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Crowd counting is a fundamental computer vision task that draws increasing attention in recent years,
due to its wide applications in commercial activities and public securities. Despite much process has been
achieved by applying the resurgent neural networks in this task, critical challenges still lie in tremendous
variation of crowd scales, together with other issues like background clutters and occlusions, making the
crowd appearances hard to model. To address these challenges, we propose a scale-communicative
aggregation network (SCANet) for crowd counting. Our model is characterized by three aspects: (i) It con-
tains different streams of convolutional neural networks (CNNs), where each stream consumes an indi-
vidual scaled version of the input image and communicates complementarily to produce a high-
resolution density map. (ii) Each CNN stream obtains robust feature presentation via our proposed
multi-scale feature encoders (MSFEs) with dilated convolutional layers, and skip connections are adopted
to exploit multi-stage feature aggregation. (iii) A multi-scale structural similarity metric along with
Euclidean distance is introduced for optimizing the quality of generated density maps. Extensive exper-
iments and comparisons on several crowd counting benchmarks demonstrate the effectiveness of our
proposed method.

� 2020 Elsevier B.V. All rights reserved.
1. Introduction

Crowd counting has become an increasingly important problem
due to its wide applications in supporting daily economic and
social demands. For example, an accurate estimate of the crowd
is critical for public activities ranging from commercial statistics
to crowd control, abnormal event detection, and other security
tasks. Though counting the number of people in crowd images is
a straightforward problem, it still remains challenging due to large
variation of crowd scales and diversified crowd distributions.

As shown in Fig. 1, people vary from several pixels to a large
region in scales and from single person to several hundreds in
crowd densities. The current leading methods usually estimate
the crowd number via generating a crowd density map from the
scene image instead of directly regressing the total crowd number.
The generated crowd density map is then used for adding up to
obtain the crowd count in this task, and it can also be further
exploited for other related tasks like crowd behavior analysis.

Recently, crowd counting methods built on Convolutional Neu-
ral Network (CNN) backbones have achieved impressive perfor-
mance [1–5], due to the powerful representation learning ability
of the deep CNN models [6–11]. These methods generally handle
the scale variation problem by utilizing the multi-column architec-
tures to enhance feature learning, where the input is processed
with convolutional kernels of different sizes in each column so as
to extract features on different scales. However, they suffer from
certain issues. First, the large scale variation cannot be covered
by the limited number of columns and blindingly increasing the
column number will lead to massive parameter overload, which
easily fails on diversified scales feature leaning, as revealed by
[1]. Second, these networks usually generate low-resolution crowd
density map while learning increasingly abstract features. A low-
resolution density map is insufficient to tackle with tiny heads in
crowd scenes and estimate the accurate crowd count. Third, the
pixel-wise Euclidian loss between the predicted and ground-
truth density maps easily leads the trained model to generate a
criticized blurring density map. Therefore, they still have the prob-
lem of severe accuracy degradation when applied in challenging
crowd scenes with large scale variation or high congestion.

In order to alleviate the influence of these drawbacks aforemen-
tioned, we propose a novel neural network framework, termed as
Scale-Communicative Aggregation Network (SCANet), which
comprehensively integrates multi-scale features and obtains
high-resolution density maps for crowd counting. We introduce
an effective Multi-Scale Feature Encoder (MSFE) to extract
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Fig. 1. Example crowd scenes and their ground-truth density maps. There exist large variations of crowd scales in different scenes, and generating the corresponding crowd
density map remains challenging.
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multi-scale robust feature representation. Each MSFE consists of
multiple columns of stacked CNNs and exploits dilated convolu-
tional layers to enlarge receptive fields. With different dilation
rates, these columns have various receptive fields and can respec-
tively model the appearance of people on different scales. Then
more diversified scale features are aggregated through the serial
connection of MSFEs. We further propose a scale communication
architecture for consuming different scales of input image to
obtain high-resolution density map. Each scale stream processes
a different scaled version of input image and provides complemen-
tal information for each other. The whole network finally aggre-
gates multi-stage and multi-scale features into a high-resolution
representation, thereby generating a high-resolution density map
for accurate crowd counting. Moreover, we exploit a multi-scale
structural similarity loss to enforce our network to learn the local
correlation of multi-scale patches from the density maps,
which better capture the crowd density distribution than those
learned from solely pixel-wise single-scale consistency loss. Our
contributions can be summarized as follows:

� We propose a Scale-Communicative Aggregation Network (SCA-
Net) to deal with the variations of people scales in complex
scenes. We exploit stacked Multi-Scale Feature Encoders to
extract robust multi-scale features and introduce the scale com-
munication architecture between multi-scale inputs to generate
the high-resolution density map.
� We incorporate a novel training loss, named Multi-Scale Struc-
tural Similarity (MS-SSIM) loss, along with the Euclidean Dis-
tance loss to force the network to learn the local correlations
of patches on the density maps, which helps generate high-
quality density map and obtain accurate crowd count.
� Extensive experiments on several challenging benchmarks
show the remarkable performance of our proposed method in
comparison with other state-of-the-art methods.

2. Related work

In this section, we review the recent related works on crowd
counting in computer vision community. We categorize them into
detection based methods and regression based methods.

Crowd counting based on detection. It is straightforward to ana-
lyze the crowding counting problem as a head or person detection
problem as the main entities are persons in existing crowd count-
ing datasets. Early researchers [12] apply typical detection
schemes with sliding windows to first detect the persons in a sin-
gle image and count their number afterwards. Hand-crafted fea-
tures, such as Haar wavelets [13], HOG [14], or their
combinations are extracted from a human body or particular
human parts for detection. These methods usually hold the
assumption that the crowd consists of separate human entities,
which can be easily detected by trained human detectors. Such
detection based methods are limited by occlusions. Though partic-
ular body parts are detected to addresss this problem [15], they
still fail in dense crowds with complex clutter scenes.

Crowd counting based on regression. Due to the restriction of
detection based methods on crowd counting, the regression based
methods gain more attention and now have been the most exten-
sively used methods. In [16], researchers use Bayesian Poission
regression for crowd counting from low-level features. Following
that, multiple sources, such as head detections, texture elements
and Fourier analysis are used to regress crowd count in [17]. In
[18], Lempitsky et al. casted the problem as estimating the counts
of objects within an image region instead of a whole image. While
the mapping between image patches features and relative loca-
tions of objects in corresponding patches are learnt in [19] to gen-
erate the density map.

Utilizing deep learning in computer vision has advanced many
research problems, and the CNN-based crowd counting methods
are investigated and obtain remarkable progress. A classic Alexnet
style architecture in [20] is trained to regress crowd counts. In [21],
layered boosting and selective sampling are incorporated during
the learning process of the network. Shang et al. proposed an
end-to-end CNN architecture in [22], which takes a whole image
as input and directly regresses the counting results by taking
advantages of contextual information when predicting both local
and global counts. Boominathan et al. [23] proposed a dual-
column architecture. The VGG deep neural network in the architec-
ture is designated for sparse crowds while the shallow network to
capture the dense crowds. Zhang et al. [24] proposed a CNN for
crowd counting in different scenes. But this method is limited as
it requires perspective maps both on training and test scenes,
which is not available in practical applications. A multi-column
convolutional neural structure is proposed in [1]. The network is
layered with different receptive fields in different columns to
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capture different scale features, hence capture crowds at different
scales. Sam et al. [25] adopted the same multi-column architecture
and performed a different training procedure to boost multi-scale
feature learning. In [26], Shen et al. used a multi-scale U-net struc-
tured generation network to attenuate the blurry effect of generat-
ing the density map, while Li et al. proposed CSRNet [27] with
dilated convolutional layers to boost performance on crowd
counting.

3. Proposed framework

In this section, we first briefly present the formulation of the
crowd counting problem and then introduce our proposed frame-
work in detail.

3.1. Problem formulation

Given an input image I, the crowd counting task requires a
model F to predict the number Ccount of people that appear in the
image, which can be formulated as follows:

Ccount ¼ F Ið Þ: ð1Þ
It is observed in previous research that, instead of directly

regressing the number of people, density-based crowd counting
methods achieve much better performance [20,27–30]. This kind
of methods estimates the crowd density map DI of the input image
I, and then the predicted number of people is obtained by adding
up each pixel value of the density map. The formulation turns into:

Ccount ¼ Fs DIð Þ; DI ¼ Fd Ið Þ; ð2Þ
where Fs denotes the summation function, and Fd is the model
aimed at estimating the crowd density map. Then the essential
focus lies in how to build an appropriate model Fd.

3.2. Framework Overview

To address the crowd counting task, we propose a novel Scale-
Communicative Aggregation Network (SCANet) model for generat-
ing high-quality crowd density maps. The proposed SCANet frame-
work is illustrated in Fig. 2. Our framework is composed of two
convolutional neural networks (CNNs) streams, each of which con-
sists of several Multi-Scale Feature Encoders (MSFE) and learns
increasingly robust feature presentation. An MSFE is designed to
obtain richer feature representation and conserve scale diversities.
One stream of convolutional neural network takes the original
crowd scene image as input, while the other stream takes an
upsampled input. Communications between streams are
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Fig. 2. Illustration of the proposed framework. Our framework is composed of dual stream
while the bottom network takes an upsampled image. We build the inter-communicati
Skip connections are also conducted for utilizing multi-stage feature outputs in generat
conducted to serve as the complement in resolutions for the output
of the final high-resolution density map. Moreover, skip connec-
tions are utilized to exploit multi-stage feature aggregation and
facilitate better gradient back-propagation, which concatenate
and fuse multi-stage feature outputs from MSFEs in the final gen-
eration of crowd density map.
3.3. Feature aggregation with multi-scale feature encoder

Inside each stream of convolutional neural network architec-
ture, we propose a unified neural network module, named Multi-
Scale Feature Encoder (MSFE), to tackle with scale variation of
crowds in scenes. We develop our MSFE with multiple columns
of CNNs as previous work [1]. Each column in MSFE is designed
to handle the scale variation of crowds. In previous work [1], the
multi-column CNNs are stacked with normal convolutional layers
and use different kernel sizes and channels in each column. Differ-
ently, We adopt dilated convolution layers with various dilation
rates in our proposed MSFE to enlarge the receptive fields during
feature extraction. Dilated convolutional layers [31] serve as a
good alternative of pooling layer, which use sparse kernels to
enlarge receptive fields and extract deeper features without losing
spatial resolutions or increasing parameters. A demonstration of
dilated convolutions is shown in Fig. 3. In dilated convolution, a
small-size kernel with k� k filter can be enlarged to
kþ k� 1ð Þ r � 1ð Þ with a dilation rate r. When the dilation rate is
set to 1, the dilated convolution is equal to a normal convolutional
layer. Thus the dilated convolutional layers allow flexible aggrega-
tion of the multi-scale contextual information and keeps the same
resolution as well. As shown in Fig. 3, a larger dilated ration in bð Þ
and cð Þ deliver a 5� 5 and 7� 7 receptive fields respectively com-
paring to a normal convolution layer with a filter kernel size of
3� 3 (the dilation rate is set to 1) in að Þ.

The detail of our proposed MSFE is illustrated in Fig. 4. Similar
to MCNN [1], a good example of our MSFE consists of three rows
of stacked CNNs, each of which has four dilated convolutional lay-
ers. In the first row, the dilation rates of the dilated convolutional
layers are set to 1, which is the same as normal convolutions. The
second and especially the third rows adopt higher dilation rates in
the dilated convolutional layers to enlarge the receptive fields and
extract features. The dilated convolutional layers at the same col-
umn have the same kernel size and channel number, and share
parameters. A ReLU layer is followed after each dilated convolu-
tional layer. Finally, we integrate the output features from three
rows with an element-wise maximization operation as the scale
robust representations.
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s of convolutional networks. The top network takes the original image as the input
ons among MSFEs from different networks to maintain the high-resolution output.
ion of the final density map.
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Fig. 3. Dilated convolutions with a kernel size of 3� 3. (a) indicates that dilated
convolution is the same as a normal convolutional layer when the dilation rate is set
to 1. (b) and (c) have larger receptive fields respectively with the dilation rates
setting to 2 and 3.

Fig. 4. Illustration of the proposed Multi-Scale Feature Encoder. This MSFE example
is developed with 3 rows of stacked dilated convolutional networks, each of which
has 4 dilated convolutional layers. (k; c; r) denotes kernel size, channels and dilation
rates respectively. For the better capture of rich representations, the k; c and r will
be set to different values at different rows. A ReLU layer is followed after each
dilated convolutional layer. The output is integrated by an element-wise maxi-
mization operation.
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3.4. Communicative CNN streaming networks for multi-scale inputs

The existing methods utilize the convolutional neural networks
with multiple pooling layers to generate the density maps in low
resolution. Although pooling layers are typically used for maintain-
ing invariance and avoiding overfitting, they also reduce the spatial
resolution thus are unable to localize the tiny heads. In our pro-
posed methods, we conduct multi-scale stream fusions to obtain
high-resolution representations to handle this issue. Specifically,
we build our model upon two streaming CNNs. The top CNN
stream takes the original image as the input to extract the feature
and generate a coarse density map, which roughly localizes the
crowd regions. The bottom CNN stream takes the image with
two times upsampled size, and generate the final high-resolution
density map with communication between the two CNN streams.

Our proposed framework architecture is composed of dual
streams of convolutional neural networks, each of which consumes
an individual scaled version of the input image. Both the top and
bottom networks share a same front-end Fully Convolutional Net-
work (FCN) and consist of three stacked Multi-Scale Feature Enco-
der (MSFE). The FCN is taken from the first ten layers of VGG16
[32] with three pooling layers. Given an image I of size H �W ,
where H and W are the height and width of the image respectively,
we feed the original image to the top network (scale 1) and upsam-
pled image with 2H and 2W to the bottom network (scale 2). Thus
the output size of the top network is H

s � W
s and the bottom network
is 2H
s � 2W

s after the feature extraction in FCN, where s refers to the
scale ratio depending on the pooling layers in FCN. The feature gen-

erated by the i-th MSFE of the top network is denoted as f i1 and that

of the bottom network as f i2. After the i-th MSFE in both networks,
we conduct the a feature fusion by adding the feature outputs
together from the both networks to communicate the complemen-

tal representation [33]. Specifically, f i1 is upsampled as the same

size as f i2, while f i2 is downsampled via a convolutional layer with
a stride of 2. By adding the features respectively, we have,

f i01 ¼ f i1 � ds f i2
� �

ð3Þ

f i02 ¼ f i2 � us f i1
� �

ð4Þ

where � is the element-wise add operation, ds is the downsample
operation via convolution and us is a bilinear upsample operation.

f i01 and f i02 are fed to the subsequent MSFE afterwards. We conduct
a repeated feature fusion operation each time the networks pass
an MSFE. The top network repeatedly received the complement fea-
ture information from the bottom network and vice versa. The com-
municative feature fusion operation is shown in Fig. 5.

Similar as Deeply-supervised nets proposed in [34], we regress
a density map mi via a convolutional layer with kernel size 3� 3
each time when the network passes an MSFE and use it for later
multi-stage feature fusion, which is called skip connections. By
associating the local outputs to the final output, it serves as a fea-
ture regularization and helps accelerate the convergence with the
deep supervision on side response. On the top network, we obtain

a coarse density map m1 2 R
H
s�W

s by feeding the concatenation of
m1

1;m
2
1; . . . ;m

K
1 into a weighted-fusion convolutional layer with

kernel size 3� 3, where K corresponds to the number of MSFEs
in the network setting. We believe that the density mapm1 roughly
localizes the crowd region, but it is not good enough to estimate
the accurate number of people in the image due to its low-
resolution representation. Therefore, we utilize the bottom net-
work to generate a fine density map. Similar to the top network,
the bottom network also outputs a side density map mi

2 each time
when the network passes an MSFE. m1 is upsampled to the same
size of mi

2. Thus m1
2;m

2
2; . . . ;m

K
2 and the upsampled density map

m1 are concatenated to generate the final density map

m2 2 R
2H
s �2W

s via a 3� 3 convolutional layer. m2 exhibits more accu-
rate spatial locations of the crowds and deals with the tiny heads.
The whole network can be trained in an end-to-end manner.

3.5. Multi-scale structural similarity in local correlation learning

Most of the existing methods infer their models with the pixel-
wise Euclidean distance, which leads to blurring density maps and
inaccurate crowd count results. In [35], Cao et al. utilized a combi-
nation of Euclidean distance and single-scale structural similarity
loss to train the network, but their estimated density maps are still
far from satisfactory. In our framework, we propose a Multi-Scale
Structural Similarity (MS-SSIM) loss to enforce our model to learn
the local correlation of multi-scale patches on the density maps.
We will first describe the single scale SSIM loss, and our MS-
SSIM is modified based on single scale SSIM but is more effective
to measure the similarity between generated density map and
the ground-truth density map.

3.5.1. Euclidean distance measure
Euclidean distance usually serves as the simple yet insufficient

measurement of difference between generated map and ground-
truth density map. The loss is defined as follows:
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L Hð Þ ¼ 1
2N

XN
i¼1
jjXi � Yijj22 ð5Þ

where N is the batch size during training, Xi is the predicted density
map of the i-th image and Yi denotes the corresponding ground-
truth density map.

3.5.2. Single-scale SSIM
SSIM computes the similarity between two images from three

local statistics as a common evaluation metric in image quality
assessment, i.e. mean, variance and covariance. Following the set-
ting in [36], a 5� 5 normalized Gaussian kernel with a standard
deviation of 1.5 is used to measure these three local statistics.
The estimation can be easily implemented with a dilated convolu-
tional layer. For each location p ¼ i; jð Þ on predicted map X, its local
mean lX pð Þ, variance r2

X pð Þ and covariance r2
XY pð Þ can be computed

as:

lX pð Þ ¼
X2
Di¼�2

X2
Dj¼�2

W Di;Djð Þ � X pþ Di;Djð Þ � rf g;

r2
X pð Þ ¼

X2
Di¼�2

X2
Dj¼�2

W Di;Djð Þ � X pþ Di;Djð Þ � rf g � lX pð Þ� �2
;

r2
XY pð Þ ¼

X2
Di¼�2

X2
Dj¼�2

W Di;Djð Þ � X pþ Di;Djð Þ � rf g � lX pð Þ� �

� Y pþ Di;Djð Þ � rf g � lY pð Þ� �

ð6Þ

where Di;Djð Þ is the offset from the center and W denotes the
parameters of the normalized Gaussian kernel. r is the dilation rate
used to control the receptive field region. The mean lY pð Þ and vari-
ance r2

Y pð Þ of the GT map Y is also calculated with the same formu-
lation above. Thus, we can compute the luminance comparison L,
contrast comparison C and structure comparison S between the pre-
dicted map X and the GT map Y as follows:

L X;Yð Þ ¼ 2lXlY þ c1
l2

X þ l2
Y þ c1

;C X;Yð Þ ¼ 2rxrY þ c2
r2

Xr2
Y þ c2

;

S X;Yð Þ ¼ rXY þ c3
rXrY þ c3

ð7Þ

where c1; c2 and c3 are small constants. The SSIM loss is defined as:

LSSIM ¼ 1� L X;Yð Þ � C X;Yð Þ � S X;Yð Þ ð8Þ
3.5.3. Multi-Scale SSIM
For better capturing the crowd distribution than those solely

pixel-wise or single scale consistency loss, we argue that density
map should be estimated with its corresponding groundtruth in
multi-scale local correlation. We build a CNN with M dilated con-
volutional layers, whose parameters are set to the fixed Gaussian
kernel W as described earlier. Specifically, M is set to 5 in our pro-
posed framework and the dilation rates are set to 1, 2, 3, 4, and 9
respectively. Different dilation rates in dilated convolutional layers
are designed to calculate the SSIM of larger regions, which mea-
sures the local correlations comparisons on different scales. We
calculate the contrast and structure difference after each dilated
convolutional layer. The luminance difference is computed only
once at the last layer as in [37]. The MS-SSIM loss LMS-SSIM is defined
as follows:

LMS-SSIM ¼ 1� LM�1 XM�1;YM�1ð ÞaM�1� � �YM�1
j¼0

Cj Xj; Yj
� 	bjh i

� Sj Xj;Yj
� 	cjh i

ð9Þ
where aj;bj and cj are used to adjust the relative importance of dif-
ferent comparisons and they are set as the same values in [37]. In
our framework, both the top and bottom streams of CNNs are opti-
mized with the MS-SSIM loss. The MS-SSIM loss operation is illus-
trated in Fig. 6.

3.5.4. Loss function
By integrating our proposed MS-SSIM loss and Euclidean dis-

tance loss, we have,

Loss ¼ / � LMS�SSIM þu � LEuclidean ð10Þ

where / and u are used to adjust the importance of MS-SSIM loss
and Euclidean loss respectively.

Algorithm 1 shows the training procedure of our proposed
method, which is implemented in an end-to-end manner.

Algorithm 1: Training procedure of the proposed SCANet
model

Input: original input images Iif gni¼1; groundtruth head
annotations Aif gni¼1

Output: the SCANet model Fd
1: generate density map groundtruths Gif gni¼1 from Aif gni¼1;
2: initialize network weights W;
3: repeat
4: upsample the images Iif gni¼1 to obtain 2� upsampled

images bIi
n on

i¼1
;

5: feed the input and upsampled images to the network
model;

6: extract features of images through network streams
while conducting communications between streams as in
Eq. (3) and (4);

7: predict density maps Oif gni¼1;
8: compute the loss L between density maps Oif gni¼1 and

groundtruths Gif gni¼1 as in Eq. (10);
9: compute gradients rL;
10: update network weights W  W 0;
11: until program reaches maximum epochs;
4. Experiments

In this section, we first present our implementation details and
experimental settings. Following, we report the experiment results
of our proposed methods comparing with other state-of-the-art
methods and evaluate the effectiveness of each component in
our proposed framework.

4.1. Implementation details

4.1.1. Network implementations
Our proposed Scale-Communicative Aggregation Network is

implemented with Pytorch toolbox. The Feature Convolutional
Network (FCN) is taken from the first 10 layers of VGG model
[32] with 3 pooling layers, and initialized with the pretrained
model on ImageNet. The learning rate in our method is set to
1� 10�5. The filter wights in other convolutional layers are ran-
domly initialized by Gaussian distributions with zero mean and
standard deviation of 0.01. 16 crops of size 224� 224 are sampled
from the original image at each iteration. We train our model with
an end-to-end manner for around 1000 epochs with Adam
optimizer.



Fig. 5. Communicative feature fusion operation between two networks. The feature
output from the previous MSFE is upsampled or downsampled to the same size of
the other network and fused by an element-wise add operations.
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4.1.2. Groudtruth generation
The groudtruth crowd density maps are generated with

geometry-adaptive kernels as proposed in previous work [1]. Give
the head annotations of a scene image, the distances to its n near-
est neighbors are denoted as d1; d2; . . . ; dnf g. We label this head via

a normalized Gaussian kernel with spread r ¼ s � 1N
PN

i¼1di, where N
is set to 3 and s is set to 0.3. The radius of the Gaussian kernel is
6r� 6r.
4.2. Evaluation criterion

The accuracy of the crowd counting estimation is usually eval-
uated via the Mean Absolute Error (MAE) and Mean Squared Error
(MSE). The MAE and MSE are defined as follows,

MAE ¼ 1
N

XN
i¼1
jĈi � Cij ð11Þ
MSE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
N

XN
i¼1
jĈi � Cij2

vuut ð12Þ

where N denotes the number of testing samples, Ĉi is the predicted
crowd count number as the sum of all pixel values on the generated
density map. While Ci is the ground-truth crowd count number.
4.3. Evaluation benchmarks

We evaluate and compare our proposed method on three public
crowd counting benchmarks, i.e., ShanghaiTech dataset [1],
UCF_CC_50 [17] and UCF-QNRF [38].
Fig. 6. Multi-Scale Structural Similarity loss. The contrast and structure comparisons ar
computed at the last later.
4.3.1. ShanghaiTech dataset
ShanghaiTech dataset [1] is one of the largest datasets in terms

of the number of annotated people scales. The dataset consists of
two parts: Part_A and Part_B. There are 1198 annotated images
with a total of 330,165 crowd number. Part_A contains 482 images
and 300 of them are used for training and the remaining 182
images for testing. While Part_B has 716 images taken from the
streets of Shanghai metropolitan areas. The training set of Part_B
has 400 images, and the testing set has 316 images. The average
crowd annotations in Part_A and Part_B are about 500 and 120
respectively.

4.3.2. UCF-QNRF dataset
UCF-QNRF [38] is one of the most challenging datasets due to its

diversified viewpoints, densities and various crowd scales. There
are 1,535 images with 1,251,642 annotations in UCF-QNRF data-
sets. The training set and testing set are split as 1201 and 334
images respectively. In this dataset, the minimum and maximum
crowd counts are 49 and 12,865, while the median and mean
crowd counts are 425 and 815, respectively.

4.3.3. UCF_CC_50 dataset
The UCF_CC_50 dataset [17] only has 50 crowd images collected

from the Internet. The crowd numbers of the dataset vary from 94
to 4543 with an average of 1280 persons. The limited number of
images and the large range in crowd counts among images make
this dataset also a challenging one.

4.4. Comparison results

We report our results on these benchmarks in Table 1, com-
pared with 12 existing leading methods, including MCNN [1],
CMTL [39], Switch-CNN [25], CP-CNN [2], PCCNet [40], CSRNet
[27], SANet [35], SCAR [5], SFCN [41], ADCrowdNet [28], HA-CCN
[42] and TEDnet [43]. In ShanghaiTech part_A, we obtain the low-
est MAE and MSE among the compared methods. Especially, we
achieve 2.5 and 1.2 lower in MAE and MSE than those of the exist-
ing best method HA-CCN [42]. Notice that some methods achieve
low MAE results while the MSE results are relatively higher, such
as TEDnet [43], while our proposed method can obtain low errors
in both MAE and MSE. In ShanghaiTech Part_B, our proposed
results are comparable and close to the best existing method in
MAE while the MSE report is the lowest. Our outstanding results
on ShanghaiTech dataset indicates that the proposed method is
robust and effective in both congested scenes (ShanghaiTech
part_A) and sparse scenes (ShanghaiTech part_B). Likewise, on
the UCF_CC_50 dataset, our proposed method reports 248.7 and
334.5 in MAE and MSE, respectively. The results are better than
e calculated after each dilated convolution, and the luminance comparison is only



Table 1
Evaluation results on three standard benchmarks.

Methods ShanghaiTech Part_A ShanghaiTech Part_B UCF_CC_50 UCF_QNRF

MAE MSE MAE MSE MAE MSE MAE MSE

MCMM [1] 110.2 173.2 26.4 41.3 377.6 509.1 277 426
CMTL [39] 101.3 152.4 20.0 31.1 322.8 397.9 252 426
Switch-CNN [25] 90.4 135.0 21.6 33.4 318.1 439.2 228 445
CP-CNN [2] 73.6 106.4 20.1 30.1 298.8 320.9 – –
PCCNet [40] 73.5 124.0 11.0 19.0 240.0 315.5 148.7 247.3
CSRNet [27] 68.2 115.0 10.6 16.0 266.1 397.9 – –
SANet [35] 67.0 104.5 8.4 13.6 258.4 334.9 – –
SCAR [5] 66.3 114.1 9.5 15.2 259.0 374.0 – –
SFCN [41] 64.8 107.5 7.6 13.0 214.2 318.2 102.0 171.4
ADCrowdNet [28] 63.2 98.9 7.7 12.9 257.1 363.5 – –
HA-CCN [42] 62.9 94.9 8.1 13.4 256.2 348.4 118.1 180.4
TEDnet [43] 64.2 109.1 8.2 12.8 249.4 354.5 113 188
Ours 60.4 93.7 8.5 12.5 248.7 334.5 104.3 179.8
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those of other compared methods. For the UCF_QNRF dataset, we
rank top two of the lowest MAE and MSE metrics comparing with
state-of-the-art methods. We report very close results in both MAE
and MSE to the best-performing method SFCN [41]. One reason
that our proposed method performs slightly worse than SFCN is
that we resize the input images from UCF_QNRF in preprocessing,
which may lose some important information in the original input
images. Example results of generated density maps are shown in
Fig. 7. It can be observed that in both sparse and congested crowd
scenes, our method managed to narrow the gap between crowd
count prediction and ground-truth by generating good high-
resolution density maps. To summarize, our proposed method
effectively handles various scales of crowds in crowd counting
and achieves comparable, even the best performance to the
state-of-the-art methods.
4.5. Ablation study

In this section, we report our ablation study results on Shang-
haiTech Part_A dataset to evaluate the contribution of each compo-
nent in our proposed framework for crowd counting.
Fig. 7. From the left to right are the original input images, groundtruth density maps a
density maps and predict a close crowd count to the groundtruth count both in sparse
4.5.1. Multi-scale feature encoders
We evaluate the crowd estimate results by comparing the net-

works with and without our proposed Multi-Scale Feature Enco-
ders. Three network variants are evaluated in our ablation
studies, i.e., our framework leaving out all the MSFEs, with one-
row MSFEs, and three-row MSFEs. As shown in Table 2, the perfor-
mance of leaving out the MSFEs, which directly regresses the fea-
ture outputs from FCN, performs poorest among the three
network variants. And the MSFE with one-row network performs
poorer than the three-row MSFEs. Our proposed framework with
three-row MSFEs reaches the highest performance, indicating that
enlarging the receptive fields and integrating rich multi-scale fea-
ture representations serve as an effective manner in crowd
counting.

We also conduct experiments to show how the number of
MSFEs affects the final performance of our proposed framework.
Table 3 reports experiment results. From Table 3, we can see that
our method employing three MSFEs in the network structure out-
performs that of using two or four MSFEs. Fewer MSFEs are not
able to generate rich features for accurate crowd estimate while
blindly adding MSFEs in the network might cause loss to feature
nd our generated density maps. Our proposed methods can generate high quality
and dense crowd scenes. Zoom in for better observations.



Table 2
Estimated predictions with different configurations of MSFE or without MSFE.

Configurations of MSFEs MAE MSE

W/O MSFE 66.2 107.0
W/ One-Row MSFE 64.5 100.1
W/ Three-Row MSFE 60.4 93.7

Table 4
The influences of different fusion techniques to the output of the layers in MSFEs.

Fusion Strategy in MSFEs MAE MSE

Concatenation 65.1 98.7
1� 1 Convolution 63.3 97.6
Element-wise maximization 60.4 93.7

Table 5
Evaluation results with and without inter-communications between CNN streams

Networks MAE MSE

W/O Inter-Communications 62.5 98.3
W/ Inter-Communications 60.4 93.7

Table 6
The impact of density map resolution on final crowd count estimation.

Resolutions of density maps MAE MSE

low-resolution (coarse) 61.8 94.4
high-resolution (fine) 60.4 93.7
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representation of the original image details with much heavier
computational cost.

Apart from the influences of the structure and number of our
proposed MSFEs, we explore the fusion strategy of the output from
the last layers of MSFEs. We conduct comparison experiments on
three types of strategies, i.e., element-wise maximization, which
is adopted in our method, concatenation and 1� 1 convolution.
Table 4 shows the comparison results. From Table 4, we see that
element-wise maximization outperforms other fusion strategies
in our proposed method. The reason may be that concatenation
takes all information from the output without selection, which
makes the feature more obscure. 1� 1 convolution works better
yet still causes information smoothing to the features, while
element-wise maximization preserves the highlight in the features,
providing critical and discriminative features for generating the
final density maps.

4.5.2. Inter-communications between local outputs
We also conduct the experiments with and without the inter-

communications between local outputs. The inter-
communication plays as a complement role for both low and high
resolution representations. The results are shown in Table 5. By
building the inter-communications between local outputs, the final
generated density map can better captures detailed information
and result in a more accurate crowd count prediction.

4.5.3. The resolution of the output density maps
The output density map is used to add up for the final crowd

count. We conduct experiments to show how the resolution of
the density maps affects the performance in crowd counting sce-
narios. We first utilize one stream of our proposed network for
the generation of low-resolution density maps. Then we utilize
the full network structure of our proposed method for generation
of high-resolution density maps to see the performance improve-
ment on account of the complementary information from two
times upsampled images. Table 6 shows our experiment results.
From Table 6, we can see that fine high-resolution density maps
obtain more accurate crowd count than coarse low-resolution den-
sity maps. However, blindly upsampling input images more to
obtain higher resolution of density maps is not practical. First, it
will incur much more uncertainties that can mislead the model.
For example, upsampling the original image by 4 times will need
to generate 15 times more pixels than the original image and
may provide little information gain along with great uncertainty.
Second, the computational expense increases rapidly. When our
SCANet model takes the 2� upsampled image, it requires about
8 GB GPU memory and can be handled with a GeForce GTX
1080TI GPU that has about 11 GB memory. With a 4� upsampled
Table 3
Estimated predictions with different numbers of MSFEs.

Numbers of MSFEs MAE MSE

0 MSFE 66.2 107.0
1 MSFE 64.6 99.6
2 MSFEs 64.0 103.1
3 MSFEs 60.4 93.7
4 MSFEs 63.5 97.8
image, the GPU memory requirement is more than 27 GB. There-
fore, a 2� upsampled image is more practical.
4.5.4. Multi-Scale Structural Similarity loss measurement
In the criteria loss part, we compare our proposed loss with the

Euclidean criterion only, SSIM only, and their combinations. We
also compare networks trained under only MS-SSIM without Eucli-
dean loss. The results in Table 7 show that a combination of our
proposed MS-SSIM and Euclidean loss reaches the best perfor-
mance as it also learns the local correlations of patches in gener-
ated density maps.

In Fig. 8, we show some density map comparison results of the
proposed framework with different network architectures on
ShanghaiTech part_A. As can be seen in Fig. 8, the first two columns
are the input images and their corresponding groudtruth density
maps. The third column refers to the proposed framework with
one-row MSFE, while the forth column refers to three-row MSFE.
And the last column is the results with inter communications
between dual networks in our proposed framework. The results
demonstrate that three-row MSFE outperforms one-row MSFE
and obtain richer feature representations, and the inter-
communications between dual networks in the proposed frame-
work generates high resolution density maps and closer crowd
counts to the groundtruths.
4.5.5. Feature extraction backbone networks
We also evaluate different feature extraction backbone net-

works to obtain the FCN feature outputs for the proposed frame-
work. As shown in Table 8, we tried ResNet 34, ResNet 50,
ResNet 101 and VGG 16. The results show that the VGG 16 outper-
forms other feature extraction backbone networks.
Table 7
Evaluation results under different similarity measurements

Scales Criterion MAE MSE

Single Euclidean Distance 68.9 112.7
SSIM 79.8 140.3
SSIM + Eucli Dis 68.3 109.8

Multi MSSSIM 61.8 96.6
MSSSIM + Eucli Dis 60.4 93.7



Table 8
Evaluation results with different backbone networks in our proposed framework

Backbone MAE MSE

ResNet-34 69.5 106.0
ResNet-50 66.6 102.0
ResNet-101 65.6 101.2
VGG-16 60.4 93.7

Fig. 8. From the left to right are the original input images from ShanghaiTech part_A, groundtruth density maps and three density maps generated by our proposed
framework with different architectures, with one-row proposed MSFE, with three-row MSFE and with inter-communications. As we can see, the density maps are of higher
resolutions and the corresponding crowd counts get closer to the groundtruths, which proves that our proposed modules in our framework are effective in solving the crowd
counting problem.
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5. Conclusion

In this paper, we proposed a Scale-Communicative Aggregation
network for crowd counting. We develop a Multi-Scale Feature
Encoder utilizing dilated convolutional layers with multiple dila-
tion rate to extract richer feature representations.Inter-communica
tions between local outputs from dual networks are conducted to
maintain the high-resolution representations. We also integrate
the Multi-Scale Structural Similarity loss with Euclidean loss to
measure the difference between generated density maps and their
corresponding groundtruths. Experiments on several standard
benchmarks show that our proposed method reach comparable
results with other state-of-the-art methods in crowd counting.
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