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Figure 1: Two examples of painterly animation with the proposed stylization system. (Please view in high 400% resolution in Acrobat reader)

Abstract

We present an interactive system that stylizes an input video into
a painterly animation. The system consists of two phases. The
first is an Video Parsing phase that extracts and labels semantic ob-
jects with different material properties (skin, hair, cloth, and so on)
in the video, and then establishes robust correspondence between
frames for discriminative image features inside each object. The
second Painterly Rendering phase performs the stylization based
on the video semantics and feature correspondence. Compared to
the previous work, the proposed method advances painterly ani-
mation in three aspects: Firstly, we render artistic painterly styles
using a rich set of example-based brush strokes. These strokes,
placed in multiple layers and passes, are automatically selected ac-
cording to the video semantics. Secondly, we warp brush strokes
according to global object deformations, so that the strokes appear
to be tightly attached to the object surfaces. Thirdly, we propose a
series of novel teniques to reduce the scintillation effects. Results
applying our system to several video clips show that it produces
expressive oil painting animations.

CR Categories: I.3.6 [Computer Graphics]: Stroke-based
Rendering—Interaction Techniques; I.4.8 [Image Processing and
Computer Vision]: Semantic Labeling—Tracking

Keywords: non-photorealistic rendering; painterly animation;
video parsing.

1 Introduction

We present an interactive system for stylizing an input video to cre-
ate an artistic and expressive painterly animation. Fig.1 shows some

sample frames of two video clips transformed into animated oil
paintings. The animation community has long desired such effects,
and animators have produced them using conventional frame-by-
frame methods or the paint-on-glass technique, both of which are
not only extremely laborious, but also require considerable artistic
skills. As an example, it took over two years to manually produce
the 22-minute Oscar-winning animation Old Man and the Sea. In
comparison, our interactive system allows amateur players to pro-
duce painterly animations from real-life video clips with much less
time and effort.

In the following, we briefly review the related work for painterly
rendering and video stylization in the graphics community.

(I) Painterly rendering of a single image. In order to render
expressive and vivid painterly styles, the essential problem is to
extract useful image contents, which will guide the selection and
placement of brush strokes to embody the artist’s intention and in-
terpretation. In the literature, [Collomosse et al. 2002] used image
salience (contrast) and [Santella 2002] used eye-tracking data to
determine the placement, ordering and attributes of brush strokes;
[Hertzmann 1998] proposed curved strokes for rendering impres-
sive oil painting style by tracing strong edges or boundaries; Par-
ticles and regions on 3D surfaces were extracted to guide stroke
placement in [Meier 1996] and [Kolliopoulos et al. 2006], respec-
tively.

The proposed rendering method is inspired by the painting proce-
dure of artists, in which different stroke styles and placement pat-
terns are used for different object categories in a scene. For ex-
ample, the brush styles for wood, water, and rock are distinct from
each other in oil paintings. In our method, we first explicitly cat-
egorize common objects according to their surface materials and
correspondingly construct a dictionary of diverse brush examples
by artists. These brushes exhibit much richer texture, shape, thick-
ness than those used in the literature. Then we select and place
these brush strokes according to image semantic contents. To sim-
ulate painting procedure of human artists, we propose two novel
brush-based rendering techniques. (1) We perform a two-pass ren-
dering procedure: a base-pass using generic brushes followed by a
second pass using category-specific brush strokes. The base-pass
rendering is to put on the base color for a region. The strokes in

73



second pass add object textures, structures and tactile feeling. (2)
In addition to the commonly used brush stroke attributes such as
opacity and height field, we augment the brushes with mixed colors
for rich expression and contrast.

(II) Video stylization. There are two different categories of meth-
ods that have achieved remarkable success. The first category
extracts and animates the image representations (i.e., regions or
edges) from the input video clips, and directly stylizes them with-
out using any brush strokes. The representative examples include
[Klein et al. 2002], which abstracted the videos as space-time vol-
ume data; the roto-curves, contours and silhouette were utilized in
[Agarwala et al. 2004], [Agarwala 2002], [Kalnins et al 2003],
respectively; [Wang et al. 2004] and [Bousseau et al. 2007] trans-
formed the object regions into cartoon style and watercolor style
respectively. Winnemoller et al. abstracted regions and bound-
aries by modifying the contrast of luminance and color opponency
[Winnemoller et al. 2006]. Collomosse et al. stylize spatiotempo-
ral “video objects” by 3D segmentation [Collomosse et al. 2005].
The other category is stroke-based painterly animation, which ar-
tistically expresses object appearance and structure using exquisite
physics-based or example-based brush strokes in [Meier 1996],
[Litwinowicz 1997], [Hertzmann et al. 2000]. The proposed sys-
tem belongs to this category, and it aims at generating expressive
and vivid painterly effects.

In the process of painterly animation with strokes, the essential
problem is to stick the brush strokes on object surfaces and maintain
temporal coherence in the video. This is a nontrivial task for both
artists and the computer aided systems. Litwinowicz et al. first
introduced the brush strokes propagation with computed optical
flow[Litwinowicz 1997]; Hertzmann et al. extended Litwinowcz’
approach by making brush attributes adjustable based on the prop-
erties of the input video[Hertzmann et al. 2000]; Hays et al. further
arrange brush strokes in motion layers and the motion information
was also obtained by computing optical flow[Hays et al 2004].

Despite the impressive results, the existing methods still leave be-
hind some challenging issues to solve: (1) sometimes the strokes
drifting away from objects. This is also called the “shower door”
effect[Meier 1996], and (2) scintillation (or flickering) of strokes.
These two problems are more serious when there exist a large num-
ber of strokes (e.g., more than 2000) placed in multiple layers, as
we show in Fig.1. In our system, we present two techniques to
reduce the artifacts. Firstly, we tightly stick the brush strokes to
the object and reduce their drifting by warping the brush strokes in
consistent with the deformation of the objects, i.e., the local stroke
transformation conforms to the object global transformation. We
use two types of robust and distinctive features inside each object
to establish dense feature correspondence for both textural and tex-
tureless regions, and adopt a TPS (thin-plate-spline) transformation
to describe object deformation. Then the stroke warping and shift-
ing are smoothly driven by the TPS transformation. Secondly, we
strategically reduce the scintillation effects by the following meth-
ods: (1) confining the brush strokes inside each segmented region to
prevent flickering along the boundaries. (2) Since the scintillation
are often caused by adding/removing strokes suddenly in the pro-
cess of brush stroke propagation, we propose a deferred rendering
and backward completion strategy for adding new strokes. When a
new area emerging, the system defers the rendering and leaves the
area unpainted until it grow to certain size. Then new strokes are
added and propagated back to fill the gaps in the previous frames.
(3) A damped system is built to stabilize all the strokes in space and
time. We simulate the system by attaching springs between brush
strokes, and minimize the energy of the system by adjusting the
rendered strokes so as to enforce coherent motion.

2 System overview

Our system consists of two phases: Video Parsing to obtain seman-
tic contents and establish dense feature correspondence; Painterly
Rendering to select, place and propagate brush strokes for stylized
animations.

Phase I: Video Parsing To extract semantic content in a video, we
segment the initial frame (or a keyframe) interactively by allowing
user to draw scribbles on multiple regions. These segmented re-
gions are further categorize into twelve semantic material classes
according to their material properties, such as rock/mountain, sky,
face/skin, etc. (see Tab.1). We call these regions with semantic la-
bels as “semantic regions” (or objects). By using a video cutout
algorithm [Bai et al. 2009], we propagate the segmentation and the
semantic labels over frames, and thus each object is segmented as a
space-time volume. Within each volume, the system then extracts
a number of discriminative features. These features are tracked to
compute dense correspondences over frames for the propagation of
brush strokes in a later stage.

Phase II: Painterly rendering A dictionary of examplar brush
strokes is first created by artists for different material (object) cate-
gories. At the keyframes, the system performs the two pass stroke
rendering. In both two passes, the stroke placement is guided by
the orientation field computed from the region. Once a keyframe
is rendered, the brush strokes are then propagated over frames. We
use a deferred rendering and backward completion strategy to add
new strokes, and a damped spring system to stabilize the strokes in
space and time by effectively minimizing a quadratic energy func-
tion using the Levenbergy-Marquardt algorithm.

In the rest of the paper, we introduce the video content parsing
phase in Section 3, and the painterly rendering procedure in Sec-
tion 4. We show experimental results in Section 5, and conclude
this paper in Section 6.

3 Interactive Video Parsing

3.1 Interactive image labeling

The goal of image labeling is to segment each keyframe into a set
of semantic regions (i.e., region with semantic labels). This is im-
portant for brush style selection and stroke placement.

Let I be a color image, say a keyframe from an input video. Our
goal is to segment the image into K disjoint “semantic regions” Ri

for i = 1, 2, ...,K. These semantic regions correspond to different
objects with semantic labels, such as a sky, face, tree. Fig.2 shows a
set of typical segmented and labeled regions for a keyframe. The se-
mantic regions are the basic operating units in our system, since the
painting of the strokes and the key features correspondence are all
confined to the regions. The selection of brush style is also guided
by the semantic label.

To segment the image I, a user simply draws scribbles in each re-
gion Ri using different colors, as shown in Fig.2. Then we adopt an
α-expansion algorithm [Boykov et al. 2001] to segment the image
simultaneously into K regions.

After the segmentation, each region Ri is further assigned a seman-
tic label ℓi corresponding to twelve material categories. A recently
proposed method, namely “texton boost”[Shotton et al. 2008], is
employed for image classification. In fact, as the regions are already
well segmented, the classification is easier and more accurate.

Given the annotated training images (474 for 12 categories), we
learn a strong classifier with various discriminative features, includ-
ing texton filters, HSV color histogram and Histogram of Gradient
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Figure 2: Segmenting a keyframe into several regions simultane-
ously by placing user scribbles in them; these regions are classified
into twelve categories then. Face and hands can be further decom-
posed according to the different motion.

using the boosting framework [Shotton et al. 2008]. For a seg-
mented frame with size 720× 480, one shot of classification costs
around 3 ∼ 5 seconds. The classification errors can be easily cor-
rected by user interventions.

Table.1 lists the twelve common material classes.

Table 1: Twelve material classes of semantic regions.

mountain water rock/building leaf/bush/grass
face/skin hair/fur flower/fruit sky/cloud

cloth trunk/twig abstract background wood/plastic

For each input video in our experiments, we segment and label the
first frame, and then propagate the segments through the video until
a new keyframe is specified.

3.2 Space-time video cutout

In the graphics literature, the video cutout algorithms in [Wang et
al. 2005] treat video as space-time volumes and use mean-shift
clustering to classify pixels into foreground and background based
on user scribbles in the volume. In our system, we adopt a recently
proposed algorithms using localized classifiers [Bai et al. 2009].

Given a labeled keyframe, a group of local classifiers are con-
structed around the boundaries of semantic regions, which are then
propagated onto successive frames to segment the objects in space-
time volumes. Each classifier adaptively integrates multiple local
features such as color, edge, and on-line learned shape prior. We
refer more detail to [Bai et al. 2009].

In our experiments, the cutout is propagated automatically for every
τ = 10 ∼ 20 frames depending on the complexity of motion. Then
a new key frame is specified, and the user draw new scribbles to
continue the cutout process. Note that the system also allows a user
to correct errors in this process.

3.3 Key feature extraction and correspondences

One may view the video cutout as a coarse correspondence at the
region (object) level. Our next task is to establish finer correspon-

dence at the feature level within each segmented region. Then the
feature correspondence is used to propagate the brush strokes.

A vast variety of image features (key points, patches) have been
developed in recent years, and a consensus is that we should track
different features in different types of regions.

Figure 3: Discriminative feature points are extracted for texture
regions (a) and textureless regions (b). The gradient histogram for
a SIFT feature (c), and the color histogram for an MSER feature
(d), which are then used for tracking in (e) with a prior probability
favoring smooth motion.

For each segmented region Ri, we compute two types of features
and allow them overlap. They are complementary to each other and
provide dense matches for correspondence.

• The SIFT-like feature [Lowe 2004] is suitable for areas with
rich textures; it is indicated by the red spots in Fig.3 (a) and
(b) and described by a histogram hs of image gradients in
the neighborhood of a keypoint, discretized into 72 bins (see
Fig.3 (c)).

• The MSER (Maximally Stable Extremal Region) feature
[Matas et al. 2002] is a good descriptor for texture-less areas.
They are symbolized as ellipses (see Fig.3 (a) and (b)) and
described by color-histogram hc in Luv space (see Fig.3 (d))
collected from the pixels within the ellipse. The three axes
are quantized in 17, 45 and 40 bins for the L, u, v dimensions
respectively.

These two types of features are distinctive under viewing-angle,
scale, and illumination transformations. Their invariant properties
make the tracker robust and drive the brushes stroke propagation
stably in our system.

Suppose a semantic region Ri has Mi feature points at frame t de-
noted by

Xi = {Xm = (Am, hm),m = 1, . . . ,Mi}

where Am represents its geometric attributes (location and scale),
and hm is the appearance histogram (hc for MSER features and hs

for SIFT features). In the next frame t + 1, suppose we detect Ni

features in Ri, and we denote them by

Yi = {Yn = (An, hn), n = 1, . . . , Ni}.
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For two matched points, we measure their similarity by appear-
ance histogram, and adopt a constant penalty for the remaining un-
matched points. We define

D(Xm, Yn)=

{
αd(Am, An)+KL(hm||hn), Xm → Yn

β, otherwise (1)

where d(Am, An) is a quadratic distance between their geomet-
ric attributes, and KL(hm||hn) is the Kullback-Leibler divergence
to measure appearance variations. Note that the distance between
different types of features is set to ∞. In our experiments, the pa-
rameter α and β are set empirically, α = 0.35 for non-rigid motion
and α = 0.85 for affine motion, and β = 0.05.

The tracking problem is then turned into finding an optimal bijec-
tive mapping Φt,i : Xi → Yi by minimizing the global matching
cost

Φ∗
t,i = argmin

Φt

∑
Xm∈Xi,Yn∈Yi

D(Xm, Yn), (2)

which can be interpreted as the optimal assignment problem based
on a bipartite graph, which can be analytically solved by the Hun-
garian Marriage algorithm (also referred to as the Kuhn- Munkres
algorithm) [Jonker et al. 1987].

We argue that our feature correspondence with video cutout is more
effective for driving the stroke propagation than the optical flows
used in [Hays et al 2004; Bousseau et al. 2007; Hertzmann et al.
2000], for three reasons: (1) the number of features in each frame
is much smaller than the number of pixels, and they have more dis-
tinctive feature for computing correspondences; (2) our features are
extracted from both texture and textureless areas, while the optical
flow estimation is often difficult for flat regions; and (3) the region
boundaries eliminate many cross-region feature mismatches.

Figure 4: (a) Brush examples for two-pass rendering; the generic
brushes (in the left top cell), often large and semi-transparent, are
used in the first pass rendering; the second pass selects brushes ac-
cording to the material properties. (b) Two alpha maps of brushes
where the darker pixels have higher opacity values. (c) Two height
maps of brushes, where the darker color indicates higher thickness.

4 Video Painterly Rendering

Based on the video semantics and correspondence in Phase I, the
following phase II stylizes a video into a painterly animation with
three functional modules. The system allows user interaction for
style manipulation.

1. Painterly rendering of keyframes with artistic brush strokes,
according to the image semantics.

2. Temporal brush stroke propagation driven by the dense fea-
ture correspondence.

3. Stabilizing the brush strokes for deflickering by a damped
brush system.

4.1 Brush-based Rendering

There are two key components for rendering keyframes: (1)
semantic-driven brush design and selection; (2) brush placement
guided by the orientation field. For enhancing the animation effi-
ciency, the system allows a user to specify keyframes at one time
according to the motion of objects before rendering, (e.g., every 10
frames).

To enrich the painterly rendering styles, inspired by the previous
work [Hertzmann et al. 2000; Xu et al. 2006; Zeng et al. 2009],
we use over 800 example-based strokes manually produced by sev-
eral artists who were asked to draw 12 material classes, shown in
Table1. Each class forms a brush dictionary ∆ℓi , five of which are
illustrated in Fig.4 (a).

Each brush B = (ℓ,Λ,C, α,H, {ci}) is characterized by its label
ℓ for material class, the image lattice Λ; its color map C, alpha map
α, height map H, and a number of control points {ci}. In Fig.4
(a), the original colors of the strokes are close to green, and in the
rendering process, the brush color is taken from the input image
where the brush is placed. The alpha map and height map are part
of the brush design. As shown in Fig.4 (b) and (c), the height map
is used for rendering when illumination is defined in the finishing
stage; the alpha map corresponds to the opacity when rendering a
brush into image. The height map and alpha map are created by
the artists with some painting & drawing softwares. The control
points include key points on the backbone of the brush and around
the boundary (see Fig.7).

Our brush-based rendering method differs from [Zeng et al. 2009]
in two aspects: (1) We adopt a two-pass rendering strategy to en-
hance the painterly rendering visual effect; (2) We enrich brush
strokes with mixed colors to improve color contrast within indi-
vidual strokes and simulate a real brush stroke appearance.

(I) The two-pass rendering We paint each semantic region Ri

in two passes. The first pass uses some generic brush strokes
(see the top-left cell in Fig.4 (a)), which are often flat and semi-
transparent. The generic brushes are from a shared dictionary ∆g

to paint all categories of material. This pass is inspired by human
artists who use large brush strokes first to put on base colors for a
region. This process abstracts unimportant details in textural areas
and introduces new colors to enhance contrast in flat areas, such as
sky and wall. On top of the first-pass rendering, the second pass
is a semantic-driven rendering process. It places category-specific
brush strokes to reflect object surface material properties in diverse
textures, opacity, and height fields. According to the semantic label
ℓi, the system selects strokes from the corresponding brush stroke
dictionary ∆ℓi .

In both passes of rendering, the system places brush strokes accord-
ing to the computed orientation field of a region. To compute the
orientation field Θi(x, y) at pixel (x, y) in region Ri at a keyframe,
we first detect the “sketches” inside Ri. These “sketches” are strong
edges and bars. For the pixels on the interior sketches or on the
boundary owned by the region, Θi(x, y) is set to be the orientation
of the edge or boundary. Note that the boundaries owned by other
regions that occlude Ri should not affect the orientation field of Ri.
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Then we run a diffusion process [Chen et al. 2006] to fill orienta-
tion of the rest of the pixels and obtain a smooth flow field. Note
that the diffusion process can be interfered by user interactions, i.e.,
a user may draw additional scribbles in the region so as to change
the orientation flow. The manually placed scribbles are treated as
the strong edges in the diffusion process. The computation of the
orientation field ΘBj for a brush Bj is the same.

To place a brush stroke onto a small region r, the system finds the
most suitable brush stroke by matching the orientation fields ΘBj

and Θr .
B∗ = argminM(ΘB,Θr), (3)

where the similarity measure M(·, ·) for orientation fields is de-
fined as the KL-divergence of the two orientation histogram over
all pixels.

To enhance the rendering efficiency and diversity, for each brush
painting, the system randomly selects a small subset (5 ∼ 8) of can-
didate brushes from the dictionary ∆ℓi , then finds the best match
and paint it. Our interface allows user refine some of the brush
strokes after the rendering, including adding, removing, and edit-
ing brush strokes (i.e., rotating and translating). More results of
two-pass rendering can be found in Fig.6.

(II) Brush strokes with mixed colors We mix warm colors (e.g.,
yellow, orange) with cold colors (e.g., blue, purple) in order to sim-
ulate the real appearance of brush strokes and enhance their color
contrast. Fig.5 illustrates a colorful brush with color map transfor-
mation. Intuitively, when a brush is placed in the image where it
picks the image color, its color map must be transformed coher-
ently so that the local neighborhood in the color-map is pre served,
so is the relative brightness between pixels.

In Fig.5 (b), (c), (d), we present an example of painting with color-
ful brush strokes from a source image as well as a comparison with

Figure 5: Painting by the colorful brushes. (a) The brushes (left)
have rich color distributions plotted in the RGB space (right). A
brush in the dictionary can change its color distribution (from top
to bottom) in order to fit the color in the input image. (b) The source
image with a highlighted region (in the red box). (c) The painting
result of the region with normal brushes. (d) The painting result
with colorful brushes.

normal strokes. It can be observed that the rendering effect is more
vivid by the colorful ones.

Suppose we have a colorful (mixed color) brush B from the brush
dictionary, in which the color map on all pixels is C = Qs. These
colors are clustered using Gaussian mixture models (GMMs) of
k components (typically k = 2 ∼ 5). The dominant (compo-
nent) colors {q1, q2, . . . , qk} of the brush (e.g., green and orange
in Fig. 5 (a)) are the mean colors of the GMMs. Let z1 be the im-
age color at the position where the brush B being placed, we can
further randomly select colors {z2, z3, . . . , zk} around z1 in RGB
space. Then the transformed color map Zt of the place brush can
be obtained by the transformation from Q = Qs∪{q1, q2, . . . , qk}
into Z = Zt ∪ {z1, z2, . . . , zk}. This transform can be analyti-
cally solved by an LLE algorithm [Roweis and Saul 2000] in the
following steps.

(1) Compute the nearest neighbors Ni for each color qi ∈ Q in
RGB color space.

(2) Compute the reconstruction weights wij of the neighbors that
minimize the error of reconstructing qi.

W ∗ = argmin
∑
i

|qi −
∑

qj∈Ni

wijqj |, (4)

subject to the constraints,
∑

qj∈Ni
wij = 1.

(3) Compute the embedded colors Z that best preserves the local
manifold structure represented by the reconstruction weights.

Z∗ = argmin
∑
i

|zi −
∑

zj∈Ni

wijzj |, (5)

subject to the constraint of fixing initial color correspondence,
{q1, q2, . . . , qk} → {z1, z2, . . . , zk}. Fig.5 (a) illustrates a col-
orful brush with a color map transformation.

4.2 Temporal brush propagation

After rendering a keyframe, the system propagates the brush strokes
to the following frames. It also removes some strokes and introduc-
ing new ones. There is a non-trivial deferred rendering and back-
ward completion strategy for adding new brush strokes in the prop-
agation process in order to avoid visual artifacts. Note that the new
brush strokes are added only at the keyframes and propagated back-
ward to fill unpainted regions in the previous frames.

Brush stroke propagation For a semantic region Ri at frame t,
we have a number of key points Xi = {Xij} for j = 1, 2, ...,Mi

and i = 1, 2...,K. We have computed a matching matrix Φ(t, i)
which maps these feature points to a set of points Yi = {Yij} in
the next frame. This mapping will distort the image lattice with an
elastic deformation, as Fig. 7 shows. The warping of the image do-
main is accounted by the Thin-Plate Spline (TPS) model [Bookstein
1989]. That is, pixels at image features {Xij} are directly mapped
to the counterpart feature positions {Yij}, and the non-feature pix-
els are warped to minimize the TPS smoothness constraint energy.

Although the underlying lattice is elastic, for example a region of
cloth, our brush strokes are treated as rigid to preserve the brush
textures. If deforming strokes, it may cause undesirable rendering
effect on its texture and height field. As Fig.7 shows, each brush has
a number of control points, {ci}. We fit an affine transformation be-
tween the two sets of correspondence features, and then transform
the associated brush stroke.

Some brush strokes become smaller during the propagation in the
video or because of occlusion. We eliminate a stroke if its size is
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Figure 6: Samples of two-pass brush-based rendering: the original
images (in the left column), the results of first pass rendering (in the
middle column), and the results of the second pass rendering (in the
right column).

Figure 7: Propagating a brush stroke between frames. The lattice
for the semantic region undergoes a plastic deformation following
the tracked feature points with a TPS transform, while the stroke is
rigid and follows an affine transform with its control points.

under a threshold. In addition, strokes propagated out of the region
boundary are also eliminated.

Deferred rendering and backward completion When a new
semantic region emerges, or an existing region grows larger, new
brush strokes are introduced to cover the new area. To fill small
seams between brush strokes, we simply perturb the size and the
location of the neighboring strokes. If the uncovered area is larger
than a certain threshold, the system will not paint new emerging
regions immediately until a new keyframe is specified. New brush
strokes are automatically rendered (by the keyframe rendering al-
gorithm) on the unpainted regions at the new keyframe, and then
transformed backward frame by frame so as to fill the all the cor-
responding gaps in between the two keyframes. In addition, the
newly added strokes are added underneath the existing ones. This
deferred rendering and backward completion process can reduce
scintillation effects and other unwanted visual artifacts by avoiding
frequent brush stroke changes.

4.3 A damped system for de-flickering

Once the brush strokes are rendered for all the frames in a video, we
attach springs in between brush strokes adjacent in space and time
to simulate a damped system, as shown in Fig.8. By minimizing
the energy of this system, the strokes are adjusted by an iterative
algorithm to remove flickering effect.

For the i-th stroke at frame t, we denote Ai,t as its geometric at-
tributes, including its central point and size. Ai,t is a variable and
it is initialized to Ao

i,t, which is its original state obtained from the
rendering step. The energy function of the damped brush stroke
system has three terms weighted by two parameters λ1 and λ2,

Edamp = Edata + λ1Esmooth 1 + λ2Esmooth 2, (6)

In experiments, we set λ1 = 2.8 and λ2 = 1.1.

The first term urges that the strokes should stick to its initial posi-
tion,

Edata =
∑
i,t

(Ai,t −Ao
i,t)

2. (7)

Intuitively, this is like attaching a spring between the current brush
stroke and its initial stroke so that it does not deviate too far.

Figure 8: The damped brush stroke system for de-flickering, where
the springs are attached between strokes adjacent in space and
time.

The second term enforces a smoothness constraint in time, i.e. the
stroke should move smoothly,

Esmooth 1 =
∑
i,t

(Ai,t+1 − 2Ai,t +Ai,t−1)
2. (8)

The third term enforces a smoothness constraint between adjacent
strokes in space and time. Let Ni,t denote the neighbor stroke i at
frame t. For an adjacent stroke j ∈ Ni,t, their difference is denoted
by δAi,j,t = Ai,t − Aj,t for relative distance, relative sizes. The
relative difference should remain stable in time.

Esmooth 2=
∑
i,t

∑
j∈Ni,t

(δAi,j,t − δAi,j,t−1)
2. (9)

The energy Edamp is in a quadratic form, even though the neighbor-
hood of each brush stroke may change over time. It can be solved
using the Levenbergy-Marquardt algorithm [Nocedal and Wright
1999] iteratively.
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Figure 9: A few sample frames from the animations from our sys-
tem; The original frame and stylized results are shown in each cell.
(Please view in high 400% resolution in Acrobat reader).

Table 2: Rough timing for each stage of the algorithm running on
3.6GHz CPU with 4GB memory.

Seq. name Quantity Parsing Rendering
Cartoon 147 fr. 10 min. 10 hours

Lady Walk 360 fr. 20 min. 15 hours
Girl Lena 239 fr. 15 min. 13 hours

5 Experimental Results

We apply our system on several video clips and compare the visual
effects with the other state-of-the-art stylization methods, which
are presented in our supplementary material that can be found at
the first author’s homepage. These videos include non-rigid human
motion, camera motion, and large scale scene rotation and shift-
ing. Fig.9 shows a few frames of painterly animations produced
by our system. In order to produce these animations, a user can
specify a keyframe out of every 10∼20 frames, and there are about
1800∼2500 brush strokes in each keyframe. The time expense of
rendering a keyframe is about 15∼20 minutes on a PC with 3.6GHz
CPU and 4GB memory. Besides, adding new strokes to another
keyframe usually takes less than 5 minutes. Propagating strokes is
relatively fast, which takes about 1∼2 minutes per frame. Tab.2
summarizes the system performance.

6 Conclusion: contributions and limitations

In this paper, we propose an interactive system for painterly ani-
mation. Our system has the following contributions: (1) It renders
artistic style animation using a diverse set of example-based brush
strokes, and these strokes are automatically selected according to
the object classes. (2) It sticks the strokes tightly to the object
surface in the animations by warping and shifting strokes in ac-
cordance with the transformation of the object with dense feature
correspondence in both textured and textureless areas. (3) It re-
duces the scintillation effects by several techniques: (i) confining
the strokes inside each object; (ii) the deferred rendering and back-

ward completion for newly birth strokes, and (iii) a damped system
to stabilize strokes in space and time.

The limitation of our method is as follows: The TPS transform
for the stroke propagation and the smoothness energy between the
stokes assume that the underlying motion is continuous and smooth.
This is not always true for stochastic and drastic motion, such as
fires and breaking waves. These drastic events need other mod-
els after the segmentation process. The current representation also
has problems in representing transparent objects, such as steam and
wedding veils.
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