1
Relationship between HMC and the family of fast gradient sign methods.

steps, the accumulated momentum vt is:

vt = (1− β1)
t∑
i=1

βt−i1 ∇θJ(θi−1)

= (1− β1)∇θJ(θt−1)︸ ︷︷ ︸
Current term

+ β1 [∇θJ(θt−2) + β1∇θJ(θt−3) + · · ·+ βt−21 ∇θJ(θ0)]︸ ︷︷ ︸
History term

.

(10)
The derivation for the second moment estimate et is com-
pletely analogous. Owing to the fact that the decay rates
β1 close to 1 is typically recommended in practice, the
contribution of older gradients decreases exponentially. But
meanwhile, we can observe in Eq. (10) that the current
gradient only accounts for 1−β1 → 0, which is much smaller
than β1. This indicates that performing exponential moving
averages for the step in lieu of the gradient greatly reduces
the relevance between vt and the current position θt−1. That
makes the sequence of samples into an approximate Markov
chain.

As for step size, there always be a tradeoff between
using long trajectories to make HMC more efficient or using
shorter trajectories to update more frequently. Ignoring small
constant δ, our accumulated momentum is to update the
position by:

θt = θt−1 + α∆θ = θt−1 +

√
1− βt2

(1− βt1)
· α
|vt|
· vt√

et
, (11)

where
√

1− βt2/(1 − βt1) corrects the biasd estimation of
moments towards initial values at early stages due to
the property of EMA. When approaching to the minima,
α/|vt| automatically decreases the size of the gradient steps
along different coordinates. Because vt/

√
et leads to smaller

effective steps in solution space when closer to zero, this
anisotropic scale of step size helps θ to escape sharp local
minimal at the later period of the learning process at some
coordinates, which leads to better generalization. We apply
similar idea as [61] by replacing e to ê that maintains the
maximum of all history e to keep a non-increasing step
size (

√
et+1 −

√
et)/αt � 0. To guarantee the step size does

not exceed the magnitude of adversarial perturbations, we
confines the α to a predefined maximum ε by applying
element-wise min.

After every full inner iteration, we calculate the ac-
ceptance rate of the candidate sample by M-H sampling
and reinitialize the first/second moment as well as the
maximum of second moment to zero and then perform
the next generation. M-H algorithm distributes the gen-
erating samples to staying in high-density regions of the

Algorithm 3 Contrastive Adversarial Training
Input: A DNN classifier fω(·) with initial learnable param-
eters ω0; training data x with visible label y; number of
epochsN ; length of trajectoryK ; repeat time T ; magnitude
of perturbation ε; learning rate κ; step size α.
/*Stage-0: Construct Hamiltonian system*/
U(θ, ω, ω̃, y, k) = −Jcd

(
fω(θk−1), fω̃(θK), y

)
, K(v) = |v|

Initialize ω = ω̃ = ω0, θK = θ0.
for epoch= 1 · · ·N/(TK) do
θ0 ← x+ v0, v0 ∼ Uniform(−ε, ε).
for t = 1 to T do

/*Stage-1: Generate adversarial examples by K-step con-
trastive divergence*/
for k = 1 to K do
θk ← θk−1 + ε · ∇K(vt−1)
vt ← vt−1 − α∇U(θ, ω, ω̃, y, k)
vt ← clip(vt,−ε, ε)

end for
/*Stage-2: Update parameters of DNN by generated adver-
sarial examples*/
gω ← E(θ,y)

[
∇ωJce(fω(θK), y)

]
ω̃ ← ω
ω ← ω − κgω

end for
end for

candidate distribution or only occasionally visiting low-
density regions through the acceptance probability. As more
and more sample are produced, the distribution of samples
more closely approximates the desired distribution and its
returning samples are more in line with such distribution
than other works like PGD with random starts.

4 CONTRASTIVE ADVERSARIAL TRAINING

Assume softmax is employed for the output layer of the
model f(·) and let f(x) denote the softmax output of a given
input x ∈ Rd, i.e., f(x) : Rd → RC , where C is the number
of categories. We also assume that there exists an oracle
mapping function f∗ ∈ F : x 7→ y∗, which pinpoints the
belonging of the input x to all the categories by accurate
confidence scores y∗ ∈ RC . The common training is to
minimize the cross-entropy (CE) loss, which is defined as:

f = arg min
f∈F

E(x,y)∼D [Lce (f(x), y)] , (12)

where y is the manual one-hot annotation of the input x
since y∗ is invisible. The goal of Eq. (12) is to update the
parameters of f for better approaching f∗, which leads to:

f(x) ≈ y ≈ y∗ = f∗(x). (13)

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 6

Suppose the target DNN model correctly classifies
most of the input after hundreds of iterations, it will
still be badly misclassified by adversarial examples (i.e.,
arg maxc∈{1,··· ,C} f(x̃)c 6= y[c]). In adversarial training,
these constructed adversarial examples are used to updates
the model using minibatch SGD. The objective of this minmax
game can be formulated as a robust optimization following
[9]:

f ′ = arg min
f∈F

E
(x,y)∼D

[
max
x̃∈N (x)

Lce (f (x̃) , y)

]
. (14)

As mentioned in Section 3.2, the inner maximization
problem can be reformulated as the process of HMC. It
is obvious that the high time consumption of adversarial
training is caused by the long trajectory of HMC. But running
a full trajectory for many steps is too inefficient since the
model changes very slightly between parameter updates.
Thus, we take advantage of that by initializing a HMC at
the state in which it ended for the previous model. This
initialization is often fairly close to the model distribution,
even though the model has changed a bit in the parameter
update. Besides, the high acceptance rate of HMC indicates
that it is not neccesary to run a long Markov Chain from
the initial point. Therefore, we can simply run the chain
for one full step and then update the parameters to reduce
the tendency of the chain to wander away from the initial
distribution on the first step instead of running the full
trajectory to equilibrium. We takes small number K of
transitions from the data sample {xi}ni = 1 as the initial
values of the MCMC chains and then use these K-step
MCMC samples to approximate the gradient for updating
the parameters of the model. Algorithm3 summarizes the
full algorithm.

Moreover, we also present a new training objective
function Jcd, which minimizes the difference of KL diver-
gence between two adjacent sampling steps to substitute the
common KL loss:

Jcd = ρ(Q0
∥∥Q∞)− λ(Q1

∥∥Q∞), (15)

where || denotes a Kullback-Leibler divergence and ρ and λ
are the balanced factors. The intuitive motivation for using
this Jcd is that we would like every state in HMC exploring
to leave the initial distribution Q0 and Q0||Q∞ would
never exceed Q1||Q∞ until Q1 achieves the equilibrium
distribution. We set λ = 2, ρ = 1 and analyze how this
objective function influences the partial derivative of the
output probability vector with respect to the input. Due to
the fact that the equilibrium distribution Q∞ is considered
as a fixed distribution and the chain rule, we only need to
focus on the derivative of the softmax output vector with
respect to its input vector in the last layer as follows:

∇Ulast = 2
∑
c

yc
∂ log fω(x̃K)c

∂x̃′
−
∑
c

yc
∂ log fω̃ (x̃)c

∂x̃′

= 2fω(x̃K)c
∑
c

yc − fω̃ (x̃)c
∑
c

yc − y

= fω(xK)− (y −∆f),

(16)

where ∆f = fω(xK) − fω̃ (x̃). Based on this abbreviation,
we can easily get the relationship between Eq. (16) and
∂Jce
∂x̃′ = fω(xK)−y. For each adversarial example generation,

Eq. (16) makes an amendment of y which is determined by
the difference of current and the last K-step HMC samples
output probability. Since fω and fω(x) are more closer to f∗

and y∗ than fω̃ and fω̃(x), each update of x̃ would be better
corrected.

5 EXPERIMENT

In this section, we conduct extensive experimental eval-
uations of our proposed methods on three benchmarks:
CIFAR10 [62], ImageNet [63] and MNIST [64]. Firstly, we
briefly introduce the major implementation settings in
Section. 5.1, and perform comprehensive comparisons to
verify the superiority of our HMCAM method on single and
ensemble models in both white-box and black-box manners
in Section. 5.2 and Section. 5.3. Then, we perform detailed
ablation studies to demonstrate the influence of different
aspects in HMCAM and explore the possibility of few sample
learning for competitive results in adversarial training in
Section. 5.4. To further test the efficiency of CAT method
in adversarial training, we provide detailed quantitative
comparison results of our proposed models in Section. 5.5.
Finally, to investigate the generalization of our approach, we
also perform experiments on ImageNet against the champion
solution in the defense track of CAAD 2018 competitions in
Section. 5.6.1 and attempt to launch attack on public face
recognition systems in Section. 5.6.2.

5.1 Datasets and Implementation Details
Datasets. We employ the following four benchmark datasets
for a comprehensive evaluation to validate the effectiveness
of our HMCAM and CAT methods.

• CIFAR10 [62] is a widely used dataset consisting of
60,000 colour images of 10 categories. Each category
has 6,000 images. Due to the resource limitation,
we mainly focus on the CIFAR10 [62] dataset with
extensive experiments to validate the effectiveness of
the proposed methods on both adversarial attack and
training.

• ImageNet [63] a large dataset with 1,283,166 images
in the training set and 50,000 images in the validation
set images collected from the Web. It has 1,000 synsets
used to label the images. As it is extremely time-
consuming to train a model from scratch on ImageNet,
we only use it to test the generalization of our
approach, which fights against the champion solution
in the defense track of CAAD 2018 competitions.

• MNIST [64] is a database for handwritten digit
classification. It consists of 60,000 training images
and 10,000 test images, which are all 28×28 greyscale
images, representing the digits 0∼9. In this experi-
ment, we only perform different adversarial training
methods on MNIST.

Implementation details. For adversarial attack, we pick
six models, including four normally trained single models
(ResNet32 [65], VGG16 (without BN) [66], ResNetXt29-8-64
[67] and DenseNet121 [68]) and one adversarially trained
ensemble models (Resnet32A). The hyper-parameters of
different attack methods follow the default settings in [69]
and the total iteration number is set to N = 100 (in most

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 7

Model Attack ResNet32 VGG16 ResNetXt Densenet121 ResNet32 A

ResNet32

FGSM 38.31% 29.30% 19.89% 22.64% 3.79%
PGD 98.12% 34.92% 49.44% 56.50% 4.60%
M-PGD 98.93% 37.89% 55.48% 61.01% 7.44%
AI-FGSM (Ours) 98.76% 42.23% 58.12% 64.12% 9.56%
HMCAM (Ours) 98.76% 42.69% 58.76% 65.20% 10.01%

VGG16

FGSM 37.86% 56.34% 27.34% 31.54% 4.22%
PGD 59.39% 80.55% 50.50% 55.72% 5.52%
M-PGD 64.02% 83.64% 54.95% 60.48% 7.75%
AI-FGSM (Ours) 64.77% 86.76% 53.38% 59.45% 9.83%
HMCAM (Ours) 68.60% 93.29% 55.39% 62.70% 10.26%

ResNetXt

FGSM 27.44% 28.52% 31.74% 24.03% 4.50%
PGD 65.48% 35.19% 96.60% 69.13% 6.55%
M-PGD 72.81% 38.50% 98.02% 76.55% 10.11%
AI-FGSM (Ours) 74.42% 42.73% 97.65% 77.09% 13.48%
HMCAM (Ours) 74.92% 42.53% 97.75% 78.37% 14.11%

Densenet121

FGSM 26.87% 29.40% 20.42% 30.96% 4.42%
PGD 63.38% 35.70% 57.22% 95.34% 5.67%
M-PGD 66.07% 39.16% 59.48% 97.83% 8.33%
AI-FGSM (Ours) 69.64% 41.41% 63.35% 96.49% 9.77%
HMCAM (Ours) 69.82% 42.45% 63.87% 96.39% 10.36%

TABLE 2
The success rates of several of non-targeted attacks against a single network on CIFAR10. The maximum perturbation is ε = 2/255. The italic
columns in each block indicate white-box attacks while the rest are all black-box attacks which are more practical but challenging. Results have

shown that our proposed methods (AI-FGSM and HMCAM) greatly improve the transferability of generated adversarial examples. We compare our
AI-FGSM and HMCAM with FGSM, PGD and M-PGD (MI-FGSM+PGD), respectively.

cases T = N except HMCAM). We fix T = 50 and S = 2
for HMCAM, and the decay rate µ is set to 1.0 for M-PGD
(MI-FGSM+PGD). The magnitude of maximum perturbation
at each pixel is ε = 2/255. For simplicity, we only report the
results based on L∞ norm for the non-targetd attack.

For adversarial training, we follow the training scheme
used in Free [48] and YOPO [49] on CIFAR10. We choose
the standard Wide ResNet-34 and Preact-ResNet18 following
previous works [9], [49]. For PGD adversarial training, we set
the total epoch number N = 105 as a common practice. The
initial learning rate is set to 5e-2, reduced by 10 times at epoch
79, 90 and 100. We use a batch size of 256, a weight decay
of 5e-4 and a momentum of 0.9 for both algorithms. During
evaluating, we test the robustness of the model under CW
[12], M-PGD and 20 steps of PGD with step size ε = 2/255
and magnitude of perturbation ε = 8/255 based on L∞
norm. When performing YOPO and Free, we train the models
for 40 epochs and the initial learning rate is set to 0.2, reduced
by 10 times at epoch 30 and 36. As for ImageNet, we fix the
total loop times T ∗ K = 4 same as Free-4 [48] for fair
comparison. For all methods, we use a batch size of 256, and
SGD optimizer with momentum 0.9 and a weight decay of
1e-4. The initial learning rate is 0.1 and the learning rate is
decayed by 10 every 30/TK epochs. We also set step size
ε = 4/255 and magnitude of perturbation ε = 4/255 based
on L∞ norm.

5.2 Attacking a Single Model

We compare the attack success rates of HMCAM with
the family of FGSM on a single network in Table 2. The
adversarial examples are created by one of the six networks
in turns and test on all of them. The italic columns in each
block indicate white-box attacks and others refer to black-
box attacks. From the Table 2, we can observe that HMCAM
outperforms all other FGSM family attacks by a large margin
in black-box scenario, and maintains comparable results on
all white-box attacks with M-PGD. For example, HMCAM
obtains success rates of 74.92% on ResNetXt29-8-64 (white-

box attack), 78.37% on DenseNet121 (black-box attack on
normally trained model) and 14.11% on Resnet32A (black-
box attack on adversarially trained model) if adversarial
examples are crafted on ResNetXt29-8-64, while M-PGD only
reaches the corresponding success rates of 72.81%, 42.53%
and 10.11%, respectively. Considering that the white-box
attack is usually used as a launch pad for the black-box
attack, this demonstrates the practicality and effectiveness of
our HMCAM for improving the transferability of adversarial
examples.

Note that AI-FGSM is a special case of HMCAM (T = N ,
S = 1), which means AI-FGSM only carries out the inner
loop in Algorithm 2 for position and momentum updating.
But AI-FGSM also reaches much higher success rates than
FSGM family. This shows the superiority of our accumulated
momentum strategy.

5.3 Attacking an Ensemble of Models

Although our AI-FGSM and HMCAM better improve the
success rates for attacking model in black-box scenario, the
results of all the attack methods on adversarially trained
model, e.g., Resnet32A, are far from satisfactory. To solve this
problem, generating adversarial examples on the ensemble
models [10], [70], [71] rather than a single model have been
broadly adopted in the black-box scenario for enhancing the
transferability and shown its effectiveness.

For the ensemble-based strategy, each one of the six
models introduced above will be selected as the hold-out
model while the rest build up an ensemble model. The
ensemble weights are set equally for all the six models. The
results are shown in Table 3. The ensemble block consists
of the white-box attack which uses the ensemble model
to attack itself, and the hold-out block is composed of the
black-box attack that utilizes the ensemble model to generate
adversarial examples for its corresponding hold-out model.

We can observe from Table 3 that our AI-FGSM and
HMCAM always show much better transferability than
other methods no matter which target model is selected. For

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 8

example, the adversarial examples generated by an ensemble
of ResNet32, VGG16 and DenseNet121 (ResNetXt29-8-64
hold-out) can fool ResNetXt29-8-64 with a 83.07% success
rate. Moreover, our proposed methods can remarkably boost
the transferability of adversarial examples on adversarially
trained model.

5.4 Ablation Study on Adversarial Attack

In the following sections, we perform several ablation
experiments to investigate how different aspects of HMCAM
influence its effectiveness. For simplicity, we only attack five
single models introduced in the previous section, and focus
on comparing our HMCAM with M-PGD since M-PGD is
one of the most effective iterative attack method so far. We
report the results in both white-box and black-box scenarios.

5.4.1 Influence of Iteration Number

To further demonstrate how fast our proposed method
converges, we first study the influence of the total iteration
number N on the success rates. We clip a snippet over a time
span of 10 iterations from the very beginning. Results are
shown in Fig. 2.

These results indicate that (1) the success rate of HMCAM
against both white-box and black-box models are higher than
M-PGD at all stages when combining with the extensive
comparisons in Table 2, which shows the strength of our
HMCAM. (2) Even when the number of iterations is one
order lower than that in Table 2, the success rate of both
HMCAM and M-PGD are still higher than PGD on the black-
box scenario. Moreover, HMCAM (N = 10) reaches higher
values than PGD (N = 100), demonstrating that HMCAM
has strong attack ability and fast converges on both the
white-box and black-box scenarios.

0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 R
at

e
(%

)

Iterations

M-PGD

resnet32->resnet32
vgg16->vgg16
resnetxt->resnetxt
densenet121->densenet121
resnet32->vgg16
resnet32->resnetxt
resnet32->densenet121 0

10

20

30

40

50

60

70

80

90

100

1 2 3 4 5 6 7 8 9 10

S
uc

ce
ss

 R
at

e
(%

)

Iterations

HMCAM

resnet32->resnet32

vgg16->vgg16

resnetxt->resnetxt

densenet121->densenet121

resnet32->vgg16

resnet32->resnetxt

resnet32->densenet121

Fig. 2. The success rates of M-PGD (left) and HMCAM (right) on CIFAR10
over the first 10 iterations, with ε = 2/255. Solid lines represent the white-
box attacks and dashed lines represent the black-box attacks. “A→ B”
means that model B is attacked by adversarial examples generated by
model A.

5.4.2 Influence of Step Size

We also study the influence of the step size α on the success
rates under both white-box and black-box settings. For
simplicity, we fix the total iteration N = 100 and set S = 1
for HMCAM. We control the step size α in the range of
{0.001, 0.01, 0.03, 0.1} × e−2. The results are plotted in Fig.
3. It can be observed that HMCAM outperforms M-PGD on
both small and large step size. Under both the white-box and
the black-box settings, our HMCAM is insensitive to the step
size attributing to the accumulated momentum strategy.

0

10

20

30

40

50

60

70

80

90

100

0.001 0.002 0.004 0.008 0.016 0.032 0.064

S
uc

ce
ss

 R
at

e
(%

)

Stepsize (e-2）

M-PGD

resnet32->resnet32

vgg16->vgg16

resnetxt->resnetxt

densenet121->densenet121

resnet32->vgg16

resnet32->resnetxt

resnet32->densenet121
0

10

20

30

40

50

60

70

80

90

100

0.001 0.002 0.004 0.008 0.016 0.032 0.064

S
uc

ce
ss

 R
at

e
(%

)

Stepsize (e-2）

HMCAM

resnet32->resnet32

vgg16->vgg16

resnetxt->resnetxt

densenet121->densenet121

resnet32->vgg16

resnet32->resnetxt

resnet32->densenet121

Fig. 3. The success rates of M-PGD (left) and HMCAM (right) on CIFAR10
after 100 iterations, with ε = 2/255. Solid lines represent the white-box
attacks and dashed lines represent the black-box attacks. “A → B”
means that model B is attacked by adversarial examples generating by
model A.

5.4.3 Fewer samples for competitive results
Since HMCAM is able to explore the distribution of ad-
versarial examples, we finally investigate what aspects of
systems are strengthened by our method. We also investigate
whether the competitive result can be achieved with fewer
samples when compared to the regular adversarial training.
We generate adversarial images using FGSM, BIM and PGD
to adversarially retrain the model and remain M-PGD to
attack. We fix the total iteration N = S ∗ T = 100. To
test the diversity of our generated samples, we select only
d = 50 samples from the whole training set for generating
adversarial samples, then mixed into the training set for
adversarial training. For fair comparison, we allow other
methods except HMCAM to select more samples satisfying
d′ = d ∗ S. We sweep the sampling number S among
{1, 2, 5, 10, 20, 50, 100}. The results are plotted in Fig. 4. It
is clear to see that the system trained by our HMCAM,
only using two orders of magnitude fewer natural samples
than any other method, can achieve comparable robustness.
Considering the compared methods utilize the extra samples
truly on the adversarial manifold, this indicates that our
HMCAM draws the distribution of adversarial examples
with few samples indeed.

30

50

70

90

1 11 21 31 41 51 61 71 81 91

S
uc

ce
ss

 R
at

e
(%

)

S

Robustness of Adversarial Trained Models

FGSM I‐FGSM PGD HMCAM

Fig. 4. Comparison with different adversarial training methods on CI-
FAR10. We use M-PGD as the attacker and report its success rate, with
ε = 2/255. Our HMCAM can use two orders of magnitude fewer samples
than other methods to simulate the target distribution.

5.5 Efficiency for Adversarial Training

In this subsection, we investigate whether the training time of
adversarial training can benefit from the view of HMC since
the high computational cost of adversarial training can be
easily attributed to the long trajectory of MCMC finding the
stationary distribution of adversarial examples. We take fixed
but small number k of transitions from the data sample as the
initial values of the MCMC chains and then use these k-step
MCMC samples to approximate the gradient for updating the

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 9

Attack
-ResNet32 -VGG16 -ResNetXt29-8-64 -DenseNet121 -ResNet32 A

Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out Ensemble Hold-out

FGSM 28.27% 30.74% 31.08% 31.43% 29.47% 25.34% 29.64% 27.70% 28.45% 7.53%
PGD 90.97% 80.73% 94.79% 50.30% 91.05% 80.14% 92.13% 82.11% 92.11% 13.88%
M-PGD 92.13% 81.92% 96.47% 52.48% 92.60% 80.83% 93.60% 83.85% 92.48% 21.23%
AI-FGSM (Ours) 92.62% 83.12% 96.06% 56.54% 92.94% 82.29% 93.47% 84.46% 93.04% 28.31%
HMCAM (Ours) 92.81% 83.76% 96.29% 57.43% 92.99% 83.07% 93.88% 85.38% 94.18% 30.11%

TABLE 3
The success rates of several of non-targeted attacks against an ensemble of networks on CIFAR10. The maximum perturbation is ε = 2/255. We
report the results on the ensemble network itself (white-box scenario) and its corresponding hold-out network (black-box scenario). Model with “-”

indicates it is the hold-out network. We compare our AI-FGSM and HMCAM with FGSM, PGD and M-PGD (MI-FGSM+PGD), respectively.

Methods Natural PGD-20 Attack M-PGD-20 Attack CW Attack Speed (mins)
Natural train 93.78% 0.00% 0.00% 0.00% 47
PGD-10 [9] 84.96%±0.12% 41.58%±0.11% 39.47%±0.27% 58.88%±0.33% 132
Free-8 [48] 82.44%±0.37% 42.07%±0.44% 41.88%±0.53% 57.02%±0.22% 110
YOPO-5-3 [49] 82.65%±0.75% 42.56%±0.83% 41.85%±0.44% 56.93%±0.71% 66
CAT (Ours) 81.54%±0.31% 49.37%±0.27% 48.56%±0.09% 61.28%±0.29% 114

TABLE 4
Validation accuracy and robustness of Preact-ResNet18 on CIFAR10. The maximum perturbation of all the attackers is ε = 8/255. We report

average over 5 runs on a single NVIDIA GeForce GTX XP GPU. The best result under different attack methods is in bold.

Methods Natural PGD-20 Attack M-PGD-20 Attack CW Attack Speed (mins)
Natural train 94.58% 0.00% 0.00% 0.00% 212
PGD-10 [9] 87.11%±0.37% 48.4%±0.22% 44.37%±0.11% 45.91%±0.14% 2602
Free-8 [48] 84.29%±1.44% 47.8%±1.32% 47.01%±0.19% 46.71%±0.22% 646
YOPO-5-3 [49] 84.72%±1.23% 46.4%±1.49% 47.24%±0.25% 47.5%±0.37% 457
CAT (Ours) 85.39%±0.33% 53.3%±0.64% 52.41%±0.18% 52.55%±0.2% 672

TABLE 5
Validation accuracy and robustness of Wide ResNet34 on CIFAR10. The maximum perturbation of all the attackers is ε = 8/255. We report average

over 5 runs on a single NVIDIA GeForce GTX XP GPU. The best result under different attack methods is in bold.

parameters of model. We calculate the deviation value of the
last 5 evaluations and report the average over 5 runs. Results
about Preact-ResNet18 and Wide ResNet34 on CIFAR10 are
shown in Table 4 and Table 5, respectively. Our CAT method
greatly boost the robust accuracy in a reasonable training
speed.

We also present a comparison in terms of both clean
accuracy and robust accuracy per iteration on all methods
evaluated during training in Figure. 5. When compared with
YOPO, the robust accuracy of our CAT method rises steadily
and quickly while YOPO vibrates greatly and frequently.

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35 40

A
cc

ur
ac

y
R

at
e

(%
)

Iterations

YOPO-5-3 Clean Accuracy

YOPO-5-3 Robust Accuracy

Free-8 Clean Accuracy

Free-8 Robust Accuracy

CAT Clean Accuracy

CAT Robust Accuracy

Fig. 5. Comparison with different adversarial training methods on both
clean accuracy and robust accuracy (against PGD-10 with ε = 8/255) of
Wide ResNet34 on CIFAR10 at every iteration.

For ImageNet, we report the average results over last

three runs. Comparison between free adversarial training
and ours are shown in Table 6. Although the 2-PGD trained
ResNet-50 model still maintains its leading role in the best
robust accuracy, it takes three times longer than our CAT
method. Actually, when compared with its high computa-
tional cost of ImageNet training, this performance gain can
be considered inefficient or even impractical for resource
limited entities. We also compare ResNet-50 model trained
by our CAT method with the Free-4 trained, model trained
by CAT produces much more robust models than Free-4
against different attacks in almost the same order of time.

We also investigate our CAT method on MNIST. We
choose a simple ConvNet with four convolutional layers
followed by three fully connected layers, which is of the
same as [49]. For PGD adversarial training, we train the
models for 55 epochs. The initial learning rate is set to 0.1,
reduced by 10 times at epoch 45. We use a batch size of 256, a
weight decay of 5e-4 and a momentum of 0.9. For evaluating,
we perform a PGD-40 and CW attack against our model and
set the size of perturbation as ε = 0.3 based on L∞ norm as
a common practice [9], [49], [72]. Results are shown in Table
7.

5.6 Competitions and Real World Systems Attack

5.6.1 Attack CAAD 2018 Defense Champion

Adversarial Attacks and Defenses (CAAD) 2018 is an open
competition involving an exciting security challenge which
stimulate the interest of a wide range of talents from industry
and academia on adversarial learning. In the defense track

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 10

Methods Clean Data PGD-10 Attack PGD-20 Attack PGD-50 Attack MI-FGSM-20 Attack Speed (mins)
Natural train 75.34% 0.14% 0.06% 0.03% 0.03% 1437
PGD 63.95% 36.89% 36.44% 36.17% 35.29% 8928
Free-4 60.26% 31.12% 30.29% 30.07% 29.43% 2745
CAT (Ours) 59.23% 35.91% 35.72% 35.76% 34.67% 2992

TABLE 6
Validation accuracy and robustness of ResNet50 on ImageNet. The maximum perturbation of all the attackers is ε = 4/255. We report average over
the final 3 runs. The best (or almost best) results under different attack methods are in bold. Our CAT achieves a trade-off between efficiency and

accuracy.

Clean Data PGD-40 Attack CW Attack
PGD-40 99.50% 97.17% 93.27%
Free-10 98.29% 95.33% 92.66%
YOFO-5-10 99.98% 94.79% 92.58%
CAT (Ours) 99.36% 97.48% 94.77%

TABLE 7
Validation accuracy and robustness of a small CNN on MNIST. The maximum perturbation of all the attackers is ε = 0.3. The best result under

different attack methods is in bold.

of CAAD 2018, the champion solution [23] devised new
network architectures with novel non-local means blocks
and better adversarial training scheme, which greatly sur-
passed the runner-up approach under a strict criterion. We
download the meticulously pretrained models1 and apply
our proposed method to attack the approach with default
settings. We compare three attack methods (baseline, M-
PGD and our HMCAM) on ResNet152A, ResNet152AD
and ResNeXt101AD with 10/100 attack iterations, where
A is denoted as using adversarial training and D presents
being equipped with denoising blocks. Results are shown in
Table 8. Note that the baseline attack method is one of the
strongest white-box attacker as recent works [23], [46]. From
the Table 8, we can see that M-PGD is ineffective for attacking
adversarially trained models with denoising blocks. Our
proposed method outperforms both official baseline method
and M-PGD. It is worth mentioning that our proposed
method also outperforms one of the recent distributionally
adversarial attack method DAA [13], which proposes a
specific energy functionals combined the cross-entropy loss
with the KL-divergence term for better adversarial-sample
generation. Actually, DAA can be considered as a special
case of the potential energy U .

5.6.2 Attack on Public Face Recognition Systems
To further show the practical applicability of attack, we apply
our HMCAM to the real-world celebrity recognition APIs
in Clarifai2, AWS3 and Azure4. These celebrity recognition
APIs allow users to upload any face images and recognize
the identity of them with confidence score. The users have
no knowledge about the dataset and types of models used
behind these online systems. We choose 10 pairs of images
from the LFW dataset and learn perturbations from local
facenet model to launch targeted attack, whose goal is to
mislead the API to recognize the adversarial images as our

1. https://github.com/facebookresearch/ImageNet-Adversarial-
Training/blob/master/INSTRUCTIONS.md

2. https://clarifai.com/models/celebrity-image-recognition-model-
e466caa0619f444ab97497640cefc4dc

3. https://aws.amazon.com/blogs/aws/amazon-rekognition-
update-celebrity-recognition/

4. https://azure.microsoft.com/en-us/services/cognitive-
services/computer-vision/

selected identity. We randomly pick up 10 celebrities as
victims from Google and 10 existing celebrities as targets
from LFW, ensuring that all colors and genders are taken
into account. Then we apply the same strategy as Geekpwn
CAAD 2018 method that pulls victims towards their cor-
responding targets by the inner product of their feature
vectors and generates noise to them. Finally, we examine
their categories and confidence scores by uploading these
adversarial examples to the online systems API.

We fix ε = 16/255 and total iteration number N = 100.
Besides, we also set S = 5 to generate a sequence of
adversarial examples to test the robustness of these online
systems. Here we propose a strict evaluation criterion derived
from [23] for our HMCAM attacker, which we also call “all-
or-nothing”: an attack is considered successful only if all the
adversarial examples in our generated sequence can deceive
the system. This is a challenging evaluation scenario. As
shown in Table 9, quite a part of them pass the recognition
of the online systems and output the results we want. The
qualitative results are given in the supplementary document.
Note that we also compare our HMCAM method with one of
state-of-the-art black-box attack methodNAttack [25], which
aims at finding a probability density distribution around the
input and estimates the gradient by a modified NES [73]
method. Comparisons betweenNAttack and HMCAM show
that the samples generated by our proposed method have
the stronger transferability since HMCAM is just a white-box
attack method.

6 CONCLUSION

In this paper, we formulate the generation of adversarial ex-
amples as a MCMC process and present an efficient paradigm
called Hamiltonian Monte Carlo with Accumulated Momen-
tum (HMCAM). In contrast to traditional iterative attack
methods that aim to generate a single optimal adversarial
example in one run, HMCAM can efficiently explore the
distribution space to search multiple solutions and generate
a sequence of adversarial examples. We also develop a new
generative method called Contrastive Adversarial Training
(CAT), which approaches equilibrium distribution of adver-
sarial examples with only few iterations by building from

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 11

Methods 10/100-step Success Rate (%)
ResNet152A ResNet152AD ResNeXt101AD

PGD [9] 5.48/31.04 4.93/27.65 5.00/31.56
M-PGD [10] 4.01/24.63 3.51/22.07 3.44/23.78
DAA [13] 4.23/27.31 4.17/24.69 4.55/28.07
HMCAM (Ours) 17.29/35.07 14.69/31.52 17.54/36.36

TABLE 8
The success rates of targeted white-box attacks on ImageNet. The maximum perturbation is ε = 16/255. We report three advanced adversarial

attacks and our HMCAM on adversarially trained models with (ResNet152AD /ResNeXt101AD) and without (ResNet152A) feature denoising module.

Methods Success Cases
Clarifai AWS Azure

Geekpwn CAAD 2018 3 0 0
NAttack [25] 2 0 0
HMCAM (Ours) 8 2 1

TABLE 9
The results of our targeted attack on the real-world celebrity recognition

APIs in Clarifai, AWS and Azure. We randomly selected 10 pairs of
images and adopt a strict criterion called “all-or-nothing” for our HMCAM

attacker, which means that the success case counts only if all the
adversarial examples in our generated sequence can fool the systems.

The maximum perturbation is ε = 16/255.

small modifications of the standard Contrastive Divergence.
Extensive results with comparisons on CIFAR10 showed
that not only HMCAM attained much higher success rates
than other black-box models and comparable results as
other white-box models in adversarial attack, but also CAT
achieved a trade-off between efficiency and accuracy in ad-
versarial training. By further evaluating this enhanced attack
against the champion solution in the defense track of CAAD
2018 competition, HMCAM outperforms the official baseline
attack and M-PGD. To demonstrate its practical applicability,
we apply the proposed HMCAM method to investigate the
robustness of real-world celebrity recognition systems, and
compare against the Geekpwn CAAD 2018 method. The
result shows that the existing real-world celebrity recognition
systems are extremely vulnerable to adversarial attacks in
the black-box scenario since most examples generated by
our approach can mislead the system with high confidence,
which raises security concerns for developing more robust
celebrity recognition models. The proposed attack strategy
leads to a new paradigm for generating adversarial examples,
which can potentially assess the robustness of networks and
inspire stronger adversarial learning methods in the future.

REFERENCES

[1] M. Sharif, S. Bhagavatula, L. Bauer, and M. K. Reiter, “Accessorize
to a crime: Real and stealthy attacks on state-of-the-art face
recognition,” in Proceedings of the 23rd ACM SIGSAC Conference
on Computer and Communications Security, 2016.

[2] C. Sitawarin, A. N. Bhagoji, A. Mosenia, M. Chiang, and
P. Mittal, “DARTS: deceiving autonomous cars with toxic
signs,” CoRR, vol. abs/1802.06430, 2018. [Online]. Available:
http://arxiv.org/abs/1802.06430

[3] H. Wang, G. Wang, Y. Li, D. Zhang, and L. Lin, “Transferable,
controllable, and inconspicuous adversarial attacks on person re-
identification with deep mis-ranking,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition (CVPR), June 2020.

[4] J. Gilmer, L. Metz, F. Faghri, S. S. Schoenholz, M. Raghu, M. Wat-
tenberg, and I. J. Goodfellow, “Adversarial spheres,” in ICLR, 2018.

[5] Y. Song, T. Kim, S. Nowozin, S. Ermon, and N. Kushman, “Pix-
eldefend: Leveraging generative models to understand and defend
against adversarial examples,” in ICLR, 2018.

[6] T. Tanay and L. D. Griffin, “A boundary tilting persepective on the
phenomenon of adversarial examples,” CoRR, vol. abs/1608.07690,
2016.

[7] D. Stutz, M. Hein, and B. Schiele, “Disentangling adversarial
robustness and generalization,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2019, pp. 6976–6987.

[8] L. v. d. Maaten and G. Hinton, “Visualizing data using t-sne,”
Journal of machine learning research, vol. 9, no. Nov, pp. 2579–2605,
2008.

[9] A. Madry, A. Makelov, L. Schmidt, D. Tsipras, and A. Vladu,
“Towards deep learning models resistant to adversarial attacks,” in
ICLR, 2018.

[10] Y. Dong, F. Liao, T. Pang, H. Su, J. Zhu, X. Hu, and J. Li, “Boosting
adversarial attacks with momentum,” in Proceedings of the IEEE
conference on computer vision and pattern recognition, 2018, pp. 9185–
9193.

[11] A. N. Bhagoji, W. He, B. Li, and D. Song, “Exploring the space
of black-box attacks on deep neural networks,” arXiv preprint
arXiv:1712.09491, 2017.

[12] N. Carlini and D. Wagner, “Towards evaluating the robustness of
neural networks,” in 2017 IEEE Symposium on Security and Privacy
(SP). IEEE, 2017, pp. 39–57.

[13] T. Zheng, C. Chen, and K. Ren, “Distributionally adversarial attack,”
in Proceedings of the AAAI Conference on Artificial Intelligence, vol. 33,
2019, pp. 2253–2260.

[14] J. Rony, L. G. Hafemann, L. S. Oliveira, I. B. Ayed, R. Sabourin, and
E. Granger, “Decoupling direction and norm for efficient gradient-
based l2 adversarial attacks and defenses,” in Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition, 2019, pp.
4322–4330.

[15] M. Heusel, H. Ramsauer, T. Unterthiner, B. Nessler, and S. Hochre-
iter, “Gans trained by a two time-scale update rule converge to a
local nash equilibrium,” in Advances in neural information processing
systems, 2017, pp. 6626–6637.

[16] F. Farnia and A. Ozdaglar, “Gans may have no nash equilibria,”
arXiv preprint arXiv:2002.09124, 2020.

[17] A. Radford, L. Metz, and S. Chintala, “Unsupervised representation
learning with deep convolutional generative adversarial networks,”
in 4th International Conference on Learning Representations, ICLR 2016,
San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings,
2016. [Online]. Available: http://arxiv.org/abs/1511.06434

[18] R. Webster, J. Rabin, L. Simon, and F. Jurie, “Detecting overfitting
of deep generative networks via latent recovery,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 11 273–11 282.

[19] I. Gulrajani, C. Raffel, and L. Metz, “Towards GAN
benchmarks which require generalization,” in 7th International
Conference on Learning Representations, ICLR 2019, New Orleans,
LA, USA, May 6-9, 2019, 2019. [Online]. Available: https:
//openreview.net/forum?id=HkxKH2AcFm

[20] C. Szegedy, W. Zaremba, I. Sutskever, J. Bruna, D. Erhan, I. J. Good-
fellow, and R. Fergus, “Intriguing properties of neural networks,”
in ICLR, 2014.

[21] A. Kurakin, I. J. Goodfellow, and S. Bengio, “Adversarial machine
learning at scale,” in ICLR, 2017.

[22] G. E. Hinton, “Training products of experts by minimizing con-
trastive divergence,” Neural computation, vol. 14, no. 8, pp. 1771–
1800, 2002.

[23] C. Xie, Y. Wu, L. v. d. Maaten, A. L. Yuille, and K. He, “Feature
denoising for improving adversarial robustness,” in Proceedings of
the IEEE Conference on Computer Vision and Pattern Recognition, 2019,
pp. 501–509.

[24] I. J. Goodfellow, J. Shlens, and C. Szegedy, “Explaining and
harnessing adversarial examples,” in ICLR, 2015.

http://arxiv.org/abs/1802.06430
http://arxiv.org/abs/1511.06434
https://openreview.net/forum?id=HkxKH2AcFm
https://openreview.net/forum?id=HkxKH2AcFm

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 12

[25] Y. Li, L. Li, L. Wang, T. Zhang, and B. Gong, “Nattack: Learning the
distributions of adversarial examples for an improved black-box
attack on deep neural networks,” arXiv preprint arXiv:1905.00441,
2019.

[26] X. Li and F. Li, “Adversarial examples detection in deep networks
with convolutional filter statistics,” in Proceedings of the IEEE
International Conference on Computer Vision, 2017, pp. 5764–5772.

[27] A. N. Bhagoji, D. Cullina, C. Sitawarin, and P. Mittal, “Enhancing
robustness of machine learning systems via data transformations,”
in 2018 52nd Annual Conference on Information Sciences and Systems
(CISS). IEEE, 2018, pp. 1–5.

[28] J. H. Metzen, T. Genewein, V. Fischer, and B. Bischoff, “On detecting
adversarial perturbations,” in ICLR, 2017.

[29] X. Ma, B. Li, Y. Wang, S. M. Erfani, S. N. R. Wijewickrema,
G. Schoenebeck, D. Song, M. E. Houle, and J. Bailey, “Characterizing
adversarial subspaces using local intrinsic dimensionality,” in
6th International Conference on Learning Representations, ICLR 2018,
Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track
Proceedings, 2018.

[30] K. Lee, K. Lee, H. Lee, and J. Shin, “A simple unified framework
for detecting out-of-distribution samples and adversarial attacks,”
in Advances in Neural Information Processing Systems, 2018, pp. 7167–
7177.

[31] G. Tao, S. Ma, Y. Liu, and X. Zhang, “Attacks meet interpretability:
Attribute-steered detection of adversarial samples,” in Advances in
Neural Information Processing Systems, 2018, pp. 7717–7728.

[32] C. Zhang, Z. Ye, Y. Wang, and Z. Yang, “Detecting adversarial per-
turbations with saliency,” in 2018 IEEE 3rd International Conference
on Signal and Image Processing (ICSIP). IEEE, 2018, pp. 271–275.

[33] N. Papernot, P. McDaniel, X. Wu, S. Jha, and A. Swami, “Distillation
as a defense to adversarial perturbations against deep neural
networks,” in 2016 IEEE Symposium on Security and Privacy (SP).
IEEE, 2016, pp. 582–597.

[34] N. Papernot and P. McDaniel, “Extending defensive distillation,”
arXiv preprint arXiv:1705.05264, 2017.

[35] A. Athalye, N. Carlini, and D. A. Wagner, “Obfuscated gradients
give a false sense of security: Circumventing defenses to adversarial
examples,” in ICML, 2018, pp. 274–283.

[36] X. Liu, M. Cheng, H. Zhang, and C.-J. Hsieh, “Towards robust
neural networks via random self-ensemble,” in Proceedings of the
European Conference on Computer Vision (ECCV), 2018, pp. 369–385.

[37] C. Xie, J. Wang, Z. Zhang, Z. Ren, and A. L. Yuille, “Mitigating
adversarial effects through randomization,” in ICLR, 2018.

[38] H. Wang, G. Wang, G. Li, and L. Lin, “Camdrop: A new explanation
of dropout and a guided regularization method for deep neural
networks,” in Proceedings of the 28th ACM International Conference
on Information and Knowledge Management, 2019, p. 1141–1149.

[39] M. Lecuyer, V. Atlidakis, R. Geambasu, D. Hsu, and S. Jana,
“Certified robustness to adversarial examples with differential
privacy,” in 2019 IEEE Symposium on Security and Privacy (SP).
IEEE, 2019, pp. 656–672.

[40] X. Liu, Y. Li, C. Wu, and C. Hsieh, “Adv-bnn: Improved adversarial
defense through robust bayesian neural network,” in ICLR, 2019.

[41] N. Akhtar, J. Liu, and A. Mian, “Defense against universal
adversarial perturbations,” in Proceedings of the IEEE Conference
on Computer Vision and Pattern Recognition, 2018, pp. 3389–3398.

[42] S. Gu and L. Rigazio, “Towards deep neural network architectures
robust to adversarial examples,” in ICLR, 2015.

[43] F. Liao, M. Liang, Y. Dong, T. Pang, X. Hu, and J. Zhu, “Defense
against adversarial attacks using high-level representation guided
denoiser,” in Proceedings of the IEEE Conference on Computer Vision
and Pattern Recognition, 2018, pp. 1778–1787.

[44] H. Li, G. Li, and Y. Yu, “Rosa: Robust salient object detection against
adversarial attacks,” IEEE transactions on cybernetics, 2019.

[45] X. He, S. Yang, G. Li, H. Li, H. Chang, and Y. Yu, “Non-local
context encoder: Robust biomedical image segmentation against
adversarial attacks,” in Proceedings of the AAAI Conference on
Artificial Intelligence, vol. 33, 2019, pp. 8417–8424.

[46] H. Kannan, A. Kurakin, and I. Goodfellow, “Adversarial logit
pairing,” arXiv preprint arXiv:1803.06373, 2018.

[47] X. Liu and C.-J. Hsieh, “Rob-gan: Generator, discriminator and
adversarial attacker,” in Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition, 2019.

[48] A. Shafahi, M. Najibi, M. A. Ghiasi, Z. Xu, J. Dickerson, C. Studer,
L. S. Davis, G. Taylor, and T. Goldstein, “Adversarial training for
free!” in Advances in Neural Information Processing Systems, 2019, pp.
3353–3364.

[49] D. Zhang, T. Zhang, Y. Lu, Z. Zhu, and B. Dong, “You only
propagate once: Accelerating adversarial training via maximal
principle,” in Advances in Neural Information Processing Systems,
2019, pp. 227–238.

[50] R. M. Neal, Probabilistic inference using Markov chain Monte Carlo
methods. Department of Computer Science, University of Toronto
Toronto, Ontario, Canada, 1993.

[51] S. Duane, A. D. Kennedy, B. J. Pendleton, and D. Roweth, “Hybrid
monte carlo,” Physics letters B, vol. 195, no. 2, pp. 216–222, 1987.

[52] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[53] C. Pasarica and A. Gelman, “Adaptively scaling the metropolis
algorithm using expected squared jumped distance,” Statistica
Sinica, pp. 343–364, 2010.

[54] T. Salimans, D. Kingma, and M. Welling, “Markov chain monte
carlo and variational inference: Bridging the gap,” in International
Conference on Machine Learning, 2015, pp. 1218–1226.

[55] M. D. Hoffman and A. Gelman, “The no-u-turn sampler: adaptively
setting path lengths in hamiltonian monte carlo.” Journal of Machine
Learning Research, vol. 15, no. 1, pp. 1593–1623, 2014.

[56] Z. Tu and S.-C. Zhu, “Image segmentation by data-driven markov
chain monte carlo,” IEEE Transactions on pattern analysis and machine
intelligence, vol. 24, no. 5, pp. 657–673, 2002.

[57] T. Chen, E. Fox, and C. Guestrin, “Stochastic gradient hamiltonian
monte carlo,” in International conference on machine learning, 2014,
pp. 1683–1691.

[58] J. Song, S. Zhao, and S. Ermon, “A-nice-mc: Adversarial training
for mcmc,” in Advances in Neural Information Processing Systems,
2017, pp. 5140–5150.

[59] J. Xie, Y. Lu, R. Gao, and Y. N. Wu, “Cooperative learning of energy-
based model and latent variable model via mcmc teaching,” in
Thirty-Second AAAI Conference on Artificial Intelligence, 2018.

[60] N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller,
and E. Teller, “Equation of state calculations by fast computing
machines,” The journal of chemical physics, vol. 21, no. 6, pp. 1087–
1092, 1953.

[61] S. J. Reddi, S. Kale, and S. Kumar, “On the convergence of adam
and beyond,” in ICLR, 2018.

[62] A. Krizhevsky and G. Hinton, “Learning multiple layers of features
from tiny images,” Citeseer, Tech. Rep., 2009.

[63] J. Deng, W. Dong, R. Socher, L.-J. Li, K. Li, and L. Fei-Fei, “Imagenet:
A large-scale hierarchical image database,” in 2009 IEEE conference
on computer vision and pattern recognition. Ieee, 2009, pp. 248–255.

[64] Y. LeCun, “The mnist database of handwritten digits,” http://yann.
lecun. com/exdb/mnist/, 1998.

[65] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proceedings of the IEEE conference on computer
vision and pattern recognition, 2016, pp. 770–778.

[66] K. Simonyan and A. Zisserman, “Very deep convolutional networks
for large-scale image recognition,” arXiv preprint arXiv:1409.1556,
2014.

[67] S. Xie, R. Girshick, P. Dollár, Z. Tu, and K. He, “Aggregated residual
transformations for deep neural networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
1492–1500.

[68] G. Huang, Z. Liu, L. Van Der Maaten, and K. Q. Weinberger,
“Densely connected convolutional networks,” in Proceedings of the
IEEE conference on computer vision and pattern recognition, 2017, pp.
4700–4708.

[69] M.-I. Nicolae, M. Sinn, M. N. Tran, B. Buesser, A. Rawat,
M. Wistuba, V. Zantedeschi, N. Baracaldo, B. Chen, H. Ludwig,
I. Molloy, and B. Edwards, “Adversarial robustness toolbox
v1.0.1,” CoRR, vol. 1807.01069, 2018. [Online]. Available:
https://arxiv.org/pdf/1807.01069

[70] Y. Liu, X. Chen, C. Liu, and D. Song, “Delving into transferable
adversarial examples and black-box attacks,” in ICLR, 2017.

[71] C. Xie, Z. Zhang, Y. Zhou, S. Bai, J. Wang, Z. Ren, and A. L.
Yuille, “Improving transferability of adversarial examples with
input diversity,” in Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, 2019, pp. 2730–2739.

[72] H. Zhang, Y. Yu, J. Jiao, E. P. Xing, L. E. Ghaoui, and M. I.
Jordan, “Theoretically principled trade-off between robustness
and accuracy,” in Proceedings of the 36th International Conference on
Machine Learning, ICML 2019, 9-15 June 2019, Long Beach, California,
USA, 2019, pp. 7472–7482.

[73] D. Wierstra, T. Schaul, T. Glasmachers, Y. Sun, and J. Schmidhuber,
“Natural evolution strategies,” 2011.

https://arxiv.org/pdf/1807.01069

IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE 13

Hongjun Wang (S’20) received his B.E. degree
of information security from Sun Yat-Sen Univer-
sity, Guangzhou, China, in 2018. He is currently
working toward the M.E. degree at Sun Yat-Sen
University. His current research interests include
computer vision and the security of machine
learning, particularly in adversarial attacks and
defenses.

Guanbin Li (M’15) is currently an associate
professor in School of Data and Computer Sci-
ence, Sun Yat-sen University. He received his
PhD degree from the University of Hong Kong
in 2016. His current research interests include
computer vision, image processing, and deep
learning. He is a recipient of ICCV 2019 Best
Paper Nomination Award. He has authorized and
co-authorized on more than 60 papers in top-tier
academic journals and conferences. He serves
as an area chair for the conference of VISAPP.

He has been serving as a reviewer for numerous academic journals and
conferences such as TPAMI, IJCV, TIP, TMM, TCyb, CVPR, ICCV, ECCV
and NeurIPS.

Xiaobai Liu is currently an Associate Professor
of Computer Science in the San Diego State
University (SDSU), San Diego. He received his
PhD from the Huazhong University of Science
and Technology, China. His research interests
focus on scene parsing with a variety of topics,
e.g. joint inference for recognition and recon-
struction, commonsense reasoning, etc. He has
published 60+ peer-reviewed articles in top-tier
conferences (e.g. ICCV, CVPR etc.) and leading
journals (e.g. TPAMI, TIP etc.). He received a

number of awards for his academic contribution, including the 2013
outstanding thesis award by CCF(China Computer Federation). He is a
member of IEEE.

Liang Lin (M’09, SM’15) is a full Professor of
Sun Yat-sen University. He is an Excellent Young
Scientist of the National Natural Science Founda-
tion of China. From 2008 to 2010, he was a Post-
Doctoral Fellow at the University of California, Los
Angeles. From 2014 to 2015, as a senior visiting
scholar, he was with The Hong Kong Polytechnic
University and The Chinese University of Hong
Kong. He currently leads the SenseTime R&D
teams to develop cutting-edge and deliverable
solutions on computer vision, data analysis and

mining, and intelligent robotic systems. He has authored and co-authored
more than 100 papers in top-tier academic journals and conferences. He
has been serving as an associate editor of IEEE Trans. Human-Machine
Systems, The Visual Computer and Neurocomputing. He served as
area/session chairs for numerous conferences, such as ICME, ACCV,
ICMR. He was the recipient of the Best Paper Runners-Up Award in ACM
NPAR 2010, the Google Faculty Award in 2012, the Best Paper Diamond
Award in IEEE ICME 2017, and the Hong Kong Scholars Award in 2014.
He is a Fellow of IET.

	1 Introduction
	2 Related Work
	3 Methodology
	3.1 Review: MCMC and Hamiltonian Monte Carlo
	3.2 Simulating Adversarial Examples Generating by HMC
	3.3 Adaptively Exploring the Solution Space with Accumulated Momentum

	4 Contrastive Adversarial Training
	5 Experiment
	5.1 Datasets and Implementation Details
	5.2 Attacking a Single Model
	5.3 Attacking an Ensemble of Models
	5.4 Ablation Study on Adversarial Attack
	5.4.1 Influence of Iteration Number
	5.4.2 Influence of Step Size
	5.4.3 Fewer samples for competitive results

	5.5 Efficiency for Adversarial Training
	5.6 Competitions and Real World Systems Attack
	5.6.1 Attack CAAD 2018 Defense Champion
	5.6.2 Attack on Public Face Recognition Systems

	6 Conclusion
	References
	Biographies
	Hongjun Wang
	Guanbin Li
	Xiaobai Liu
	Liang Lin

