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Abstract—Facial landmark localization plays a critical role
in face recognition and analysis. In this paper, we propose a
novel cascaded Backbone-Branches Fully Convolutional Neural
Network (BB-FCN) for rapidly and accurately localizing facial
landmarks in unconstrained and cluttered settings. Our proposed
BB-FCN generates facial landmark response maps directly from
raw images without any pre-processing. It follows a coarse-to-
fine cascaded pipeline, which consists of a backbone network
for roughly detecting the locations of all facial landmarks and
one branch network for each type of detected landmarks for
further refining their locations. Extensive experimental evalua-
tions demonstrate that our proposed BB-FCN can significantly
outperform the state of the art under both constrained (i.e. within
detected facial regions only) and unconstrained settings.

Index Terms—facial landmark, backbone-branches, uncon-
strained settings

I. INTRODUCTION

FAcial landmark localization aims at automatically predict-
ing key point positions in facial image regions. It is an

essential component in many face-related applications, such
as face verification [1] and face recognition [2], [3]. Though
tremendous effort has been made on this topic, its performance
is still far from being perfect, especially on facial regions with
severe occlusion or extreme head poses.

Most of existing approaches for facial landmark localization
have been developed for a controlled setting, e.g., the facial
regions are detected in a pre-processing step. This setting has
drawbacks when we deal with images taken in the Wild (e.g.,
cluttered surveillance scenes), where automated face detection
is not always reliable. The objective of this work is to propose
an effective and efficient facial landmark localization method
that is capable of handling images, taken in unconstrained
settings, with multiple faces, extreme head poses and occlu-
sion (see Figure 1). More specifically, we keep in mind the
following issues when developing our algorithm.
• Faces may have large appearance and structure variations

in an unconstrained setting due to diverse viewing con-
ditions, rich facial expressions and large pose changes.
Therefore, traditional global models may not work well
as the usual assumptions (e.g., certain spatial layouts)
may not hold in such an environment.

*Corresponding author is Guanbin Li.

Fig. 1. Facial landmark localization in unconstrained settings. (a) Two
cluttered images with an unknown number of faces. (b) Dense response maps
generated by our method.

• The search space of facial landmarks is quite large under
the circumstance that the number and the size-scale of
person faces are both unknown. Thus it is quite infeasible
and inefficient to handle our task by existing models with
exhaustive image pyramid sliding-window searching.

In this paper, we formulate facial landmark localization as a
pixel labeling problem and devise a fully convolutional neural
network to overcome the aforementioned issues. It produces
facial landmark response maps directly from raw images with-
out relying on any pre-processing or feature engineering. Two
typical landmark response maps generated with our method
are shown in Figure 1.

With recent advances in deep learning techniques, deep
convolutional neural network models have demonstrated sig-
nificant progress in various tasks [4]–[8]. More recently, Long
et al. [9] proposed a fully convolutional network (FCN) for
pixel labeling, which takes an input image with an arbitrary
size and produces a dense label map in the same resolution.
It shows convincing results for semantic image segmentation,
and is also very efficient since convolutions are shared among
overlapping image patches. Notably, classification and local-
ization can be simultaneously achieved with a dense label map.
The success of this work inspires us to adopt a FCN in our
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task, i.e., pixelwise facial landmark prediction. Nevertheless, a
specialized architecture is required as our task demands more
accurate prediction than generic image labeling.

Considering both computational efficiency and localization
accuracy, we pose facial landmark localization as a cascaded
filtering process. In particular, the locations of facial land-
marks are first roughly detected in a global context, and
then refined by observing local regions. To this end, we
introduce a novel architecture of fully convolutional neural
networks that naturally follows this coarse-to-fine pipeline.
Specifically, our architecture contains one backbone network
and several branches each corresponding to one landmark
type. For computational efficiency, the backbone network is
designed to be a fully convolutional network which takes a
whole low-resolution image as its input and rapidly generates
an initial multi-channel heat map with each channel predicting
the locations of a specific landmark. Given the initial heat map,
we obtain landmark proposals as local maxima within each
channel. We crop a region centered at every landmark proposal
from both the original input image and the corresponding
channel of the response map, and these cropped regions are
stacked together and fed to a branch network for a fine and
accurate localization. As fully connected layers are not used
in either networks, we call our architecture as the cascaded
Backbone-Branches Fully Convolutional Network (BB-FCN).
Thanks to the specially designed architecture of the backbone
network which can reject most background regions and retain
high-quality landmark proposals, our BB-FCN is also capable
of accurately localizing facial landmarks in unconstrained
settings in real time.

In summary, our contributions in this paper can be summa-
rized as follows:
• We propose a new BB-FCN architecture for facial land-

mark localization, which consists of a backbone network
for rough landmark prediction and a set of branch net-
works each for refining the predictions of one specific
type of landmarks.

• We extensively evaluate BB-FCN on several standard
benchmarks (e.g., AFW [10], AFLW [11]), and our exper-
iments show that BB-FCN achieves superior performance
in comparison to other state-of-the-art methods under
both the constrained (i.e., with face detections) and the
unconstrained settings.

II. RELATED WORK

Facial landmark localization has long been attempted in
computer vision. And a large number of approaches have been
proposed, which can be divided into two categories, template
fitting methods and regression based methods.

Template fitting methods build face templates to fit input
face appearance [12]–[15]. A representative work is the active
appearance model (AAM) [16], which attempts to estimate
model parameters through minimizing the residual between
the holistic appearance and an appearance model. Instead of
holistic representations, a constrained local model (CLM) [17]
learns an independent local detector for each facial keypoint,

and a shape model for capturing valid facial deformations.
Improved versions of CLM [18] primarily differ from each
other in terms of local detectors. These methods are usually
superior to the holistic methods due to the robustness of patch
detectors against illumination variations and occlusion.

Regression based facial landmark localization methods can
be further divided into direct mapping techniques and cascaded
regression models. The former directly maps local or global
facial appearances to landmark locations. For example, Dan-
tone et al. [19] estimated the absolute coordinates of facial
landmarks directly from an ensemble of conditional regres-
sion trees trained on facial appearances. Cascaded regression
models [20]–[24] formulate shape estimation as a regression
problem and make predictions in a cascaded manner. They
typically start from an initial face shape and iteratively refine
the shape according to learned regressors, which map local
appearance features to incremental shape adjustments, until
convergence. All these methods assume that an initial shape
is given in some form, e.g., a mean shape [21]. However, this
assumption is too strict and may lead to poor performance on
faces with large pose variations.

Recently, convolutional neural networks also have been suc-
cessfully applied to facial landmark estimation [25]. Zhou et
al. [26] proposed a four-level cascaded regression model based
on CNNs, which sequentially predict landmark coordinates.
Zhang et al. [27] proposed a new coarse-to-fine DAE pipeline
to progressively refine facial landmark locations. RNN-based
models [28]–[30] formulate facial landmarks detection as a
sequential refine process in an end-to-end manner. 3D face
models [31]–[33] are also utilized to improve the facial
landmarks detection. Though these methods have achieved
remarkable performance, all of them were developed for a
controlled setting, which requires an image region bounding
a detected frontal face as the input. These methods basical-
ly pose landmark estimation as a parameterized regression
process, e.g., mapping landmark coordinates, which actually
restrict the flexibility in practice due to the fixed form of
the parameterization. Such trained models struggle in uncon-
strained settings (e.g., the unknown number of faces in an
image). In contrast, our approach produces pixel-wise response
maps, making it very flexible in localizing facial landmarks in
the Wild as well as integrating with other methods.

III. THE CASCADED BB-FCN ARCHITECTURE

Given an unconstrained image I with an unknown number
of faces, our facial landmark localization method aims at locat-
ing all facial landmarks in this image. We use Lk

i = (xki , y
k
i ) to

denote the location of the ith landmark of type k in the image
I , where xki , yki represent the coordinates of this landmark.
Then our task is to obtain the complete set of landmarks in I ,

Det(I) = {(xki , yki )}i,k, (1)

where k = 1, 2, ...,K. When describing our method and
analyzing the proposed network, we set K = 5 as an example,
but our method is also applicable to any other values of K.
Here, the five landmark types are respectively the left eye
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Fig. 2. The main architecture of the proposed Backbone-Branches Fully Convolutional Neural Network. It is capable of producing pixel-wise facial landmark
response maps in a progressive way. The backbone network first generates low resolution response maps identifying rough landmark locations via a fully
convolutional network. The branch networks then produce fine response maps over local regions for more accurate landmark localization. There are K (e.g.K =
5) branches, each of which corresponds to one type of facial landmarks and refines the related response map. Only down-sampling, up-sampling, and prediction
layers are shown and intermediate convolutional layers are omitted in the network branches.

(LE), right eye (RE), nose (N), left mouth corner (LM) and
right mouth corner (RM).

Unlike existing approaches that predict landmark locations
by coordinate regression, we exploit fully convolutional neural
networks (FCN) to directly produce response maps which
indicate the probability of landmark existence at every image
location. In our method, the predicted value at each location
of the response map can be viewed as a series of filtering
operations applied to a specific region of the input image.
This specific region is called the receptive field. An ideal
series of filters should have the following property: a receptive
field with a landmark of a specific type located at its center
should return a strong response value while receptive fields
without that type of landmarks in the center should yield weak
responses. Let FWk(P ) denote the result of applying a series
of filtering functions with parameter setting Wk for type-k
landmarks to receptive field P , and it is defined as follows:

FWk(P ) =

{
1 if P has a type-k landmark in the center;
0 otherwise.

(2)
Applying this function in a sliding window manner to w × h
overlapping receptive fields in an input image I generates a
response map FWk ∗ I of size w×h, whose value at location
(x, y) can thus be defined as

(FWk ∗ I)(x, y) = FWk(I(P (x, y))), (3)

where I(P (x, y)) denotes the image patch corresponding to
the receptive field of location (x,y) in the output response map.
If the response value is larger than a threshold θ, a landmark
of type k is detected at the center of the patch in image I .

According to Equation (3), there is a trade-off between
localization accuracy and computational cost. In order to
achieve high accuracy, we need to compute response values for
significantly overlapping receptive fields. However, in order to
speed up the detection process, we should generate a coarser
response map on less overlapping receptive fields or from a
lower resolution image. This motivates us to develop a cascad-
ed coarse-to-fine process to localize landmarks progressively,
in a spirit similar to the hierarchical deep networks in [34] for
image classification. More specifically, our network consists of
two components. The first component generates a coarse re-
sponse map from a relatively low resolution input, identifying
rough landmark locations. Then the other component takes
local patches centered at every estimated landmark location
and applies another filtering process to the local patches to
obtain a fine response map for accurate landmark localization.

In this paper, this two-component architecture is implement-
ed as a backbone-branches fully convolutional neural network,
where the backbone network generates coarse response maps
for rough location inference and the branch networks produce
fine response maps for accurate location refinement. Figure 2
shows the architecture of our network.

Let a convolutional layer be denoted as C(n, h×w×ch) and
a deconvolutional layer be denoted as D(n, h×w×ch), where
n represents the number of kernels, and h,w,ch respectively
represent the height, width and the number of channels of a
kernel. We also use MP to denote a max-pooling layer. In
our network, the stride of all convolutional layers is 1 and
the stride of all deconvolutional layers is 2. The size of the
max-pooling operator is set to 2× 2 and the stride is 2.
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A. Backbone Network

The backbone network is a fully convolutional network. It
efficiently generates an initial low-resolution response map for
input image I . When localizing facial landmarks in an image
taken in an unconstrained setting, it can effectively reject a
majority of background regions with a threshold. Let Wc

denote its parameters and Hk(I;Wc) denote the predicted
heat map of image I for the k-th type of landmarks. The
value of Hk(I;Wc) at position (x, y) can be computed with
Equation (3). We train the Backbone FCN using the following
loss function:

L1(I;Wc) =

K∑
k=1

||Hk(I;Wc)−Hk
c (I)||2, (4)

where Hk
c (I) is the groundtruth map for type-k landmarks.

To take into account the global context, such as geometric
constraints among landmarks, the backbone network takes the
entire image as the input and handles all facial landmarks
together. During training, the input image patch is resized
to 32 × 32. The backbone network is made up of eight
convolutional layers and two deconvolutional layers, which are
detailed as follows: C(20, 5×5×3) - C(20, 5×5×20) - MP -
C(30, 5×5×20) - C(30, 5×5×30) - MP - C(40, 5×5×30)
- C(40, 5× 5× 40) - D(30, 2× 2× 40) - C(30, 5× 5× 30)
- D(15, 2× 2× 30) - C(5, 1× 1× 15).

B. Branch Network

The Branch Network is composed of K branches with each
one responsible for detecting one type of landmarks. All the
K branches are designed to share the same network structure.
Take one branch as an example. Cropped patches of the
original input image and regions from the backbone’s output
heat map are stacked together as its input. The input data
therefore consists of four channels, including 3 channels from
the original RGB image and 1 channel from the corresponding
channel of the backbone’s output heat map. In order to
make the branch network better suited for landmark position
refinement, we resize the original input image to 64×64, four
times the size of the backbone’s input, and at the same time
zoom the heat map from the backbone network to 64 × 64
as well. The resolution of all the cropped patches is 24× 24,
and they are all centered at the landmark position predicted
by the backbone network. As shown in Fig. 2, each branch is
trained in the same way as the backbone network. We denote
the parameters of the branch component for type-k landmarks
as Wk

f and use H(P ;Wk
f ), H

k
0 (P ) to denote the heat map it

generates and the corresponding groundtruth heat map of patch
P , respectively. The loss function of this branch component
is again defined as follows:

L2(P ;W
k
f ) = ||H(P ;Wk

f )−Hk
0 (P )||2. (5)

Each branch component is composed of 5 convolutional layers
without any pooling operations. The dimensionality of its input
data is 24 × 24 × 4. The first 4 convolutional layers consist
of 5 channels with kernel size equal to 5 and stride equal

(a) (b) 
Fig. 3. (a) An isolated point cannot accurately reflect discrepancies among
multiple annotations. The three points near the right mouth corner were
annotated by three different workers. (b) We label a landmark as a small
circular region rather than an isolated point in the groundtruth heat map.

to 1 while the last convolutional layer consists of 5 channels
with kernel size 1 and stride 1. As shown in Figure 2, each
branch FCN component is detailed as follows: C(5, 5×5×5) -
C(5, 5×5×5) - C(5, 5×5×5) - C(5, 5×5×5) - C(1, 1×1×5).

C. Groundtruth Heat Map Generation

To our knowledge, the ground truth of a facial landmark
is traditionally given as a single pixel location (x, y). To
adapt such landmark specifications for the training stage of
our proposed BB-FCN network, we generate the groundtruth
heat map of an input image according to the annotated facial
landmark locations. The most straightforward method assigns
“1” to a single pixel corresponding to each landmark location
and “0” to the rest of the pixels. However, we argue that
this method is suboptimal because an isolated point cannot
reflect discrepancies among multiple annotations. As shown
in Figure 3(a), the right mouth corner has three slightly
different locations marked by three annotators. To take such
discrepancies into consideration, we label each landmark as a
small region rather than an isolated point. We first initialize the
heat map with zero everywhere, and then for each landmark
p, we mark a circular region with center p and radius R in
the groundtruth heat map with 1. Different radius is adopted
for the backbone network and branch networks, denoted as Rc

and Rf respectively. Rf is set to be smaller than Rc as the
backbone network estimates coarse landmark positions while
the branch networks predict accurate landmark locations.

IV. EXPERIMENTAL RESULTS

A. Datasets

To train our proposed BB-FCN, we collect 7317 face images
(6317 for training, 1000 for validation) from the Internet and
collect 7542 natural images (6542 for training, 1000 for val-
idation) without any faces from Pascal-VOC2012 as negative
samples. Each face is annotated with 72 landmarks. We use
two public challenging datasets for evaluation: (AFW [10] and
AFLW [11]. There is no overlap among the training, validation
and evaluation datasets.

AFW: This dataset contains 205 images (468 faces) collected
in the Wild. Invisible landmarks are not annotated, and each
face is annotated with at most 6 landmarks. This dataset is
intended for testing facial keypoint detection in unconstrained
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Fig. 4. The recall of landmarks on AFW in unconstrained settings. The curves labeled “fine” and “coarse” represent the performance of models with and
without branch networks, respectively. The curve labeled “regression” represents the performance of the regression network based on a single fully convolutional
network. The top five figures demonstrate the recall performance when only 15 landmarks of each landmark type are predicted for each image while the
bottom five figures are the results with 30 predictive landmarks for each type of each image.

settings, meaning faces may exhibit large pose, expression and
illumination variations, and may have severe occlusions.

AFLW: This dataset contains 21,080 faces with large pose
variations. It is very suitable for evaluating the performance
of face alignment across a large range of poses. The selection
of testing images from AFLW follows [25], which randomly
chooses 3000 faces and 39% of them are non-frontal.

B. Implementation Details

We have implemented our proposed BB-FCN network in
Caffe. During training, we initialize our networks by drawing
weights from a zero-mean Gaussian distribution with a stan-
dard deviation equal to 0.01. The size of a mini-batch is 40.
The positive training samples are image regions cropped from
face images in our collected database. The Intersection-over-
Union (IoU) between any cropped region and the original face
image is above 0.5. The negative training samples are non-
facial regions randomly cropped from the Pascal VOC 2012
dataset. Both the backbone and branch networks are trained
using back-propagation and stochastic gradient descent (SGD)
with momentum set to 0.9 and weight decay set to 0.0005.
When training the backbone network, we set the learning rate
to 0.001 and the total number of iterations to 25K. The radius
of landmark circles is set to 5% of the width of the input
image. For the branch networks, the total number of iterations
is set to 50K. The learning rate is set to 10−4 for the first 30K
iterations, and 10−5 for the last 20K iterations. The radius of
landmark circles is set to 3% of the width of the input image.

During the testing phase, our BB-FCN network is able to
accurately locate facial landmarks even without the assistance
of a face detector. If a testing image is a cropped facial image,
we resize it to match the size of training images and feed it
to BB-FCN to produce the response heat map. When given an
unconstrained image, we first construct an image pyramid and
feed the images at different pyramid levels to the backbone
network to generate multiple coarse heat maps. These heat
maps are resized to match the size of the input image and fused
to form a single heat map, which takes the maximum response

across all original heat maps. Given a testing image, we build
a pyramid of 20 levels by first resizing the image so that the
length of the smaller side equal to 32 and gradually scaling it
with 1.16 times every other layer for 20 times. The fused heat
map is then used to generate candidate landmark regions fed
into the branch networks. For each landmark type, we choose
n locations with the highest response values from the output
heat map of its branch network and take their average location
as the final predicted landmark location, where n is the number
of pixels in a landmark circle.

C. Evaluation Metric

To evaluate the accuracy of facial landmark localization, we
adopt the mean (position) error as the metric. For a specific
type of landmarks, the mean error is calculated as the mean
distance between the detected landmarks of the given type
in all testing images and their corresponding ground truth
positions, normalized with respect to the inter-ocular distance.
The (position) error of a single landmark is defined as follows,

err =

√
(x− x′)2 + (y − y′)2

l
× 100%, (6)

where (x, y) and (x′, y′) are the groundtruth and detected
landmark locations, respectively, and the inter-ocular distance
l is the Euclidean distance between the center points of the two
eyes. In our experiments, we evaluate the mean error of every
type of facial landmarks as well as the average mean error
over all landmark types, i.e., LE (left eye), RE (right eye), N
(nose), LM (left mouth corner) and RM (right mouth corner)
and A (average mean error of the five facial landmarks).

D. Performance Evaluation for Unconstrained Settings

Our BB-FCN is capable of dealing with facial images
taken in unconstrained settings, e.g., the location of facial
regions and the number of faces are unknown. We evaluate
the performance of our BB-FCN using Recall-Error curves. A
predictive facial landmark is considered correct if there exists
a groundtruth landmark of the same type within the given
position error. For a fixed number of predictive landmarks, the
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Fig. 5. Qualitative facial landmark detection results in unconstrained settings. Our BB-FCN is capable of dealing with unconstrained facial images, even
though the location of facial regions and the number of faces in the image are unknown. Best viewed in color.

recall rate (the fraction of ground truth annotations covered by
predictive landmarks) varies as the acceptable position error
increases, so that a Recall-Error curve can be obtained.

To our knowledge, very few facial landmark localization
methods have been evaluated in the context of landmark
detection in unconstrained settings. For the sake of fairness,
we have also implemented a regression-based method using
a fully convolutional network with nine convolutional layers.
The setup of the first six layers is the same as in our backbone
network while the denoted filters of the following two layers
are C(30, 2× 2× 40) and C(30, 4× 4× 30) respectively. The
top convolutional layer of the regression network produces
a fifteen-channel output, with every three of which form a
group. Each group of three channels indicates the probability
of existence and the regressed two dimensional location of a
landmark of a specific type. Given a threshold, this model can
output the coordinates of all detected landmarks.

We evaluate the performance of our BB-FCN and the
regression-based deep model on the AFW dataset using an
unconstrained setting. For those faces with one or both eyes
are invisible, the inter-ocular distances are set up with 41.9%
of the length of their annotated bounding boxes. 1 Figure 4
shows the Recall-Error curves of different types of landmarks,
where the curves labeled “fine” and “coarse” represent the per-
formance of our complete BB-FCN model and the backbone
network alone, respectively. The curve labeled “regression”
represents the performance of the above regression network
based on a single FCN. Our methods significantly outperform
the regression network, and the complete BB-FCN model
performs much better than the backbone network alone. With
a prediction of 15 landmarks for each landmark type, the com-
plete model recalls 45% more landmarks than the regression
network, when the acceptable position error is set within 8% of
the inter-ocular distance. As the number of landmark predic-

1The average ratio between the inter-ocular distances of the common faces
and the length of their annotated bounding boxes is 41.9% on AFW.
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Fig. 6. Comparisons with state-of-the-art methods on two public datasets.
The top row shows corresponding results on AFW, and the bottom row shows
corresponding results on AFLW. The average mean errors of all participating
methods are summarized in Table I.

tion of each type increases to 30, the recalls of five landmarks
within a position error of 25% of the inter-ocular distance are
94.1%, 95.7%, 91.5%, 95.8% and 95.2% respectively. Given
more predicted landmarks, we can achieves higher landmarks
recalls. Figure 5 demonstrates some landmark detection results
on the AFW dataset in unconstrained settings.

E. Comparison with the State of the Art

We compare our method with other state-of-the-art methods,
i.e., (1) Robust Cascaded Pose Regression (RCPR) [35]; (2)
Tree Structured Part Model (TSPM) [10]; (3) Luxand face
SDK 2; (4) Explicit Shape Regression (ESR) [20]; (5) A Cas-
caded Deformable Shape Model (CDM) [36]; (6) Supervised

2Luxand face SDK: http://www.luxand.com/
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Fig. 7. Qualitative facial landmark localization results by our method. The first row shows the results on AFW and the second row shows the results on
AFLW. Our method is robust under occlusion, exaggerated expressions and extreme illumination.

TABLE I
AVERAGE MEAN ERRORS OF OUR METHOD AND ALL OTHER COMPETING

METHODS ON AFW AND AFLW.

Dataset AFW AFLW
TSPM 14.31 15.9
ESR 12.2 13
CMD 11.1 13.1

Luxand 10.4 12.4
RCRR 9.3 11.6
SDM 8.8 8.5

TCDCN 8.2 8.0
RAR - 7.23

MTCNN - 6.9
Ours 6.18 6.28

TABLE II
AVERAGE MEAN ERRORS OF THE COMPLETE BACKBONE-BRANCHES

NETWORK AND THE BACKBONE NETWORK ALONE ON AFW AND AFLW.

landmark type AFW AFLW
backbone full model backbone full model

LE 7.02 5.69 9.46 6.02
RE 6.79 5.72 8,60 7.08
N 8.35 6.71 8.39 6.31

LM 7.11 5.22 7.40 5.83
RM 7.98 7.58 7.73 6.15
A 7.45 6.18 8.31 6.28

Descent Method (SDM) [37]; (7) Tasks-Constrained Deep
Convolutional Network (TCDCN) [25]; (8) Multi-task Cas-
caded Convolutional Networks (MTCNN) [38]; (9) Recurrent
Attentive-Refinement Networks (RAR) [29]. The results of
some competing methods are quoted from [25].

On the AFW dataset, our average mean error over five
landmark types is 6.18%, which improves over the perfor-
mance of the state-of-the-art TDCN by 24.6%. On the AFLW
dataset, our BB-FCN model achieves 6.28% average mean
error, 21.5% improvement over TDCN. Table I demonstrates
that our BB-FCN network outperforms all competing methods
on the three datasets. Qualitative results in Figure 7 show that
our method is robust under occlusion, exaggerated expressions
and extreme illumination.

F. Ablation Study

Our proposed BB-FCN is composed of two components,
the backbone network and the branch networks. To show

Backbone Network Backbone Network Branch Network Branch Network 

Fig. 8. Examples of improvements made by the branch networks. The
response heat maps of the branch networks are more compact and precise.
Best viewed in color.

the effectiveness and necessity of these two components, we
compare the landmark prediction results produced by the
single backbone network with those of the complete BB-FCN
network. As shown in Table II, the average mean error on
AFLW is decreased from 8.31% to 6.28%, with about 24.4%
relative improvement, after the branch networks are added to
perform landmark refinement. Figure 8 demonstrates visual
improvements achieved with the branch networks over the
single backbone network. We can see that the output heat
maps of the branch networks are more compact and precise
than those of the backbone network.

G. Runtime Efficiency

One of the most important characteristics of landmark and
face detectors is their runtime efficiency. Our method performs
accurate and efficient detection via a coarse-to-fine pipeline.
Table III shows the running time of several deep models
for facial landmark detection. Among these models, TCDCN
requires 18ms to process a facial image on an Intel Core i5
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TABLE III
COMPARISON OF RUNNING TIMES ON CPU AMONG DEEP MODELS FOR

FACIAL LANDMARK DETECTION.

Methods Time(per face)
CDCN 120ms
CFAN 30ms

TCDCN 18ms
Ours 9ms

CPU, which is 7 times faster than CDCN [39]. CFAN [27]
needs 30ms to run multiple auto-encoders. Our method only
needs 9ms on an Intel Core i5 2.80GHz CPU and 1.8ms on a
NVIDIA Titan X GPU. Our method also achieves practical
runtime efficiency under unconstrained settings. To locate
facial landmarks not smaller than 80× 80 in 640× 480 VGA
images, our landmark detector can run at 30 FPS.

V. CONCLUSIONS

In this paper, we have presented a novel cascaded
Backbone-Branches Fully-Convolutional Network (BB-FCN)
that progressively produces response maps of facial landmarks
in an end-to-end manner. Specifically, our architecture contains
a backbone network for roughly detecting the locations of
all facial landmarks and one branch network for each type
of detected landmarks for further refining their locations.
Our extensive experiments demonstrate that BB-FCN achieves
very promising results on both traditional benchmarks with a
controlled setting as well as cluttered, real-world scenes.
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