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Abstract. While ATM provides us convenient banking services, it has
great security risks. The authentication of only password requiring is
not safe enough. With the rapid development of face recognition tech-
nology based on deep convolutional neural network (CNN), undoubtedly,
applying it into ATM authentication will improve security further. In this
paper, we explore a new authentication mode combine face recognition
and basic password for ATM. We think that it would prevent the eco-
nomic crime on ATM fundamentally. However, computational and stor-
age costs of CNN based methods are still high. To this end, we propose a
new face recognition method by landmark regression. Our pipeline inte-
grates a landmark localization network with a light face recognition net-
work. For landmark localization, we employ a fully convolutional neural
network to produce facial landmark response maps directly from raw
images in a coarse-to-fine manner. For face recognition, we train a light
CNN to obtain a compact representation, where the rectified linear unit
(ReLU) is replaced by max-feature-map (MFM). Our approach shows
good performance on several datasets. And it is practicable due to its
high speed, good accuracy, and low storage space requirement.
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1 Introduction

ATM provides us many convenient services about banking, because most ATMs
are open 24 h and their locations are spread all over a city. But at the same
time, ATMs are one of the most vulnerable sites without any manual secu-
rity. The criminal behaviours such as physical attack, damage on ATM, using
a duplicated or stolen bank card to withdrawal or transfer money often occur.
Many researches have been done to improve the security of ATM. Some works
focus on suspicious wearing detection. Ray et al. [12] detected mask wearing
by Viola-Jones algorithm, while Wen et al. [23] detected safety helmets wearing
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using modified Hough Transform. Some works focused on abnormal behaviour
detection. Tang et al. [22] detected peeping behavior based on Omni-Directional
Vision sensor and computer vision technology. Arsic et al. [1] applied Bayes
Markov chains to resolve heavy occlusions and detect robberies.

Most researchers paid their attention to the surrounding environment mon-
itoring of ATM kiosks, and ignored the potential safety issue coming from
ATM authentication mode itself. Currently, the authentication of only password
requiring is not safe enough. With the rapid development of face recognition
technology based on deep convolutional neural network (CNN), undoubtedly,
applying it into ATM authentication will improve security further. Other bio-
metric information like fingerprint and iris are often used for security, but in
ATM system they are not very appropriate. Because we can grant privileges to
other persons by upload their facial images if using face recognition technology,
while the authorization is difficult to implement if using fingerprint or iris. In
daily life, it would be inconvenient if only cardholders themselves are permitted
to handle business, and authorization is a good resolution to guarantee both
security and flexibility.

In this paper, we explore a new authentication mode combine face recogni-
tion and basic password for ATM. We think that it would prevent the economic
crime on ATM fundamentally. However, real-time response, high accuracy, and
low storage space requirement make this application very challenging. On one
hand, there are two separated steps including face detection and alignment before
recognition generally in face recognition pipeline and result in low efficiency.
We simplify the general processing and present a novel landmark localization
method to produce facial landmark from raw images without face detection pre-
processing. On the other hand, computational and storage costs of CNN based
methods are still high. To this end, we propose a new face recognition method
by landmark regression. Our pipeline integrates a coarse-to-fine landmark local-
ization network and a light face recognition network. In network architecture, we
use fully convolutional network (FCN) in landmark localization and network-in-
network with small convolutional kernel size in face recognition for saving storage
space. Besides, considering the speed of process we obtain landmark locations
in a coarse-to-fine manner. And the nine layers CNN of face recognition ensure
the accuracy further.

For landmark localization, there are no fully connected layers in our network
and only convolutional layers are utilized. In particular, by taking the whole
image as input, the coarse locations of facial landmarks are roughly detected in
global context. Then they are further refined by local regions, which taking the
cropped patches containing coarse landmarks as input and produce a fine and
accurate prediction. For face recognition, we train a light (CNN) where the rec-
tified linear unit (ReLU) is replaced by max-feature-map (MFM) like paper [24].
The CNN with MFM can obtain a compact representation and shows good per-
formance in terms of both computational cost and storage space [24].

The main contributions of this work are summarized as follows. (1) We pro-
pose a new face recognition method by coarse-to-fine landmark regression, which
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produces facial landmark response maps directly from raw images without rely-
ing on the result of face detection or other preprocessing done in advance. (2)
Our approach is practicable due to its good accuracy and high efficiency.

The reminder of this paper is organized as follows. In Sect. 2, we briefly
review some related works on landmark localization and face recognition. Then
in Sect. 3, we introduce our system in detail. Finally, we present our experimental
results in Sect. 4 and conclude this paper in Sect. 5.

2 Related Work

As well known, deep learning methods, especially the deep CNNs and deep auto-
encoders, have made dramatic progress on many computer vision tasks including
face landmark localization and face recognition. Therefore, in this section, we
mainly review the works using deep learning.

2.1 Face Landmark Localization

Luo et al. [11] proposed a hierarchical face parser by combined deep belief net-
work (DBN) with deep auto encoder (DAE). Sun et al. [16] proposed three-level
cascaded CNNs to detect facial landmarks gradually, in which the first CNN
produced the initial predictions and the following two CNNs refine the results.
Specifically, the adjustment from third level is more subtle than the second
level. Zhang et al. [30] used correlated tasks, e.g. facial expression recognition
and head pose estimation to optimize facial landmark detection by deep CNN. In
paper [28] Zhang Jie et al. introduced a new stacked DAEs pipeline to progres-
sively refine the facial landmark locations by taking gradually higher resolution
image version as input. Zhang Cha et al. [27] built a deep CNN to learn the
face/non-face decision, the face pose estimation, and the facial landmark local-
ization simultaneously. Lai et al. [9] proposed an end-to-end CNN architecture to
learn highly discriminative shape-indexed-feature for face alignment. Recently,
a deep cascaded multi-task CNN framework [29] was proposed to exploit the
inherent correlation between detection and alignment. Existing methods men-
tioned above either require a facial bounding box or need to extract proposals by
inefficient sliding window, so their performance are not good enough for applying
in unconstrained settings.

2.2 Face Recognition

Currently, deep learning method has become the most common method to be
used for face recognition. Earlier work proposed in paper [17] used CNN for
face verification, which was composed of hybrid CNNs lower part for feature
learning and restricted Boltzmann machine (RBM) top layer for classification.
Lower part CNNs took twelve different face regions as input and RBM merged
the twelve group outputs to give the final prediction. In 2014, DeepFace [21] and
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DeepID [18] appeared almost at the same time. DeepFace employed 3D align-
ment for preprocessing and achieved 97.35% accuracy on LFW dataset [6]. While
DeepID aligned face image based on landmarks and achieved 97.47% on LFW.
Later, the improved model of DeepID named DeepID2 [15] and DeepID2+ [19]
improved the verification accuracy on LFW to 99.15% and 99.47% respectively.
For DeepID, the outputs of different CNNs trained on different local patches
were assembled as deep feature and Joint Bayesian was applied for face verifi-
cation. For DeepID2, verification loss and classification loss were further com-
bined to increase accuracy. Compared with DeepID2, DeepID2+ was improved
by increasing the dimension of patch feature and adding supervision to early
convolutional layers. Recently, a triplet-based CNN model named FaceNet [13]
achieved the best result 99.63% on LFW. Although these CNN based methods
have achieved a practicable accuracy on LFW dataset, however, their computa-
tional costs are still high due to their deep or multi-network architectures. Hence,
it is inevitable to design a light model with a smaller number of parameters for
lower computation and storage cost.

3 Our Approach

3.1 Pipeline

Our model consists of two main cascaded parts: face landmark localization and
face recognition, both of them are realized by using CNN. We train the whole
model by stochastic gradient descent (SGD) and use the Caffe library [7]. The
detailed pipeline is illustrated in Fig. 1. To begin with, the image is acquired at
the moment of the card insertion. And the following operations are preprocessing,
landmark localization, face alignment and face recognition. If current image is
matched with card-holder or one of the authorized user’s images, the process
is continued. Otherwise, while asking him whether take photo again we can
implicitly recognize the current user’s identification to judge whether the user is
a suspect, if yes, send alarm signal to monitoring center by background program.
Specifically, we perform standard histogram equalization preprocessing to adjust
the image contrast. And face alignment is done by horizontal rotation based on
landmarks. In the next two subsections, we introduce face landmark localization
and face recognition respectively.

3.2 Coarse-to-Fine Landmark Localization

Landmark locations are obtained in a coarse-to-fine way by FCNs, where convo-
lution is used like a filter. Suppose Lk

i = (xk
i , y

k
i ) is the location of i-th landmark

of type k in image I, where (xk
i , y

k
i ) represents the landmark coordinates. The

filtering is performed on patches. We denote FWk(P ) as the filtering function of
type k on patch P with parameters Wk. Suppose the patch size is w × h, and
the filtering function is in sliding window manner with stride δ. The response
map FWk ∗ I whose value at location (x, y) can be computed by:

(FWk ∗ I)(x, y) = FWk(I(xδ : xδ + w, yδ : yδ + h)), (1)
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Fig. 1. The proposed pipeline of face recognition. The image is acquired at the moment
of the card insertion. If current image is matched with card-holder or one of the autho-
rized user’s images, the process is continued. Otherwise, while asking him whether
take photo again we can implicitly recognize the current user’s identification to judge
whether the user is a suspect, if yes, send alarm signal to monitoring center by back-
ground program.

where I(xδ : xδ + w, yδ : yδ + h) is the image patch. At first, we take the whole
image as input and obtain the response map. We wish that the response map
should distinguish whether the patches containing landmarks or not. Next we
only input the patches containing coarse landmarks for refining by taking the
same filtering process. Thus, we can construct a multi-level networks pyramid
by decreasing the path size for filtering gradually.

Our destination is learning the filtering functions which have the property:
patches containing the target landmarks should have strong response, otherwise
should have weak response. Suppose the threshold is θ and the landmark location
is the patch center, which can be computed by:

Det(I) = {(xδ + w/2, yδ + h/2)|(FWk ∗ I)(x, y) > θ}. (2)

Let Hk(I;Wp) and Hk
0 (I) denote the predicted and ground truth response map

of image I for landmark type k, where Wp denote the parameters of the pth level
network pyramid. The value of Hk(I;Wp) at position (x, y) can be computed
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Fig. 2. The network architecture of our coarse-to-fine landmark localization. The first
level network is shared by all of the landmarks. The second level sub-networks are
unique to each landmark. We only illustrate “right-mouth-corner” sub-network for
simplification.

by Eq.(1). The loss function used to train the network is:

Lp(I;Wp) =
K∑

k=1

||Hk(I;Wp) − Hk
0 (I)||2. (3)

We evaluate our approach by stacking two level networks on five landmarks
localization, including two eyes’ centres, left mouth corners, right mouth corners
and nose tip. The first level network is shared by all of the landmarks, and the
second level sub-networks are unique to each landmark. The network architecture
is showed in Fig. 2, where only “right-mouth-corner” sub-network is illustrated
for simplification. In summary, the kernel sizes of the first level convolutional
layers are 5 × 5, 5 × 5, 5 × 5, 9 × 9, 1 × 1, 1 × 1; and for the second level they are
5 × 5, 7 × 7, 9 × 9, 1 × 1 respectively.

4 Face Recognition

As well known, CNN-based face recognition systems need large amounts of
memory and computational power. Although they perform well on GPU-based
machines, it is often a challenge to run them on target low-power devices like
ATMs due to overtaxing the compute capabilities and the limited storage. Hence,
it needs us to seek a light model for the deployment on ATMs. Much research
work is done to speed-up and compact CNNs. Here we utilize an off-the-shelf
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named light B model proposed in paper [24] for face recognition, which is cas-
caded with our landmark localization network. In particular, a rough face align-
ment is made before they are input for recognition according to the five land-
marks location. We rotate two eye landmarks horizon-tally to overcome the pose
variations in roll range and fix the distance between the midpoint of eyes and
the midpoint of mouth for facial image normalization.

The light B model we used has two main characteristics: (1) defining Max-
Feature-Map (MFM) activation function for compact representation and (2)
employing net-work in network (NIN) [10] concept between convolution layers
for improvements on speed and storage.

MFM is defined to obtain competitive feature maps, it outputs element-wise
maximum of two convolutional feature maps. Given an input convolution layer
C ∈ R

h×w×2n, where 2n is the channel number of convolution layer and h × w
denotes the map size. The MFM can be formulated as:

fk
ij = max

1≤k≤n
(Ck

ij , C
k+n
ij ), (4)

where 1 ≤ i ≤ h and 1 ≤ j ≤ w.
The light B contains 5 convolution layers, 4 NIN network layers, MFM acti-

vation function, 4 max-pooling layers and 2 fully connected layers. The small
convolution kernel size with NIN can reduce the number of parameters for the
model; it makes the model 20 times smaller than VGG [14] while 9 times faster
on CPU time. Please refer to [24] for more academic details.

5 Experiments

In this section, we evaluate our landmark localization approach first and then
show the performance of face recognition based on landmark locations using
light model.

5.1 Landmark Localization

For model training, we collect 7,317 face images and 1,671 natural images from
Internet. Among them 6,317 face images and 1,218 natural images for training,
the rest of 1,000 face images and 453 natural images for validation. Each face is
annotated with five landmarks. We employ AFLW [8] and AFW [31] for evalu-
ation. For AFLW, we selected 3,000 faces randomly from AFLW for testing like
TCDCN [30].

We report our result on mean error, which is measured by the distances
between estimated landmarks and the ground truths, normalized with respect
to inter-ocular distance. It is defined as:

err =

√
(x − x′)2 + (y − y′)2

l
, (5)
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Fig. 3. Comparison with other methods on AFLW and AFW. The comparison on five
landmarks is illustrated in the left sub-image, and the average mean errors of these
methods are summarized in the right sub-image.

where (x, y) and (x′, y′) are the ground truth and predicted locations, respec-
tively, and l is the inter-ocular distance.

We compare our method against: (1) Explicit Shape Regression (ESR) [3];
(2) A Cascaded Deformable Model (CDM) [26]; (3) Robust Cascaded Pose
Regression (RCPR) [2]; (4) Supervised Descent Method (SDM) [25]; (5) Task-
Constrained Deep Convolutional Network (TCDCN) [30]. The results are
reported in Fig. 3. On the AFLW dataset, our method achieves 7.3% for aver-
age mean error, 8.75% improvement over TCDCN. On AFW, our average mean
error is 7.4% over five parts, 9.76% improvement over TCDCN.

5.2 Face Recognition Based on Landmark Locations

We evaluate the cascaded model which integrates our landmark localization with
the light B for face verification task on LFW and CACD-VS [4] datasets. LFW
contains 13,233 images of 5,749 identities. For face verification, face images are
divided in 10 folds and each folder contains 600 face pairs of different identities.
CACD-VS dataset contains 2,000 positive pairs and 2,000 negative pairs which
are collection of celebrity images on Internet.

Face verification is one-to-one matching, which identifies whether two facial
images are from the same person. We compare our method against WebFace [20],
VGG [14], FaceNet [13] and Light B [24] on LFW and against HFA [5],
CARC [4], VGG and Light B on CACD-VS. The results are reported in Table 1.
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Table 1. The accuracies of different methods on LFW and CACD-VS datasets.

LFW CACD-VS

Method Accuracy Method Accuracy

WebFace 96.13% HFA 84.4%

VGG 97.27% CARC 87.6%

FaceNet 99.63% VGG 96%

Light B 98.13% Light B 97.95%

Ours 98.5% Ours 98.2%

Our cascaded model shows very competitive results compared to other state-of-
the-art methods on both datasets.

We also show some verification results of our approach on LFW dataset
in Fig. 4. The first line illustrates some errors, where the first three pairs are
errors on mismatched pairs, that is, the pairs of mismatched images that were
incorrectly reported as matched pairs. And the last three pairs are errors on
matched pairs, that is, the pairs of matched images that were incorrectly reported
as mismatched pairs. And the second line demonstrates the robustness of our
approach, where the hard pairs are verified correctly despite of variations on
pose, expression, occlusion, and illumination. It is worth mentioning that our
model is practicable to apply in ATM system due to the good performance
on speed and storage space. The entire model is about 33 MB and it requires
about 140 ms for face verification on low power PC with Xeon(R) E5-2620 v3
@ 2.40GHz CPU.

Fig. 4. Illustration of verification results of our method on LFW dataset. The first
line illustrates some errors, where the first three pairs are errors on mismatched pairs,
the last three pairs are errors on matched pairs. And the second line demonstrates
the robustness of our approach, where the hard pairs are verified correctly despite of
variations on pose, expression, occlusion, and illumination.

6 Conclusion

In this paper, we explore a new authentication mode combine face recognition
and basic password for ATM. We propose a cascaded deep model which inte-
grates a landmark localization network with a light face recognition network.
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Our model shows good performance on several datasets. It is practicable due
to its high speed, good accuracy, and low storage space requirement. The entire
model is about 33 MB and it requires about 140 ms for face verification on low
a power PC with Xeon(R) E5-2620 v3 @ 2.40 GHz CPU. The face recognition
network is the bottleneck on speed and storage. The time of landmark localiza-
tion on one image is only 7 ms, but for face verification is 133 ms. The landmark
localization network needs less than 1 M storage space while recognition network
needs 32 MB. Therefore, we will continue to optimize the recognition network
further. In future, we also generalize our approach in more challenging object
recognition, such as human action understanding.
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