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Learning to Segment Object Candidates
via Recursive Neural Networks

Tianshui Chen, Liang Lin , Xian Wu, Nong Xiao, and Xiaonan Luo

Abstract— To avoid the exhaustive search over locations and
scales, current state-of-the-art object detection systems usually
involve a crucial component generating a batch of candidate
object proposals from images. In this paper, we present a
simple yet effective approach for segmenting object proposals
via a deep architecture of recursive neural networks (ReNNs),
which hierarchically groups regions for detecting object candi-
dates over scales. Unlike traditional methods that mainly adopt
fixed similarity measures for merging regions or finding object
proposals, our approach adaptively learns the region merging
similarity and the objectness measure during the process of
hierarchical region grouping. Specifically, guided by a structured
loss, the ReNN model jointly optimizes the cross-region similarity
metric with the region merging process as well as the objectness
prediction. During inference of the object proposal generation,
we introduce randomness into the greedy search to cope with
the ambiguity of grouping regions. Extensive experiments on
standard benchmarks, e.g., PASCAL VOC and ImageNet, suggest
that our approach is capable of producing object proposals
with high recall while well preserving the object boundaries
and outperforms other existing methods in both accuracy and
efficiency.

Index Terms— Object proposal generation, object segmenta-
tion, region grouping, recursive neural networks, deep learning.

I. INTRODUCTION

OBJECT proposal generation, which aims to identify a
small set of region proposals where objects are likely to

occur, benefits a wide range of applications such as generic
object detection [1], [2], object recognition [3]–[5] and object
discovery [6], [7]. Usually, a good object proposal method is
desired to be capable of not only recalling all existing objects
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Fig. 1. Some object proposals (indicated by the blue boxes) generated by
our approach. Our results match well with the ground-truth (indicated by the
green boxes), and also preserve the object boundaries (indicated by the blue
silhouettes inside the boxes).

over scales and locations but also preserving their boundaries,
for example in Figure 1.

The challenges of object proposal lie in the presence of
severe occlusion, variations in object shapes, and the lack of
category information. Most of the current methods [8]–[10]
tackle these difficulties through bottom-up region group-
ing or segmentation. Those methods mainly involve two
crucial components, i.e., cross-region similarity metric and
region merging algorithm. The similarity metric is utilized
to measure whether two adjacent regions should be merged,
and the merging algorithm performs the inference process that
groups pairs of regions into super-regions and finally generates
object proposals. Thus, object proposal generation methods
based on region grouping basically follow the pipeline: they
assign a higher similarity score to the adjacent regions if it
is confident that the regions belong to the same class, and
recursively merge the adjacent regions with highest score.
Despite of acknowledged successes, these approaches usually
require elaborative tuning or setting (e.g., manually designed
cross-region similarity metric), limiting their performance in
complex environments.

In this work, we develop a novel hierarchical region
grouping approach for generating and segmenting object
proposals by learning a recursive neural network (ReNN).
In our ReNN architecture, we incorporate the cross-region
similarity metric learning into bottom-up region merging
process for end-to-end training. In particular, we define a
structured loss that penalizes the incorrect merging candidates
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by measuring the similarity of adjacent regions and the
objectness. In this way, our model explicitly optimizes the
cross-region similarity learning and objectness prediction
within the recursive iterations. Interestingly, the forward
process of ReNN finely accords with the traditional bottom-up
region grouping pipeline, leading to a very natural embedding
of the two crucial components (i.e., cross-region similarity
metric and merging algorithm). Moreover, the objectness
score is also learned with the ReNN training, bringing the
benefit of fast rejecting the false positive samples.

Obviously, the greedy merging algorithms, that recursively
merge two regions with highest merging scores, can be
applied for inference with the ReNN model [11]. However,
the performance of greedy methods depends heavily on the
accuracy of merging scores, since greedy merging is generally
sensitive to noise or local minima. In the task of object
proposal generation, once a segment of an object is incorrectly
merged with the background or other objects, this object has
little possibility to be recalled. In addition, we experimentally
found that greedy merging leads to incorrect object proposals
easily, especially when one segment of an object has similar
appearance with background or other surrounding objects.
To alleviate this issue, we propose a randomized merging algo-
rithm that introduces randomness in the recursive inference
procedure. Instead of merging a pair of neighbouring regions
with highest similarity score, we search for k pairs with top k
highest similarities, and then randomly pick one pair according
to a distribution constructed by their scores. The process is
repeated for K times, thus that errors occurred at one random
merging process can be corrected in other processes. In this
way, it can help to recall more incorrectly merged objects.
Figure 1 shows some examples of object proposals generated
by our approach.

The key contribution of this work is a deep architecture
of recursive neural networks for generating object proposals
and preserving their boundaries. This framework jointly
optimizes the cross-region similarity and objectness measure
together with the hierarchical region grouping process, which
is original in literature of object segmentation and detection.
Moreover, we design a randomized region merging algorithm
with the recursive neural network learning, which introduces
randomness to handle the inherent ambiguities of composing
regions into candidate objects and thus causes a notable
gain in object recall rate. Extensive experimental evaluation
and analysis on standard benchmarks (e.g., PASCAL VOC
and ImageNet) are provided, demonstrating that our method
achieves superior performances over existing approaches in
both accuracy and efficiency.

The remainder of the paper is organized as follows.
Section II presents a review of the related works. We then
introduce our approach and optimization algorithm in detail
in Section III and Section IV, respectively. Experimental
results, comparisons and analysis are exhibited in Section V.
Section VI concludes the paper.

II. RELATED WORK

Many efforts have been dedicated to object proposal
generation. Here we roughly divide existing methods into

two categories: top-down window-based scoring and
bottom-up region grouping, according to their computation
process.

A. Window-Based Scoring

This category of methods [12]–[16] attempt to distinguish
object proposals directly from the surrounding background
through assigning an objectness score to each candidate
sub-window. The objectness measures are usually defined
in diverse ways, and object proposals generated by sliding
windows are then ranked and thresholded by their objectness
scores. As a pioneer work, Alexe et al. [15] employed saliency
cue to measure the objectness of a given window, which was
further improved by [17] with learning methods and more
complicated features. However, these methods may suffer from
expensive computational cost, since they require to search over
all locations and scales in images. Recently, to address this
problem, BING [14] and Edge Box [13] exploited very simple
features such as gradient and contour information to score
the windows, and achieved very high computational efficiency.
Alternatively, Ren et al. [12] proposed a deep learning method
based on fully convolutional networks (FCNs) [18] to score
windows over scales and locations efficiently. Nonetheless, this
method may not locate object accurately, since experimental
results show that the recall rate deteriorates as the Intersection
over Union (IoU) threshold increases.

B. Region Grouping

This branch of researches [8], [9], [19]–[23] cast the
object proposal generation as a process of hierarchical region
segmentation or partition. Starting from an initial over-
segmentation, these methods usually adopt a cross-region
similarity / distance metric [24], [25] that works together with
region merging algorithms. As a representative example of
these methods, Uijlings et al. [8] leveraged four types of
low-level features (e.g., color, texture etc.) for similarity com-
puting and generated object proposals via hierarchical greedy
grouping. Using similar features with [8], Manen et al. [9]
learned the merging probabilities and introduced a random-
ized prim algorithm for region grouping. Following similar
hierarchical grouping methods, Wanget al. [26] proposed a
multi-branch hierarchical segmentation method via learning
multiple merging strategies at each step. Arbeláez et al. [21]
constructed hierarchical segmentations and explored the com-
binatorial space to combine multi-scale regions into proposals.
Xiao et al. [10] proposed a complexity-adaptive distance met-
ric for grouping the neighbouring super-pixels. It combined
a low-complexity distance and a high-complexity distance to
adapt different complexity levels. Krähenbühl and Koltun [19]
trained classifiers to adaptively place seeds to hit the objects
in the image, and identified a small set of level sets as
object proposals for each seed. This method was further
improved by ensembling multiple models to generate more
diverse proposals [27]. Rantalankilaet al. [22] integrated local
region merging and global graph-cut to generate proposals.
Due to their high localization accuracy, they are adopted
in many state-of-the-art object detection [1], [2] and object
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Fig. 2. An overview of our proposed object proposal segmentation framework. The bottom shows local feature extraction, and the top illustrates bottom-up
recursive region grouping process. The four modules, Fs , Fc, Fm and Fo, work cooperatively to group regions for generating object proposals.

discovery [7] algorithms. However, these mentioned meth-
ods mainly adopt fixed similarity measures for merging
regions or finding object proposals, leading to suboptimal
performances when handling complex cases. In contrast, our
approach adaptively learns the region merging similarity and
the objectness measure during the process of hierarchical
region grouping. Moreover, our method also introduces ran-
domness into the bottom-up searching of region composition
and yields significant improvement over existing methods.

III. FRAMEWORK OF SEGMENTING OBJECT PROPOSALS

In this section, we introduce our approach in detail. The
input image is first over-segmented into N regions with the
efficient graph-based method [28]. The Fast R-CNN [29] is
used to extract local features for each region. We then design a
recursive neural network to group regions and simultaneously
predict the associated objectness scores for corresponding
proposals. Furthermore, we propose a randomized merging
algorithm, which introduces randomness into recursive infer-
ence procedure to cope with the inherent ambiguities in the
process of merging regions. Figure 2 gives an illustration of
our proposed framework.

A. Local Feature Extraction

Since deep features have shown significant improvement
than hand-crafted features on various vision tasks [30]–[35],
we utilize the Fast RCNN [29] architecture to extract deep
local features for each region. The architecture consists

of 16 convolutional layers, the same as VGG16-net [30],
followed by the region of interests (ROI) pooling layer. Specif-
ically, given an input image, our approach first over-segments
it into N regions with the efficient graph-based method [28]
and obtains the box for each region that tightly bounds
this region. To achieve a better trade-off between speed and
accuracy, we follow [29] to resize the input image, thus that
the short side of the image is 600, remaining the aspect ratio
unchanged. The sixteen convolutional layers take the resized
image as input, and produce a pooling of corresponding size
feature maps. The ROI pooling layer subsequently extracts a
fixed length feature vector for each region.

B. Recursive Neural Networks

We first present some notations that would be used through-
out this article. Let vi denote the local features of the
i -th region, and xi denote the corresponding semantic fea-
tures. σ (·) denotes the rectified linear unit (ReLU), where
σ (x) = max(0, x).

The core of this framework is the ReNN, which aims to
group the regions and simultaneously predict the objectness
scores for corresponding proposals in a recursive manner. The
ReNN architecture is depicted in Figure 3. The ReNN com-
prises four modules, i.e., semantic mapper, feature combiner,
merging scorer and objectness scorer. Semantic mapper trans-
forms the local features to semantic space which can be further
propagated to their parent nodes. Feature combiner com-
putes the joint semantic representations of all neighbouring
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Fig. 3. Illustration of the recursive neural network in our proposed
framework. This network computes the scores for merging decision and
objectness scores of all regions.

child nodes. Given joint semantic representations, merging
scorer calculates the score indicating the confidence that
two nodes should be merged. Feature combiner merges the
neighbouring nodes according to merging scores, and obtains a
hierarchical tree structural segmentations, each of which corre-
sponds to a candidate of proposal. Objectness scorer computes
a score which estimates the likelihood of the candidate con-
taining an object. These four modules work cooperatively for
proposal segmentation, as illustrated in Figure 2. We describe
these four modules in the following.

1) Semantic Mapper: Semantic mapper Fs is a simple
feed-forward operator to map the local features into the
semantic space in which the combiner operates on. It can be
expressed as,

xi = Fs (vi ; θs) = σ (Wsvi + bs), (1)

Fs captures the region semantic representation, and propagates
it to its parent regions through the tree hierarchical structure.
To better balance the computational efficiency and accuracy,
we empirically set the dimensionality of local features vi as
18,432 (6 × 6 × 512), and that of semantic features xi as 256.
Hence, the semantic mapper is a one-layer fully-connected
network, with 18,432 input and 256 output neurons, followed
by the rectified linear unit. θs = {Ws, bs} are the learnt
parameters, in which Ws and bs are the weight matrix and
bias of the fully-connected layer, respectively.

2) Feature Combiner: Feature combiner Fc recursively
takes the semantic features of its two child nodes as input,
and maps them to the semantic features of the parent node,
formulated as,

xi, j = Fc
([xi , x j ]; θc

) = σ
(
Wc[xi , x j ] + bc

)
, (2)

Fc aggregates the semantic information of the two child
nodes and obtains the semantic representation of the merged
node. It takes semantic features of the original regions as
leaf nodes, and recursively aggregates them to the root node
in a bottom-up manner. In order to ensure the recursive
procedure can be applied, the dimensionality of parent node
features is set the same as that of child node features. Thus,
the architecture of the feature combiner is identical to that of

the semantic mapper, except that it has 512 (2 × 256) input
neurons. Similarly, θc = {Wc, bc} are its learnt parameters,
where Wc and bc are the weight matrix and bias, respectively.

3) Merging Scorer: Given the joint semantic features of two
neighbouring nodes, merging scorer Fm computes a score that
indicates the confidence that whether two nodes should be
merged, expressed as

si, j = Fm
(
xi, j ; θm

) = Wmxi, j + bm , (3)

The scores determine the pair that should be merged first
in both learning and inference stages. It consists of one
simple fully connected layer which takes 256 dimensionality
combined features as input and produces one scores. θm =
{Wm, bm} are the learnt parameters, where Wm and bm are
the weight matrix and bias of the fully-connected layer,
respectively.

4) Objectness Scorer: Each node of the tree is related
to the semantic information of the corresponding region,
i.e., the semantic features. Objectness scorer Fo directly pre-
dicts objectness scores in semantic feature space.

oi = Fo (xi ; θo) = φ
(
Wo_1σ

(
Wo_0xi + bo_0

) + bo_1
)
, (4)

where φ (·) is the softmax operation. Our approach rejects
candidate proposals that have low scores without compromis-
ing the recall rate. We experimentally found that one fully
connected layer (merely consisting of 512 parameters) is so
simple that it can not well fit thousands of proposals. Thus,
we utilize two stacked fully connected layers to implement
the objectness scorer, in which the first one is 256 to 256,
followed by the rectified linear unit, and the second one is
256 to 2, followed by a softmax layer for objectness prediction.
θo = {Wo_0, Wo_1, bo_0, bo_1} are the learnt parameters, where
Wo_0 and bo_0 are the weight matrix and bias of the first
fully-connected layer, while Wo_1 and bo_1 are those of
the second one.

C. Randomized Merging Algorithm

As discussed above, greedy merging groups the neighbour-
ing regions with the highest similarity score for each iteration.
Once a segment of an object mistakenly merges with a neigh-
boring segment that belongs to surrounding objects or back-
ground, this object would have little chance to be found.
Figure 4 presents an example as an illustration. Given an
image with a brown cat and a black-white one, the brown cat
is successfully detected using the greedy merging processing,
as it is distinguishable from the background (red bounding
box in Figure 4). However, the white segment of the other cat
incorrectly merges with a piece of background as they have
more similar appearance (red circle in Figure 4). In this case,
the subsequent merging process misses this cat inevitably.
We propose a randomized merging algorithm to alleviate this
problem. Instead of merging the neighbouring regions with the
highest similarity score for each iteration, our approach selects
one pair to merge among the top k highest pairs according to a
distribution constructed based on their scores. The randomized
merging process can be repeated for several times to increase

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 17:43:44 UTC from IEEE Xplore.  Restrictions apply. 



CHEN et al.: LEARNING TO SEGMENT OBJECT CANDIDATES VIA ReNNs 5831

Fig. 4. An example of incorrect merging using the greedy merging algorithm.
Top left: Input image; top right: over-segmentation; bottom right: incorrect
merging; bottom left: merging result. The black-white cat is lost because its
white part incorrectly merges with the background.

the diversity of the generated proposals. This helps to recall
more incorrectly merged objects, as explained in Section V-E.

The randomized merging algorithm works as follows. Start-
ing from the semantic features {xi }Nseg

i=1 and over-segmented

regions R = {ri }Nseg
i=1 where Nseg is the number of seg-

ments, our approach first computes the merging scores of all
neighbouring regions using the feature combiner and merging
scorer. Our approach then re-ranks the merging scores to
obtain the k pairs of neighbouring regions {(rit , r jt

)}k
t=1 with

the top-k highest scores {sit , jt }k
t=1, and further constructs a

multinomial probability distribution according to the k merg-
ing scores, expressed as

(it , jt ) ∼ Mult (ρ) , (5)

where

ρit , jt = exp
(
sit , jt

)

∑k
t=1 exp

(
sit , jt

) , t = 1, 2, · · · , k, (6)

where ρit , jt indicates the probability that the t-th pair of
regions can be selected. Our approach randomly draws one
pair of regions

(
rit ′ , r jt ′

)
according to the probability distrib-

ution Mult (ρ), merges these two regions together, and then
computes new merging scores between the resulting region
and its neighbours. The process is repeated until the whole
image becomes one region. The general process is detailed in
Algorithm 1. As the candidate object proposals, we consider
the bounding boxes that tightly enclose the segments through-
out the hierarchy. Then the objectness scores, learned by the
objectness scorer, are used to rank the candidate proposals and
the ones with low scores are rejected to get a certain number
of proposals.

IV. OPTIMIZATION

Suppose that we have the training set X = {(Ii , ci , bi ) |i =
1, 2, ..., N}, where N is the number of training samples; Ii is
the i -th input sample, including the local features of all regions

Algorithm 1 Randomized Merging Algorithm

and the adjacency matrix (as shown in Figure 5(a) and (b));
ci and bi are the corresponding class labels of regions and
ground truth object bounding boxes, respectively. Our model
is jointly trained with two objectives: 1) the merging loss Lm

penalizes incorrect region grouping in the hierarchical tree
structure; and 2) the objectness loss Lo helps to learn the
objectness scorer. Therefore, we define the structured loss as

L = Lm + λLo + η

2
||θ ||22, (7)

where θ = {θs, θc, θm , θo} are the set of parameters to learn
and ||θ ||22 is the L2 norm regularization term. λ and η are two
balance parameters.

A. Merging Loss

Given an input image I , its bottom-up merging process
can be presented as RN (θ, I, t), and it produces a binary
tree t ∈ T (I ), where T (I ) is the set of all possible binary
trees constructed from input I . In the learning stage, the class
labels of all the segmented regions are available. We further
define T (I, c) as the set of all possible correct trees. Here,
a tree is regarded as correct if any region merges with the one
belonging to the same class before other regions from different
classes. Figure 5 presents some examples of generating correct
and incorrect trees from an image.

Inspired by [11], [36], we define a margin loss function
�L : I × C × T → R

+, where �L (I, c, t) measures the
penalty of the construction of a parsing tree t for input I with
label c. In the context of recursive merging process, the loss
increases when a segment merges with the one from different
class before those with the same class label. We denote N (t)
as the set of non-terminal nodes of tree t , and subtree (d) as a
subtree underneath the non-terminal node for each d ∈ N (t).
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Fig. 5. Examples of generating correct and incorrect trees. (a) Input image,
green and blue indicate differently labelled regions. (b) Adjacent matrix of
image regions; (c) correct trees; (d) incorrect trees.

Naturally, we formulate the loss by penalizing the incorrect
subtrees

�L (I, c, t) =
∑

d∈N(t)

1{subtree (d) /∈ T (I, c)}, (8)

where 1 {·} is an indicator function whose value is 1 when
the expression is true and 0 otherwise. Figure 5(d) illustrates
two examples of incorrect trees, in which the margin losses
are 2 and 3, respectively.

Our goal is to learn a function fθ (·) with small expected
loss on the unseen inputs. Similar to [11] and [36], we consider
the following forms

fθ (I ) = arg max
t∈T (I )

{s (RN (θ, I, t))}, (9)

where s (·) predicts the score for a tree by summing up
merging scores of all the merged neighbouring pairs. In the
optimization procedure, we aim to learn a score function that
assigns higher scores to correct trees than incorrect ones.
Given the parameters θ , we first define the margin between
the correct tree ti and another tree t for Ii ,

s (RN (θ, Ii , ti )) − s (RN (θ, Ii , t)). (10)

Intuitively, the margin will be enlarged as the margin loss
function �L (I, c, t) increases, expressed as

s (RN (θ, Ii , ti )) − s (RN (θ, Ii , t)) ≥ κ�L (I, c, t), (11)

where κ is a parameter. The merging loss can be thus
defined as

Lm =
N∑

i=1

L(i)
m , (12)

where

L(i)
m = max

t∈T (Ii )
{s (RN (θ, Ii , t)) + κ�L (Ii , ci , t)}

− max
ti∈T (Ii ,ci )

{s (RN (θ, Ii , ti ))}. (13)

Optimizing the merging loss can maximize the correct trees’
scores while minimizing the scores of the highest scoring

but incorrect trees. Following [11], we utilize the greedy
merging to approximatively find an tree with maximum scores
among T (Ii ), and a correct tree with maximum scores among
T (Ii , ci ). The gradients are computed and back propagated
based on these two selected trees.

B. Objectness Loss

One of the main advantages of our approach is that it
can simultaneously predicts an objectness score for each
proposal candidate, which can be used for proposal ranking
and rejecting the ones with low scores. We simply employ
a softmax classifier with the semantic features of each node.
We generate positive and negative samples from all of the
regions as follows. Given a region, we first calculate the IoU
scores between the box that tightly bounds this region with
each ground truth bounding box. If the maximum IoU is
larger than 0.5, this region is considered as positive; and if
the maximum IoU is smaller than 0.2, it is used as a negative
sample. All these regions are considered as useful regions to
define the objectness loss. We simply ignore other regions
since they may not provide discriminative information. For
the i -th useful region, the loss function can be defined as

L(i)
o = −

1∑

l=0

1 {li = l} log
(

pi,l
)
, (14)

where pi,l is the score corresponding to the likelihood of the
region belonging to label l. Hence

Lo =
Nu∑

i=1

L(i)
o , (15)

where Nu is the number of useful regions.
The model is jointly trained by the stochastic gradient

descent (SGD) with momentum [37].

V. EXPERIMENT

In this section, we present the extensive experimental results
to compare with state-of-the-art methods, demonstrating the
superiority of the proposed methods, and analyze the benefit
of introducing the randomized merging algorithm for object
proposals generation.

A. Experimental Setting

1) Datasets: We first conduct the experiments on
the PASCAL VOC2007 dataset [38], which consists of
9,963 images from 20 categories of objects. The model is
trained using 422 images of the PASCAL VOC2007’s seg-
mentation set. We compare the performance of our approach
with those of state-of-the-art methods, and evaluate the contri-
bution of randomized merging algorithm using the 4,952 test
images that contain 14,976 objects, including the “difficult"
ones. To better demonstrate the effectiveness of the proposed
method, we also conducted experiments on the PASCAL
VOC 2012 validation set, which contains 15,787 objects
in 5,823 images. As our model is trained with 20 object
categories on PASCAL VOC, we further investigate the gener-
alization ability of our method to unseen object categories on
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ImageNet 2015 validation dataset [39], which contains about
20,000 images of 200 categories, without re-training the model
using the training samples from ImageNet.

2) Evaluation Metrics: One of the primary metrics is the
Intersection over Union (IoU) measure, where the IoU is
defined as the intersection area of the proposal, and the ground
truth bounding box divided by their union area. For a fixed
number of proposals, the recall rate (the fraction of ground
truth annotations covered by proposals) varies as the IoU
threshold increases from 0.5 to 1, so that a recall-IoU curve
can be obtained. Besides, the curves indicating the recall
rate with reference to the number of ranked proposals, are
also given, with IoU fixed as both 0.5 and 0.8, respectively.
This is widely adopted by many proposal works [26], [40] for
evaluation. We also compare the average recall (AR), defined
as the average recall when IoU ranges from 0.5 to 1 [40], [41],
since AR is considered to be strongly correlated with detection
performance.

3) Implementation Details: Following [8], we adopte
the efficient graph-based method [28] to produce initial
over-segmentations with four parameter values (i.e., k =
100, 150, 200, 250), respectively. We implement the proposed
model using Caffe open source library [42], and train it by
stochastic gradient descent (SGD) with a batch size of 2,
momentum of 0.9, weight decay of 0.0005. The learning rate is
initialized as 10−5 and divided by 10 after 20 epochs. The bal-
ance parameter λ in Equation 7 is simply set as 1. Note that it
is indeed possible to perform joint training for the fast RCNN
and the ReNN. We do not train the model in this way, because
only 422 images are provided for training, which easily leads
to over-fitting. Therefore, we simply use the fast RCNN model
pre-trained on the PASCAL VOC 2007 detection dataset for
local feature extraction, and then train our ReNN model alone.
In the random merging algorithm, the parameter k is set as 5.
To improve the quality of generated proposals, we perform
the random merging process for K times (K = 8 in our
experiments), and rank all the generated proposals using the
objectness scores. The proposals with low scores are rejects
to get a certain number of proposals for evaluation.

B. Comparison With State-of-the-Art Approaches

In this subsection, we compare our method with recent
state-of-the-art methods, including BING [14], Randomized
Prim (RP) [9], EdgeBox (EB) [13], Multiscale Combinato-
rial Grouping (MCG2015)1 [43], Selective Search (SS) [8],
Faster R-CNN (RPN) [12], Complexity Adaptive Distance
Metric (CADM) [10], Multi-branch Hierarchical Segmenta-
tion (MHS)2 [26], Geodesic Object Proposals (GOP)3 [19],
Learn to Propose Objects (LPO) [27]. In our experiments,
we use Edgebox70 (optimal settings for an IoU threshold
of 0.7) for EB, and default settings for others, in order

1MCG2015 is the improved version of original MCG and achieves much
better performance.

2We only compare with MHS on the PASCAL VOC 2007 dataset, because
only the results on this dataset are available.

3We only compare with GOP on the PASCAL VOC 2007 and ImageNet
datasets, because only the results on these two datasets are available.

to ensure the best overall performance for these methods.
In addition, we follow [40] to control the number of candi-
dates to a specific value for a fair comparison. Since BING,
MCG2015, SS, CADM, RPN, EB, MHS and GOP provide
sorted proposals, we select n proposals with top n highest
scores for evaluation. However, RP and LPO does not provide
the scores to rank the proposals, so we simply select the first
n proposals in our experiments.

We first analyze the experimental results on the PASCAL
VOC 2007 dataset, as depicted in Figure 6. It can be
observed that window-scoring-based methods (e.g., EB and
RPN) achieve competitive recall rates with a relatively low
IoU threshold. This mainly benefits from the exhaustive search
over locations and scales, and the accuracy of rejecting the
non-objects by the window-scoring-based methods. However,
their recall rates drop significantly when the IoU threshold
increases. In contrast, region-grouping-based methods yield
better performance as the IoU threshold increases. It is shown
that MCG2015 performs best among region-grouping-based
methods, but it is very time-consuming (over 30s per image)
and may not practical especially for real-time object detection
systems. It is noteworthy that our method runs 7× faster than
MCG2015, and meanwhile outperforms MCG2015 overall,
particularly when the number of object proposals is strictly
constrained (e.g., with 100 or 500 proposals).

Typically, an IoU threshold of 0.5 is used to mea-
sure whether the target object is detected successfully in
object detection tasks. However, as suggested in recent
works [13], [40], [41], the proposals with an IoU of 0.5 cannot
fit the ground truth objects well, usually resulting in a failure of
subsequent object detectors. This reveals the fact that the recall
rate with an IoU threshold of 0.5 is weakly correlated with
the real detection performance. Hence, we also present the
curves of recall rate with respect to the number of proposals
at a more strict IoU threshold of 0.8, shown in Figure 6(e),
to demonstrate the superiority of our method. We believe that
our method may be more suitable for object detection systems
owing to better localization accuracy and efficiency. Besides,
we compare the average recall (AR), considered to have
a strong correlation with detection performance, as another
important metric for evaluation. As shown in Figure 6(f), our
method outperforms other state-of-the-art algorithms, which
suggests that it is likely to achieve a better detection perfor-
mance with the proposals generated by our method.

We also compare the performance on the PASCAL VOC
2012 validation set, as depicted in Figure 7. Note that RPN is
trained with the data from both VOC 2007 and 2012 datasets,
but RP and our method are learned on the VOC 2007 dataset
without re-training here. Even though VOC 2012 is more
challenging and larger in size, our method still achieves
best performance over other state-of-the-art algorithms, again
demonstrating the effectiveness of the proposed method. It is
also shown that more improvement over other methods on the
VOC 2012 is achieved than that on the VOC 2007.

We present some qualitative examples in Figure 8, includ-
ing some random samples (top four rows) that contains
two or more objects and some samples (the last row) that
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Fig. 6. Comparison of our proposed method and other state-of-the-art approaches on the PASCAL VOC 2007 test set. Best viewed in color.

Fig. 7. Comparison of our proposed method and other state-of-the-art approaches on the PASCAL VOC 2012 validation set. Note that our model is trained
on PASCAL VOC 2007, but still achieves the best performance against other competitors. Best viewed in color.

challenges our method. We find that, in most cases, our results
match well with the ground-truth, and preserve the accurate
object boundaries. The missed object are in part tiny ones,
e.g., the distant and severely-occluded ones.

Figure 9 analyzes the AR with regard to the ground truth
objects in different sizes. It is shown that our method performs
slightly worse than RPN if we only consider small-sized
objects whose areas are less than 5k pixels. Nevertheless, our
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Fig. 8. Qualitative examples of our object proposals. Ground truth boxes are shown in green and red, with green indicating the object is found and red
indicating the object is not found. The blue boxes are the object proposals with highest IoU to each ground truth box, and the blue silhouettes are the
corresponding object contours. All the samples are taken from PASCAL VOC dataset.

method yields best performance over other competitors in
general, especially for recalling objects in larger size. Other
grouping-based methods such as SS and CADM show sim-
ilar results. One possible reason is that grouping-based
methods depends heavily on the over-segmentations. In this
case, the boundaries of small-sized objects are generally
difficult to be well preserved, if the segmentation is not
accurate enough. But this problem will not have a sig-
nificant impact on larger-sized objects. Therefore, region-
grouping-based approaches usually exhibit desirable ability to
recall objects in relatively large size, but may fail to recall
small-sized ones.

C. Object Detection Performance

Since most state-of-the-art object detectors rely on object
proposals as a first preprocessing step, it is essential to
evaluate the final detection performance with proposals gen-
erated by different methods. In this subsection, we conduct
experiments to analyze the quality of proposals for object
detection tasks. To this end, we use the Fast R-CNN detection
framework [29] using both CaffeNet [44] and VGG-Net [30]
as the benchmarks. The detectors are trained using PASCAL
VOC 2007 trainval set, and tested using the test set for all the
experiments here. We compare EB, SS, MCG2015 and RPN
with the proposed method. For a fair comparison, we select
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TABLE I

COMPARISON OF OBJECT DETECTION PERFORMANCE WITH PROPOSALS GENERATED BY DIFFERENT METHODS. ALL OF
THE DETECTORS ARE LEARNED BY THE FAST RCNN ON PASCAL VOC 2007 TRAINVAL SET, AND TESTED WITH

20 CATEGORIES ON THE PASCAL VOC 2007 TEST SET. THE UPPER PART PRESENT THE RESULTS USING FAST

R-CNN WITH CAFFENET AND THE LOWER PART SHOWS THOSE USING THE FAST R-CNN WITH VGG-NET

Fig. 9. Comparison of average recall (AR) with respect to different sizes of
ground-truth objects on the PASCAL VOC 2007 test set. All of the AR rates
are computed with top ranked 500 proposals per image. Best viewed in color.

top-1000 proposals for all of the methods in both training
and testing stages. The mean average precision (mAP) and
average precision (AP) for each of the 20 categories are shown
in Table I. It can be seen that our proposed method achieves the
best mAPs of 58.6% and 69.0% using the Fast R-CNN with
CaffeNet and VGG-Net, respectively, outperforming other
state-of-the-art methods. This also verifies the effectiveness
of our method for detection tasks.

D. Generalization to Unseen Categories

In addition, we conduct experiments on the ImageNet
2015 validation set to further evaluate the generalization ability
to a wider scope of object categories. Note that all of the
learning-based models (e.g., RP, RPN and ours) are trained on
the PASCAL VOC dataset, and directly tested on the ImageNet
2015 validation set without re-training. The comparision of the
experimental results are shown in Figure 10. It can be seen
that our method has comparable performance with MCG2015,
and surpasses other methods. No obvious deterioration in
performance is observed on the ImageNet 2015 validation
set, suggesting that our method does not exclusively fit the
20 specific categories of objects from the PASCAL VOC.
In other words, our method is capable of capturing generic
objectness information and generalizing to unseen categories.
In addition, most state-of-the-art methods achieve similar

TABLE II

COMPARISON OF GREEDY MERGING AND RANDOMIZED MERGING ON THE

PASCAL VOC 2007 TEST SET. WE REPORT THE RESULTS USING
TOP RANKED 500 PROPOSALS. R@0.5 AND R@0.8 INDICATE THE

RECALL RATES WITH AN IOU THRESHOLD OF 0.5 AND 0.8,
RESPECTIVELY, AND AR IS THE AVERAGE RECALL

performance to those on the PASCAL VOC, while RPN
suffers from severe performance drop. One possible reason is
that category information is exploited to learn class-specific
detectors, which makes the RPN overfit 20 categories of
objects from the PASCAL VOC.

E. Evaluation of Randomized Merging Algorithm

In this subsection, we evaluate the contribution of the
proposed randomized merging algorithm. We compare the
performance of conventional greedy and the proposed ran-
domized merging algorithms on the PASCAL VOC 2007.
In the first setting, we allow the randomized merging algorithm
to be performed only one time in each recursion step, and
the experimental results are shown in Table II. It can be
seen that greedy merging and one-time randomized merging
achieve comparable results. However, with the increase of
randomized times, our merging algorithm generates more
diverse proposals. Here we conducted the experiments and
compare the results obtained with different randomized times.
The number of object proposals are fixed as 500 and 1000,
respectively. Figure 11 clearly shows that the AR rate improves
as the random times increases, and then goes near saturation
eventually. This approach provides a notable gain in recall
rates compared to greedy merging strategy. It is also shown
that the recall rate with an IoU threshold of 0.5 first keep
fixed and then drops as the random times increases, while that
with 0.8 boosts consistently. This suggests that the predicted
objectness scores are not accurate enough with small IoU
values with the ground truth bounding boxes.

Another critical issue is that whether stable performance
can be achieved by our proposed method, since we introduce
randomness to the merging process. To better clarify this
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Fig. 10. Comparison of our proposed method and other state-of-the-art approaches on the ImageNet 2015 validation set. Best viewed in color.

Fig. 11. Comparison of recall rates with different randomized times on the PASCAL VOC 2007 test set. We report the results of both top 500 and
1000 proposals for a fair comparison. Note that the number of proposals generated by one-time randomized merging is less than 1000, so we cannot provide
this result here. Best viewed in color.

Fig. 12. Comparison of recall rates in four groups of randomized merging experiments on the PASCAL VOC 2007 test set. We report the results using top
ranked 500, 1000 and all of the proposals. R@0.5 and R@0.8 mean the recall rates with an IoU threshold of 0.5 and 0.8, respectively, and AR is the average
recall. Best viewed in color.

problem, we conduct four groups of experiments, and we
repeat the randomized merging process for five times for
each group. As shown in Figure 12, our method also exhibits
great stability in recall rates and average recall with different
numbers of object proposals.

F. Efficiency Analysis

In this subsection, we present the comparison of the
efficiency of our model and the state-of-the-art methods.

The execution time of MHS [26] are directly taken from [26]
as its codes are not available. The deep-learning-based meth-
ods (i.e., ours and RPN) are conducted on a single NVIDIA
TITAN X GPU, and the rest are carried out on a desktop
with an Intel i7 3.4GHz CPU and 16G RAM. The average
running time of all the methods for generating 1,000 proposals
on the PASCAL VOC 2007 dataset are reported in Table III.
It can be seen that window scoring methods achieve relatively
high computational efficiency because of using very simple
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TABLE III

COMPARISON OF THE AVERAGE RUNNING TIME (SECOND PER
IMAGE) FOR GENERATING 1000 PROPOSALS AND

THE AVERAGE RECALL (AR) ON THE

PASCAL VOC 2007 TEST SET

features and efficient scoring methods. Among those region
grouping methods, RP, GOP and LPR run slightly faster than
our method, but their performance are much inferior than
ours on both PASCAL VOC and ImageNet datasets (see
Figure 6, 7 and 10). MCG2015 achieves comparable results,
but it is extremely time-consuming. It is noteworthy that our
method achieves the best performance among all methods
while sharing quite high running efficiency. Specifically, for
our method, it takes about 0.2s for feature extraction, and
about 0.5s for one-time random merging. The random merging
process is repeated for 8 times, thus the running time is
4.2s per image.

VI. CONCLUSION

In this paper, we have presented a simple yet effective
approach to hierarchically segment object proposals by develp-
ing a deep architecture of recursive neural networks. We incor-
porate the similarity metric learning into the bottom-up region
merging process for end-to-end training, rather than manually
designing various representations. In addition, we introduce
randomness into the greedy search to cope with the ambiguity
in the process of merging regions, making the inference
more robust against noise. Extensive experiments on standard
benchmarks demonstrate the superiority of our approach over
state-of-the-art approaches. In addition, the effectiveness of
our method for real detection systems is also verified. In future
work, this proposed framework can be tightly combined with
category-specific object detection methods.
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