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Facial Landmark Machines: A Backbone-Branches
Architecture with Progressive Representation

Learning
Lingbo Liu, Guanbin Li, Yuan Xie, Yizhou Yu, Qing Wang and Liang Lin

Abstract—Facial landmark localization plays a critical role
in face recognition and analysis. In this paper, we propose a
novel cascaded backbone-branches fully convolutional neural
network (BB-FCN) for rapidly and accurately localizing facial
landmarks in unconstrained and cluttered settings. Our proposed
BB-FCN generates facial landmark response maps directly from
raw images without any preprocessing. BB-FCN follows a coarse-
to-fine cascaded pipeline, which consists of a backbone network
for roughly detecting the locations of all facial landmarks and one
branch network for each type of detected landmark for further
refining their locations. Furthermore, to facilitate the facial
landmark localization under unconstrained settings, we propose
a large-scale benchmark named SYSU16K, which contains 16000
faces with large variations in pose, expression, illumination and
resolution. Extensive experimental evaluations demonstrate that
our proposed BB-FCN can significantly outperform the state-of-
the-art under both constrained (i.e., within detected facial regions
only) and unconstrained settings. We further confirm that high-
quality facial landmarks localized with our proposed network
can also improve the precision and recall of face detection.

Index Terms—Facial Landmark Localization, Cascaded
Backbone-Branches, Fully Convolutional Neural Networks, Un-
constrained Settings.

I. INTRODUCTION

FAcial landmark localization aims to automatically predict
key point positions in facial image regions. This task is

an essential component in many face-related applications, such
as facial attribute analysis [1], face verification [2], [3] and
face recognition [4]–[6]. Although tremendous effort has been
devoted to this topic, its performance is still far from perfect,
particularly on facial regions with severe occlusions or extreme
head poses.

Most of the existing approaches for facial landmark lo-
calization have been developed for a controlled setting, e.g.,
the facial regions are detected in a preprocessing step. This
setting has drawbacks when we work with images taken in
the wild (e.g., cluttered surveillance scenes), where automated
face detection is not always reliable. The objective of this
work is to propose an effective and efficient facial landmark
localization method that is capable of handling images taken in
unconstrained settings and that contain multiple faces, extreme
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Fig. 1. Facial landmark localization in an unconstrained setting. (a) Two
cluttered images with an unknown number of faces. (b) Dense response maps
generated by our method.

head poses and occlusions (see Figure 1). Specifically, we keep
the following issues in mind when developing our algorithm.
• Faces may have large appearance and structure variations

in unconstrained settings due to diverse viewing condi-
tions, rich facial expressions, large pose changes, facial
accessories (e.g., glasses and hats) and aging. Therefore,
traditional global models may not work well because the
usual assumptions (e.g., certain spatial layouts) may not
hold in such environments.

• Boosted-cascade-based fast face detectors, which evolved
from the seminal work of Viola and Jones [7], can only
work well for near-frontal faces under normal conditions.
Although accurate deformable-part-based models [8] can
perform much better on challenging datasets, these mod-
els are slow due to their high complexity. Detection in an
image takes a few seconds, which makes such detectors
impractical for our task.

In this paper, we formulate facial landmark localization as a
pixel-labeling problem and develop a fully convolutional neu-
ral network (FCN) to overcome the aforementioned issues. The
proposed approach produces facial landmark response maps
directly from raw images without relying on any preprocessing
or feature engineering. Two typical landmark response maps
generated with our method are shown in Figure 1.

With the recent advances in deep learning techniques and
large-scale annotated image datasets, such as ImageNet, deep
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convolutional neural network models have achieved significant
progress in generic object detection [9], crowd analysis [10],
[11] and facial landmark localization [12]. Facial landmark
localization is typically formulated as a regression problem.
Among the existing methods that take this approach, the
cascaded deep convolutional neural networks [13], [14] have
emerged as one of the leading methods because of their
superior accuracy. Nevertheless, this three-level cascaded CNN
framework is complicated and unwieldy. It is arduous to jointly
handle the classification (i.e., whether a landmark exists)
and localization problems for unconstrained settings. Long et
al. [15] recently proposed an FCN for pixel labeling, which
takes an input image with an arbitrary size and produces a
dense label map in the same resolution. This approach shows
convincing results for semantic image segmentation and is also
very efficient since convolutions are shared among overlapping
image patches. Notably, classification and localization can
be simultaneously achieved with a dense label map. The
success of this work inspires us to adopt an FCN in our
task, i.e., pixelwise facial landmark prediction. Nevertheless,
a specialized architecture is required because our task requires
more accurate prediction than generic image labeling.

Considering both computational efficiency and localization
accuracy, we pose facial landmark localization as a cascaded
filtering process. In particular, the locations of facial landmarks
are first roughly detected in a global context, and then they are
refined by observing local regions. To this end, we introduce
a novel FCN architecture that naturally follows this coarse-
to-fine pipeline. Specifically, our architecture contains one
backbone network and several branches, with each branch
corresponding to one landmark type. For computational ef-
ficiency, the backbone network is designed to be an FCN with
lightweight filters, which takes a low-resolution image as its
input and rapidly generates an initial multichannel heat map
with each channel predicting the location of a specific land-
mark. We can obtain landmark proposals from each channel of
the initial heat map. We then crop a region centered at every
landmark proposal from both the original input image and the
corresponding channel of the response map. These cropped
regions are stacked together and fed to a branch network for a
fine and accurate localization. Because fully connected layers
are not used in either network, we call our architecture the
cascaded backbone-branches fully convolutional network (BB-
FCN). Thanks to the tailor-designed architecture of the back-
bone network, which can reject most background regions
and retain high-quality landmark proposals, our BB-FCN is
also capable of accurately localizing the landmarks of various
scale faces by rapidly scanning every level of the constructed
image pyramid. Furthermore, we have also discovered that
our landmark localization results can help generate fewer and
higher-quality face proposals, thus enhancing the accuracy and
efficiency of face detection.

In summary, our contributions in this paper can be summa-
rized as follows:
• We propose a new BB-FCN architecture for facial land-

mark localization, which consists of a backbone network
for rough landmark prediction and a set of branch net-
works, where each network is for refining the predictions

of one specific type of landmark.
• We extensively evaluate BB-FCN on several standard

benchmarks (e.g., AFW [8], AFLW [16] and 300W [17]),
and our experiments show that BB-FCN achieves superior
performance in comparison to other state-of-the-art meth-
ods under both constrained (i.e., with face detections)
and unconstrained settings. In particular, our BB-FCN
significantly decreases the average mean error of the
current best-performing method from 8.2% to 6.18% on
AFW and from 6.58% to 6.28% on AFLW.

• We use our facial landmark localization results to guide
R-CNN-based face detection and demonstrate significant
increases in both accuracy and efficiency.

The remainder of this paper is organized as follows. Sec-
tion II discusses related work and differentiates our method
from such works. Section III introduces our proposed BB-
FCN architecture. The experimental results and comparisons
are presented in Section IV. Finally, Section V concludes this
paper.

II. RELATED WORK

Facial landmark localization has long been attempted in
computer vision, and a large number of approaches have been
proposed for this purpose. The conventional approaches for
this task can be divided into two categories: template fitting
methods and regression-based methods.

Template fitting methods build face templates to fit input
face appearance [18]. A representative work is the active
appearance model (AAM) [18], which attempts to estimate
model parameters by minimizing the residual between the
holistic appearance and an appearance model. A vast collection
of methods based on AAM have been proposed [19]–[21].
Rather than using holistic representations, a constrained local
model (CLM) [22] learns an independent local detector for
each facial keypoint and a shape model for capturing valid
facial deformations. Improved versions of CLM primarily
differ from each other in terms of local detectors. For in-
stance, Belhumeur et al. [23] detected facial landmarks by
employing SIFT features and SVM classifiers, and Liang et
al. [24] applied AdaBoost to the HAAR wavelet features.
These methods are generally superior to the holistic methods
due to the robustness of patch detectors against illumination
variations and occlusions.

Regression-based facial landmark localization methods can
be further divided into direct mapping techniques and cas-
caded regression models. The former directly maps local or
global facial appearances to landmark locations. For example,
Dantone et al. [25] estimated the absolute coordinates of facial
landmarks directly from an ensemble of conditional regression
trees trained on facial appearances. Valstar et al. [26] applied
boosted regression to map the appearances of local image
patches to the positions of corresponding facial landmarks.
Cascaded regression models [27]–[33] formulate shape esti-
mation as a regression problem and make predictions in a
cascaded manner. These models typically start from an initial
face shape and iteratively refine the shape according to learned
regressors, which map local appearance features to incremental
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shape adjustments until convergence. Cao et al. [27] trained a
cascaded nonlinear regression model to infer an entire facial
shape from an input image using pairwise pixel-difference
features. Burgos-Artizzu et al. [34] proposed a novel cascaded
regression model for estimating both landmark positions and
their occlusions using robust shape-indexed features. Another
seminal method is the supervised descent method (SDM) [29],
which uses SIFT features extracted around the current shape
and minimizes a nonlinear least-squares objective using the
learned descent directions. All these methods assume that an
initial shape is given in some form, e.g., a mean shape [29],
[30]. However, this assumption is too strict and may lead to
poor performance on faces with large pose variations.

Despite acknowledged successes, all the aforementioned
conventional approaches rely on complicated feature engi-
neering and parameter tuning, which consequently limits their
performance in cluttered and diverse settings. Recently, con-
volutional neural networks and other deep learning models
have been successfully applied to various visual computing
tasks, including facial landmark estimation. Zhou et al. [35]
proposed a four-level cascaded regression model based on
CNNs, which sequentially predicted landmark coordinates.
Zhang et al. [12] employed a deep architecture to jointly op-
timize facial landmark positions with other related tasks, such
as pose estimation [36] and facial expression recognition [37].
Zhang et al. [38] proposed a new coarse-to-fine DAE pipeline
to progressively refine facial landmark locations. In 2016, they
further presented de-corrupt autoencoders to automatically
recover the genuine appearance of the occluded facial parts,
followed by predicting the occlusive facial landmarks [39].
Lai et al. [40] proposed an end-to-end CNN architecture to
learn highly discriminative shape-indexed features and then
refined the shape using the learned deep features via sequential
regressions. Merget et al. [41] integrated the global context
in a fully convolutional network based on dilated convolu-
tions for generating robust features for landmark localization.
Bulat et al. [42] utilized a facial super-resolution technique
to locate the facial landmarks from low-resolution images.
Tang et al. [43] proposed quantized densely connected U-
Nets to largely improve the information flow, which helps
to enhance the accuracy of landmark localization. RNN-
based models [44]–[46] formulate facial landmark detection
as a sequential refinement process in an end-to-end manner.
Recently, 3D face models [47]–[51] have also been utilized to
accurately locate the landmarks by modeling the structure of
facial landmarks. Moreover, many researchers have attempted
to adapt some unsupervised [52]–[54] or semisupervised [55]
approaches to improve the precision of facial landmark detec-
tors.

Although these methods have achieved remarkable perfor-
mance, most of them were developed for a controlled setting,
which requires a detected frontal face as the input. These meth-
ods basically pose landmark estimation as a parameterized
regression process, e.g., mapping landmark coordinates, which
actually restricts the flexibility in practice due to the fixed
form of the parameterization. Such trained models struggle in
unconstrained settings (e.g., unknown number of faces in an
image). In contrast, our approach produces pixelwise response

maps, making it very flexible in localizing facial landmarks in
the wild and in integrating with other methods.

III. THE CASCADED BB-FCN ARCHITECTURE

Given an unconstrained image I with an unknown number
of faces, our facial landmark localization method aims to
locate all facial landmarks in the image. We use Lk

i = (xki , y
k
i )

to denote the location of the ith landmark of type k in image
I , where xki and yki represent the coordinates of this landmark.
Then, our task is to obtain the complete set of landmarks in
I ,

Det(I) = {(xki , yki )}i,k, (1)

where k = 1, 2, ...,K. When describing our method and
analyzing the proposed network, we set K = 5 as an example,
but our method is also applicable to any other values of K.
In the experimental section, we will also present simultaneous
localization results for 29 landmark types and 68 landmark
types. Here, the five landmark types are the left eye (LE),
right eye (RE), nose (N), left mouth corner (LM) and right
mouth corner (RM).

In contrast to existing approaches that predict landmark
locations through coordinate regression, we exploit FCNs to
directly produce response maps that indicate the probability of
landmark existence at every image location. FCNs have shown
excellent performance in various pixel-labeling problems, such
as semantic image segmentation [15], object contour detec-
tion [56] and salient object detection [57]–[59]. Applying
an FCN to an image resembles a deep filtering process. An
FCN naturally operates on an input image of any size, and it
produces an output with the corresponding spatial dimensions.
In our method, the predicted value at each location of the
response map can be viewed as a series of filtering operations
applied to a specific region of the input image. This specific
region is called the receptive field. An ideal series of filters
should have the following property: a receptive field with a
landmark of a specific type located at its center should return
a strong response value, whereas receptive fields without that
type of landmark in the center should yield weak responses.
Let FWk(P ) denote the result of applying a series of filtering
functions with parameter setting Wk for type-k landmarks to
receptive field P , and it is defined as follows:

FWk(P ) =

{
1 if P has a type-k landmark in the center;
0 otherwise.

(2)
Applying this function in a sliding window manner to w × h
overlapping receptive fields in an input image I generates a
response map FWk ∗ I of size w×h, whose value at location
(x, y) can be defined as

(FWk ∗ I)(x, y) = FWk(I(P (x, y))), (3)

where I(P (x, y)) stands for the image patch corresponding
to the receptive field of location (x,y) in the output response
map.

If the response value is larger than a threshold θ, a landmark
of type k is detected at the center of the patch in image I .
Thus,

Det(I)={(center of P (x, y))|(FWk ∗ I)(x, y) > θ}. (4)
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Fig. 2. The main architecture of the proposed backbone-branches fully convolutional neural network. This approach is capable of producing pixelwise facial
landmark response maps in a progressive manner. The backbone network first generates low-resolution response maps that identify approximate landmark
locations via a fully convolutional network. The branch networks then produce fine response maps over local regions for more accurate landmark localization.
There are K (e.g., K = 5) branches, each of which corresponds to one type of facial landmark and refines the related response map. Only downsampling,
upsampling, and prediction layers are shown, and intermediate convolutional layers are omitted in the network branches.

According to Equation (3), there is a trade-off between
localization accuracy and computational cost. To achieve high
accuracy, we need to compute response values for significantly
overlapping receptive fields. However, to accelerate the detec-
tion process, we should generate a coarse response map on less
overlapping receptive fields or from a lower-resolution image.
This motivates us to develop a cascaded coarse-to-fine process
to localize landmarks progressively, in a spirit similar to the
hierarchical deep networks in [60] for image classification.
Specifically, the architecture of our deep network consists of
two components. The first component generates a coarse re-
sponse map from a relatively low-resolution input, identifying
rough landmark locations. Then, the other component takes
local patches centered at every estimated landmark location
and applies another filtering process to the local patches to
obtain a fine response map for accurate landmark localization.
This cascaded two-stage strategy enables us to accurately
detect facial landmarks at a high speed.

In this paper, this two-component architecture is imple-
mented as a BB-FCN, where the backbone network generates
coarse response maps for rough location inference and the
branch networks produce fine response maps for accurate
location refinement. Figure 2 shows the architecture of our
network.

Let a convolutional layer be denoted as C(n, h × w × ch)
and a deconvolutional layer be denoted as D(n, h×w× ch),
where n represents the number of kernels and h, w, and
ch respectively represent the height, width and number of
channels of a kernel. We also use MP to denote a max-

pooling layer. In our backbone-branch network, the stride of all
convolutional layers is 1, and the stride of all deconvolutional
layers is 2. The size of the max-pooling operator is set to 2×2,
and the stride for pooling is 2.

A. Backbone Network

The backbone network is an FCN. It can efficiently generate
an initial low-resolution response map for input image I .
When localizing facial landmarks in an image taken in an
unconstrained setting, it can effectively reject a majority of
background regions with a threshold. Let Wc denote its
parameters and Hk(I;Wc) denote the predicted heat map
of image I for the kth type of landmarks. The value of
Hk(I;Wc) at position (x, y) can be computed with Equation
(3). We train the backbone FCN using the following loss
function:

L1(I;Wc) =

K∑
k=1

||Hk(I;Wc)−Hk
c (I)||2, (5)

where Hk
c (I) denotes the ground-truth heat map for type-k

landmarks.
The backbone network is trained with a patch-based op-

timization scheme. During the training phase, the human
faces are cropped from the unconstrained crowded images and
resized to a low resolution of 32 × 32. Taking the cropped
patches of whole faces as input, the backbone network can
implicitly learn the geometric constraints among landmarks
and generate the response heat maps of all facial landmarks
together. Specifically, the backbone network consists of eight
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(a) (b) 
Fig. 3. (a) An isolated point cannot accurately reflect discrepancies among
multiple annotations. The three points near the right mouth corner were
annotated by three different workers. (b) We label a landmark as a small
circular region rather than an as an isolated point in the ground-truth heat
map.

convolutional layers with lightweight filters and two deconvo-
lutional layers, which are detailed as follows: C(20, 5×5×3)
- C(20, 5×5×20) - MP - C(30, 5×5×20) - C(30, 5×5×30)
- MP - C(40, 5×5×30) - C(40, 5×5×40) - D(30, 2×2×40)
- C(30, 5× 5× 30) - D(15, 2× 2× 30) - C(5, 1× 1× 15).

B. Branch Network

The branch network is composed of K branches, with each
branch responsible for detecting one type of landmark. All the
K branches are designed to share the same network structure.
In branch networks, a cropped patch from the original input
image and a region from the backbone’s output heat map are
stacked together as its input. Therefore, the input data consist
of four channels, including 3 channels from the original RGB
image and 1 channel from the corresponding channel of the
backbone’s output heat map. To make the branch network
better suited for landmark position refinement, we resize the
original input image to 64× 64, which is four times the size
of the backbone’s input, and simultaneously magnify the heat
map from the backbone network to 64×64. The resolution of
all the cropped patches is 24 × 24, and they are all centered
at the landmark position predicted by the backbone network.
As shown in Fig. 2, each branch is trained in the same way as
the backbone network. We denote the parameters of the branch
component for type-k landmarks as Wk

f , and we respectively
use H(P ;Wk

f ), H
k
0 (P ) to denote the predicted fine heat map

and the corresponding ground-truth heat map of patch P . The
loss function of this branch component is again defined as
follows:

L2(P ;W
k
f ) = ||H(P ;Wk

f )−Hk
0 (P )||2. (6)

Each branch component is composed of 5 convolutional layers
without any pooling operations. The dimensionality of its input
data is 24×24×4. The first 4 convolutional layers consist of 5
channels with the kernel size equal to 5 and stride equal to 1,
while the last convolutional layer consists of 5 channels with
a kernel size of 1 and stride of 1. As shown in Figure 2, each
branch FCN component is detailed as follows: C(5, 5×5×4) -
C(5, 5×5×5) - C(5, 5×5×5) - C(5, 5×5×5) - C(1, 1×1×5).

C. Ground-truth Heat Map Generation

To our knowledge, the ground truth of a facial landmark
is traditionally given as a single pixel location (x, y) in all

public datasets. To adapt such landmark specifications for the
training stage of our proposed BB-FCN network, we generate
the ground-truth heat map of an input image according to the
annotated facial landmark locations. The most straightforward
method assigns “1” to a single pixel corresponding to each
landmark location and “0” to the remaining pixels. However,
we argue that this method is suboptimal because an isolated
point cannot reflect discrepancies among multiple annotations.
As shown in Figure 4(a), the right mouth corner has three
slightly different locations marked by three annotators. To
take such discrepancies into consideration, we label each
landmark as a small region rather than as an isolated point.
We first initialize the heat map with zeros everywhere, and
then for each landmark p, we mark a circular region with
center p and radius R in the ground-truth heat map with
1. Different radii are adopted for the backbone network and
branch networks, denoted as Rc and Rf , respectively. Rf is set
to be smaller than Rc because the backbone network estimates
coarse landmark positions while the branch networks predict
accurate landmark locations.

D. Selective Response Map Training

According to Equations (5) and (6), the loss is computed
over the full response map. However, this approach gives rise
to a severe imbalance between positive and negative training
samples because landmarks are very sparse. This unbalanced
setting could mislead the response map to take all zero values
when the loss is minimized. Therefore, we adopt a selective
scheme, i.e., randomly choosing the same number of non-
landmark locations as landmark locations in the ground-truth
response map to propagate the errors while inhibiting all other
non-landmark locations during error backpropagation. For
some invisible landmarks or background images, the ground-
truth maps have no positive region, and we only select a small
ratio of the non-landmark locations to propagate. This selective
training scheme is critical in ensuring the convergence of
training sessions in our experiments. In addition, for more
effective training and more precise results, hard negative
mining is also employed. In the selective phase, hard negative
samples, which are non-landmark locations with large output
values, are selected to propagate the errors when the loss on
the validation set stops decreasing.

E. Implementation Details

We have implemented our proposed BB-FCN network in
Caffe. A GTX Titan X GPU is used for both training and
testing. During training, we randomly initialize our networks
by drawing weights from a zero-mean Gaussian distribution
with a standard deviation equal to 0.01. The size of a minibatch
is set to 40, and the ratio between the numbers of positive and
negative training images in each batch is 1 : 1 for the backbone
network and 4 : 1 for the branch networks. The positive train-
ing images are image regions cropped from face images in our
SYSU16K dataset, which will be described in Section IV-A.
The intersection-over-union (IoU) between any cropped region
and the original face image is above 0.5. The negative training
samples are nonfacial regions randomly cropped from the
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Fig. 4. Illustration of the facial landmark testing procedure under an unconstrained setting. Given an unconstrained image, we first construct an image
pyramid. Then, we feed the images at different levels of the pyramid to the backbone network for generating the landmark candidate regions. After adopting
a nonmaximum suppression (NMS) to reduce the highly overlapping regions, we refine the locations of the remaining candidate regions with the branch
networks. Best viewed in color with magnification.

Pascal VOC 2012 dataset [61]. Both the backbone and branch
networks are trained using backpropagation and stochastic
gradient descent (SGD) with the momentum set to 0.9 and
weight decay set to 0.0005. When training the backbone
network, we set the learning rate to 0.001 and the total number
of iterations to 25K. The radius Rc of landmark circles is set to
5% of the width of the input image. For the branch networks,
the total number of iterations is set to 50K. The learning rate
is set to 10−4 for the first 30K iterations and 10−5 for the last
20K iterations. The radius Rf of landmark circles is set to 3%
of the width of the input image. During training, only a subset
of the non-landmark locations in the heat map are chosen to
propagate errors, as described in Section III-D.

During the testing phase, our BB-FCN network is able to
accurately locate facial landmarks under both constrained and
unconstrained settings. For convenience in the following part,
we denote the average position of the n locations with the
highest response values in a 2D heat map M as Ave{M,n}.

1) Constrained setting: Given a cropped facial image I , we
first resize it to 32×32 and feed it to the backbone network to
generate the coarse response heat map Mc. Because the radius
Rc is set to 32× 5% ≈ 2, there are 13 pixels in the ground-
truth landmark circle of the backbone network. For landmark
type k, we take Ave{Mk

c , 13} as its coarse landmark location,
where Mk

c is the kth channel of Mc.
We resize I and Mc to 64 × 64. For landmark type k, we

crop a 24× 24 patch centered at the coarse landmark location
from the concatenation of I and Mk

c , and we feed the patch
into the kth subnet of the branch networks to generate the fine
map Mk

f . As the radius Rf is set to 64× 3% ≈ 2, we take
Ave{Mk

f , 13} as the final location of landmark type k.
2) Unconstrained setting: Given an unconstrained image,

we construct an image pyramid of L levels by first resizing
the image to make the length of the smaller side equal to
32 and gradually upsampling it with a scale factor of 1.16.
The level number L can be dynamically adjusted based on
the acceptable minimum face size. For example, we set L as
20 to locate the landmarks of the tiny faces in the AFW [8]
dataset.

We further feed the images at different pyramid levels to the
backbone network for generating multiple coarse heat maps

and denote the kth channel of the coarse heat maps at the
lth level as Mk

c,l. When the response value at location (x,y)
of Mk

c,l is higher than a given threshold, we assert that there
is a 12× 12 candidate region of landmark type k centered
at that position. We denote this candidate region with a tuple
{k, l, v, (x, y)}, where v is the response value at location (x,y).

A single landmark may be detected multiple times at a
specific level or at different levels of the image pyramid. To
reduce redundancy, for each landmark type, we first map all
landmark candidate regions to the original image and then
adopt nonmaximum suppression (NMS) with an IOU threshold
of 0.5 on these regions based on their response values. For a
remaining landmark candidate region {k, l, v, (x, y)}, we crop
its corresponding 12× 12 heat map patch from Mk

c,l and the
RGB patch from the image at the lth level of the pyramid
and further resize these two patches to 24×24 before feeding
them into the kth subnet of the branch networks to generate the
fine heat map Mk

f . The final landmark location is computed
by Ave{Mk

f , 13}.

IV. EXPERIMENTAL RESULTS

A. Datasets
The existing public datasets of facial landmark localization

are either too small and contain only hundreds of images
or have very limited variation across different samples, e.g.,
most of the samples are near-frontal faces.These two situations
greatly limit the performance of facial landmark localization
under unconstrained settings. Therefore, we build a large-
scale dataset called SYSU16K, which contains 7317 images
(6317 for training and 1000 for validation) with 16K faces
collected from the Internet. Each face is accurately annotated
with 72 landmarks. With a large variation, the faces in our
dataset exhibit various poses, expressions, illuminations and
resolutions, and they may have severe occlusions. In addition,
to train our proposed BB-FCN, we also randomly select 7542
natural images (6542 for training and 1000 for validation)
without any faces from Pascal-VOC2012 as negative samples.

In our experiment, we evaluate our method on four public
challenging datasets: LFPW [23], AFW [8], AFLW [16] and
300W [17]. There is no overlap among the training, validation
and evaluation datasets.
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TABLE I
AVERAGE RECALLS OF THE COMPLETE BACKBONE-BRANCHES NETWORK

AND THE BACKBONE NETWORK ALONE ON AFW IN UNCONSTRAINED
SETTINGS. PE REFERS TO THE ACCEPTABLE POSITION ERROR.

Model 15 landmarks 30 landmarks
PE=5% PE=10% PE=5% PE=10%

backbone 31.1% 69.5% 31.5% 70.9%
full model 40.4% 75.6% 41.5% 77.6%

AFLW: This dataset contains 21,080 faces in the wild. This
dataset is very suitable for evaluating the performance of face
alignment across a large range of poses. The selection of
testing images from AFLW is as in [12], which randomly
chooses 3000 faces, and 39% of them are non-frontal.

AFW: This dataset contains 205 images (468 faces) collected
in the wild. Invisible landmarks are not annotated, and each
face is annotated with at most 6 landmarks.

LFPW: This dataset contains 1,132 training images and 300
testing images. The images in this dataset are given in the form
of URLs, and some image links are no longer valid. We can
only download 811 training images and 230 testing images.

300W: The training set (3148 images) of this dataset is
collected from the training sets of several exiting datasets,
including LFPW (811), HELEN [62] (2000) and AFW (337).
The full testing set is split into two subsets: (1) the common
subset consists of the testing sets of LFPW (224) and HELEN
(330), and (2) the challenging subset is composed of 135
images from IBUG [17]. All the images in this dataset are
annotated with 68 facial landmarks.

B. Evaluation Metric

To evaluate the accuracy of facial landmark localization, we
adopt the mean (position) error as the metric. For a specific
type of landmark, the mean error is calculated as the mean
distance between the detected landmarks of the given type
in all testing images and their corresponding ground-truth
positions, normalized with respect to the interocular distance.
The (position) error of a single landmark is defined as follows:

err =

√
(x− x′)2 + (y − y′)2

l
× 100%, (7)

where (x, y) and (x′, y′) are the ground-truth and detected
landmark locations, respectively, and l is the interocular dis-
tance. For the 300W dataset, the interocular distance is set to
the Euclidean distance between the outer corners of two eyes,
while for the other three landmark datasets, it is denoted as
the Euclidean distance between the center points of the two
eyes. In our experiments, we evaluate the mean error of every
type of facial landmark and the average mean error over all
landmark types, i.e., LE (left eye), RE (right eye), N (nose),
LM (left mouth corner) and RM (right mouth corner), as well
as A (average mean error of the five facial landmarks).

C. Performance Evaluation for Unconstrained Settings

Our BB-FCN is capable of dealing with facial images
taken in unconstrained settings, e.g., the locations of facial

regions and the number of faces in the image are unknown.
In this setting, we use the recall-error curves to evaluate
the performance of all comparative methods. A predictive
facial landmark is considered to be correct if there exists
a ground-truth landmark of the same type within the given
position error. For a fixed number m (such as 15 or 30) of
predictive landmarks, the recall rate (the fraction of ground-
truth annotations covered by predictive landmarks) varies as
the acceptable position error increases; thus, a recall-error
curve can be obtained.

To the best of our knowledge, very few facial landmark
localization methods have been evaluated in the context of
landmark detection under unconstrained settings. For fairness,
we have also implemented a regression-based method using an
FCN with nine convolutional layers, which can be expressed
as follows: C(20, 5 × 5 × 3) - C(20, 5 × 5 × 20) - MP -
C(30, 5×5×20) - C(30, 5×5×30) - MP - C(40, 5×5×30)
- C(40, 5× 5× 40) - C(30, 2× 2× 40) - C(30, 4× 4× 30) -
C(15, 1×1×30). With a training strategy similar to that of our
backbone network, this regression-based network also takes a
32 × 32 image patch as input and generates a 15 × 8 × 8
response map, each pixel of which corresponds to a 4 × 4
region of the input image. We formulate every three channels
of the output response map as a group. Additionally, each pixel
on a specific group indicates the probability of existence and
the regressed two-dimensional location of the corresponding
landmark type in a 4× 4 region. During the testing phase, the
same image pyramid is fed into the regression-based network
for facial landmark inference.

We evaluate the performance of our BB-FCN and the
regression-based deep model on the AFW dataset using an
unconstrained setting. For those faces where one or both eyes
are invisible, the interocular distances are set as 41.9% of the
length of their annotated bounding boxes1. Figure 5 shows the
recall-error curves of different types of landmarks, where the
curves labeled “fine” and “coarse” illustrate the performance
of our complete BB-FCN model and the single backbone
network, respectively. The curve labeled “regression” indicates
the performance of the above regression network based on a
single FCN.

Our methods significantly outperform the regression net-
work. With a prediction of 15 landmarks for each landmark
type, the full model recalls 45% more landmarks than the
regression network when the acceptable position error is set
within 8% of the interocular distance. Given more predicted
landmarks, our complete BB-FCN model can achieve higher
landmark recalls. As the number of landmark predictions of
each type increases to 30, the recalls of five landmarks within
a position error of 25% of the interocular distance are 94.1%,
95.7%, 91.5%, 95.8% and 95.2%, respectively. Meanwhile, the
full model performs much better than the backbone network
alone. The average recalls of five landmarks are shown in
Table I, which shows that the full model improves the recall
rate by approximately 10% and 6% when the acceptable
position error is set as 5% or 10%, respectively. As shown

1 The average ratio between the interocular distances of the common faces
and the length of their annotated bounding boxes is 41.9% on AFW
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Fig. 5. The recall of landmarks on AFW in unconstrained settings. The curves labeled “fine” and “coarse” show the performance of models with and without
branch networks, respectively. The curve labeled “regression” presents the performance of the regression network based on a single fully convolutional network.
The top five figures demonstrate the recall performance when only 15 landmarks of each landmark type are predicted for each image, while the bottom five
figures are the results with 30 predictive landmarks for each type of each image.

Fig. 6. Qualitative facial landmark detection results in unconstrained settings. Our BB-FCN is capable of dealing with unconstrained facial images, even
though the locations of facial regions and the number of faces in the image are unknown. Best viewed in color with zoom.

in Figure 6, our BB-FCN can generate high-quality heat maps
and detect almost all the facial landmarks, even though some
false positives exist. These false positives are some tiny and
blurry regions (such as treetops and hands) that have rich
texture or have similar shapes and colors as faces.

D. Performance Evaluation for Constrained Settings

In this setting, because the face bounding boxes are given,
we can directly feed the face regions into our BB-FCN
network to locate the facial landmarks. We will compare our
method with state-of-the-art methods on the five landmark
types and on dense landmark types.

1) Evaluation on Five Landmark Types: We compare
our method with other state-of-the-art methods, i.e., 2 robust
cascaded pose regression (RCPR) [34], tree structured part
model (TSPM) [8], Luxand face SDK 3, explicit shape

2Some results on AFW and AFLW are quoted from [12].
3Luxand face SDK: http://www.luxand.com/

TABLE II
AVERAGE MEAN ERRORS OF OUR METHOD AND OF ALL OTHER

COMPETING METHODS ON AFW AND AFLW.

Dataset AFW AFLW
TSPM 14.31 15.9
ESR 12.2 13
CMD 11.1 13.1

Luxand 10.4 12.4
RCRR 9.3 11.6
SDM 8.8 8.5

TCDCN 8.2 8.0
RAR - 7.23

MTCNN - 6.9
UD - 6.58
Ours 6.18 6.28

regression (ESR) [27], cascaded deformable shape model
(CDM) [63], supervised descent method (SDM) [29], tasks-
constrained deep convolutional network (TCDCN) [12], mul-
titask cascaded convolutional networks (MTCNN) [64], recur-
rent attentive-refinement networks (RAR) [45], and unsuper-

http://www.luxand.com/
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Fig. 7. Comparisons with state-of-the-art methods on two public datasets.
The top row shows the corresponding results on AFW, and the bottom row
shows the corresponding results on AFLW. The average mean errors of all
considered methods are summarized in Table II.

TABLE III
AVERAGE MEAN ERRORS OF LANDMARK DETECTION ON THE 300W

DATASET.
Methods Common Set Challenging Set Full Set
TSPM 8.22 18.33 10.22
RCPR 6.18 17.26 8.35
SDM 5.57 15.40 7.50
ESR 5.28 17.00 7.58
LBF 4.95 11.98 6.32

CFSS 4.73 9.98 5.76
CFAN 5.50 16.78 7.69

3DDFA 6.15 10.59 7.01
3DDFA+SDM 5.53 9.56 6.31

TCDCN 4.8 8.6 5.54
RAR 4.12 8.35 4.94

Pose-Invariant 5.43 9.88 6.30
RDR 5.03 8.95 5.80

Two-StageOD 4.36 7.56 4.99
RCN+ 4.20 7.78 4.90
Ours 3.85 7.50 4.56

vised discovery (UD) [53].
On the AFW dataset, our average mean error over the five

landmark types is 6.18%, which is an improvement over the
performance of the state-of-the-art TDCN by 24.6%. On the
AFLW dataset, our BB-FCN model achieves 6.28% average
mean error, a 21.5% improvement over TDCN. Figure 7 and
Table II demonstrate that our BB-FCN network outperforms
all competing methods on the three datasets. The qualitative
results presented in Figure 8 show that our method is robust
under occlusions, exaggerated expressions and extreme illu-
mination.

2) Evaluation on Dense Landmark Types: We can use
our BB-FCN network for dense landmark prediction by simply
extending the number of branches in the branch network. We
evaluate our extended method on LFPW with 29 landmarks
and on 300W with 68 landmarks. Because dense landmark
prediction requires more facial details to distinguish landmarks
with similar appearances, such as left-eyebrow-center-top and
left-eyebrow-center-bottom, we enlarge the input images of
BB-FCN to 64 × 64. Due to the differences between the
landmark types of our collected dataset and LFPW, we fine-

TABLE IV
AVERAGE MEAN ERRORS OF OUR METHOD AND ALL OTHER COMPETING

METHODS ON LFPW.
Methods CE ESR ERT Ours

Error 4.00 3.43 3.80 3.35

tune the network using the training set of LFPW. Moreover,
for the 68 landmark types, we train our network from scratch
with the training set of the 300W dataset.

We compare our method with other state-of-the-art methods
on the LFPW dataset. The other methods include consensus
of exemplars (CE) [23], explicit shape regression (ESR) [27]
and ensemble of regression trees (ERT) [28]. Table IV shows
that our BB-FCN achieves 3.35% average mean error, outper-
forming the other three state-of-the-art methods.

We also compare the performance of our proposed method
with the results of other state-of-the-art methods on the
300W testing set with 68 landmarks. The first class of com-
pared methods are cascaded regression-based models, includ-
ing TSPM, RCPR, SDM, ESR, LBF [30] and CFSS [65].
The second class are deep-learning-based methods, includ-
ing TCDCN, 3DDFA [47], CFAN [38], RAR [45], Pose-
Invariant [66], RDR [67], Two-StageOD [68], and RCN+ [55].
As shown in Table III, our proposed method significantly
outperforms all the other state-of-the-art methods across all
different testing sets; specifically, our complete model low-
ers the average mean error achieved by the best-performing
existing algorithm (RCN+) by 8.3%, 3.6% and 6.9% on the
common set, the challenging set and the full set, respectively.
Figure 9 presents some example results of our proposed pixel-
labeling method for dense landmark prediction.

E. Ablation Study

Our proposed BB-FCN is composed of two components:
the backbone network and the branch networks. To show
the effectiveness and necessity of these two components, we
compare the landmark prediction results produced by the
single backbone network with those of the complete BB-FCN
network. As shown in Table V, the average mean error on
AFLW is decreased from 8.31% to 6.28%, with an approxi-
mately 24.4% relative improvement, after the branch networks
are added to perform landmark refinement. The quantitative
comparison shown in Figure 10 further demonstrates that the
prediction error of every type of facial landmark enjoys a
varying degree of reduction on LFPW. Figure 11 shows the
visual improvements achieved with the branch networks over
the single backbone network. As shown, the output heat maps
of the branch networks are more compact and precise than
those of the backbone network, which can well explain the
better performance of branch networks.

F. The Effectiveness of Face Proposal Generation

In this experiment, we demonstrate the effectiveness of our
landmark prediction network in face proposal generation. A
predicted facial landmark typically indicates the existence of
a face; therefore, we can generate face proposals from the
response heat map of the BB-FCN. For a type-k predicted
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Fig. 8. Qualitative facial landmark localization results of our method. The first row shows the result on AFW, while the second row shows the result on
AFLW. Our method is robust under occlusions, exaggerated expressions and extreme illumination.

Fig. 9. Qualitative facial landmark localization results of our method on the 300W dataset. The first row shows the result on the common set, while the
second row demonstrates the result on the challenging set.
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Fig. 10. Performance evaluation of the complete backbone-branches network
and the backbone network alone on LFPW. The mean error of every type of
landmark is decreased to a certain degree when the branch networks are used.
The 30th column is the average mean error.

TABLE V
AVERAGE MEAN ERRORS OF THE COMPLETE BACKBONE-BRANCHES

NETWORK AND THE BACKBONE NETWORK ON AFW AND AFLW.

landmark type AFW AFLW
backbone full model backbone full model

LE 7.02 5.69 9.46 6.02
RE 6.79 5.72 8,60 7.08
N 8.35 6.71 8.39 6.31

LM 7.11 5.22 7.40 5.83
RM 7.98 7.58 7.73 6.15
A 7.45 6.18 8.31 6.28

facial landmark at level l, we generate a 32×32 face candidate
window centered at the landmark location from the RGB
image at the lth level of the pyramid.We then apply NMS to
face proposals generated using each type of landmark. After

Backbone Network Backbone Network Branch Network Branch Network 

Fig. 11. Examples of improvements made by the branch networks. The
response heat maps of the branch networks are more compact and precise.
Best viewed in color.

fine-tuning the location and edge length of face proposals with
Net-12 (the first network of cascade CNN [69]), we apply
NMS to all face proposals again.

We compare our method with three generic object proposal
generators [70]–[72] and a face-specific proposal generator,
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TABLE VI
THE NUMBER OF PROPOSALS NEEDED FOR DIFFERENT RECALL RATES ON

FDDB.
Proposal method 75% 80% 85% 90%

EdgeBox 132 214 326 600
MCG 191 292 453 941

Selective Search 153 228 366 641
EdgeBox+Faceness 21 47 99 288

MCG+Faceness 13 23 55 158
Selective Search+Faceness 24 41 91 237

Ours >2 <3 5 9

Faceness [73], on FDDB. For a fair comparison, follow-
ing [73], we also transform the original ground-truth ellipses
in FDDB into minimal rectangular bounding boxes. Table VI4

shows that our method achieves high recalls using a very small
number of face proposals due to the accuracy of landmark
localization. Our method can detect 72.8% of faces using
only two proposals per image and 81.2% of faces using three
proposals per image on FDDB. It detects 91.5% of faces when
at most 20 face proposals are generated from each image.
With a similar proposal generation strategy as our method,
Faceness [73] utilizes facial attributes to calculate the facial
part response maps and then generates the region proposal
from these response maps. Compared with [73], our method
can generate more accurate landmark (part) response maps by
explicitly locating the facial landmarks, and it is more robust
to overcome partial occlusions and head pose variations.

G. Evaluation on Face Detection Performance

Our BB-FCN network can locate various landmarks in
unconstrained settings and generate high-quality face pro-
posals, which can enhance the performance of existing face
detectors, such as cascade CNN [69], particularly under severe
occlusions and large pose variation. Cascade CNN is one of
the up-to-date fast face detectors. It relies on six cascaded
convolutional neural networks to locate faces in an image.
We retrain this detector using our collected landmark dataset
and Pascal VOC 2012, and we achieve similar performance
on FDDB. We replace the original face proposals used by
cascade CNN with our landmark-based proposals. All other
parts of the method remain the same. The experimental results
indicate that the modified cascade CNN achieves state-of-the-
art performance on two public face detection benchmarks:
FDDB and AFW.

1) FDDB: As a large-scale face detection benchmark,
FDDB contains 5,171 annotated faces in 2,845 images. It uses
elliptic face annotations and defines two types of evaluations:
the discontinuous score and continuous score. We use the
discontinuous score evaluation, which counts the number of
detected faces versus the number of false alarms. A detected
bounding box is taken as the true positive only if the IoU
between this bounding box and the bounding box of a ground-
truth face is above 0.5. We uniformly enlarge our square
bounding boxes vertically by 25% to better approximate
elliptic annotations in FDDB.

As shown in Figure 12, face proposals defined by different
landmark types exhibit different levels of effectiveness in face

4The results from the compared methods are quoted from [73].

detection. The nose landmark achieves the best performance
among all landmark types. Using face proposals defined by
all five landmark types significantly improves the performance
achieved with individual landmark types.

We compare our method with nine recently published
state-of-the-art methods on the FDDB dataset. These meth-
ods include cascade CNN [69], Faceness [73], CCF [74],
Conv3d [75], HeadHunter [76], joint cascade [77], boosted
exemplar [78], ACF [79] and NDP [78]. Figure 12 shows that
our method outperforms all nine state-of-the-art methods by
a considerable margin. When the number of false positives
is fixed at 167, our method achieves a significant margin
of 3.51% in recall rate over the baseline cascade-CNN [69].
When the number of false positives is fixed at 350, our method
achieves a 90.17% recall rate, which is higher than the 88.92%
recall rate achieved by Faceness [73]. When the number of
false positives increases to 500, our method obtains a recall
rate of 90.6% with at most 20 face proposals per images. In
contrast, when trained with approximately 83K face images,
joint training cascade CNN [80] generates nearly 1000 propos-
als on average before applying the MNS and only obtains a
recall of 88.2% with 1000 false positives. Recently, SAFD [81]
trained their network with 350K private face images and
obtained a recall of 93.8% with 1000 false positives. However,
our method can achieve competitive performance with only
16K face images in our SYSU16K dataset.

2) AFW: We adopt the precision-recall protocol when
performing evaluation on the AFW dataset. We compare
our method with Faceness [73], HeadHunter [76], structured
models [82], SquareChnFtrs-5 [76], Shen et al. [83], TSM [8],
Face.com, Face++ and Picasa. As shown in Figure 13, with an
average precision of 97.46%, the performance of our detector
is comparable to that of other state-of-the-art techniques.

H. Limitations

In this section, we present failure cases of our BB-FCN
network. In our experiments, we found that BB-FCN occa-
sionally generates results that do not conform to the normal
spatial layout of human facial landmarks, as shown in Fig-
ure 14(a). The main reason for this phenomenon is the lack of
constraints on relative landmark positions in the loss function.
Second, BB-FCN fails to highlight facial landmarks in blurry
images, as shown in Figure 14(b). This negatively impacts the
performance of our face proposal method on FDDB, which
contains many blurry faces.

I. Runtime Efficiency

One of the most important characteristics of our landmark
and face detectors is the efficiency. Our method achieves prac-
tical runtime efficiency via a coarse-to-fine pipeline. Table VII
shows the running times of several deep models for five facial
landmark detection under constrained settings. Among these
models, TCDCN requires 18 ms to process a facial image on
an Intel Core i5 CPU, which is 7 times faster than CDCN [13].
CFAN [38] costs 30 ms to run multiple autoencoders. Our
method only needs 9 ms on an Intel Core i5 2.80 GHz CPU
and 1.8 ms on an NVIDIA Titan X GPU. For the localization
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Fig. 12. Left: Face proposals induced by different landmark types exhibit different levels of effectiveness in face detection. Using face proposals induced
by all five landmark types significantly improves the performance achieved with individual landmark types. Right: On the FDDB dataset, we compare our
method against other state-of-the-art methods. When the number of false positives is fixed at 350, the recall achieved with our method is 90.17%, which is
higher than all other methods.
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Fig. 13. Precision-recall curves of 10 face detection methods on the AFW
dataset. The performance of our face detector is comparable to that of other
state-of-the-art techniques.

(a) 

(b) 
Fig. 14. Failure cases of our BB-FCN network. (a) Incorrect landmark
prediction results that violate the normal spatial layout of human facial
landmarks. (b) Two blurry faces from FDDB and their response heat maps.

of 68 landmarks, our method costs 10 ms to process a face
region on the same GPU.

For the unconstrained setting, to locate the landmarks of
the tiny faces for a high recall rate, we build a 20-level
image pyramid on the AFW and FDDB datasets, and our
landmark network runs at approximately 6 PFS on the same
GPU. However, the level number of the image pyramid can be
dynamically adjusted based on the acceptable minimum face
size. For example, to locate the landmarks of faces with sizes
larger than 80 × 80 from 640 × 480 VGA images, we only

TABLE VII
COMPARISON OF RUNNING TIMES ON CPU AMONG DEEP MODELS FOR

FIVE FACIAL LANDMARK DETECTION.

Methods Time(per face)
CDCN 120 ms
CFAN 30 ms

TCDCN 18 ms
Ours 9 ms

need to build an image pyramid with 7 levels. In this case, our
landmark networks can run at 30 FPS, while our face detection
pipeline can run at approximately 20 FPS on the same GPU
thanks to our efficient proposal generator and the cascade CNN
detector. For comparison, Shen et al. [83] process a 1280-pixel
wide image in less than 10 seconds and DP2MFD [84] runs
at 0.285 FPS on an Nvidia Tesla K20, while the ResNet101-
based detector proposed by HR [85] runs at 3.1 FPS on 720p
resolution. With a similar speed as our network, Faceness [73]
can process a VGA image within 50 ms on a Titan Black GPU,
but their performance is worse than ours.

V. CONCLUSIONS

In this paper, we have presented a novel cascaded backbone-
branches fully-convolutional network (BB-FCN) that progres-
sively produces response maps of facial landmarks in an end-
to-end manner. Our extensive experiments demonstrate that
BB-FCN achieves very promising results on both traditional
benchmarks with a controlled setting and on cluttered, real-
world scenes. When exploiting our facial landmark localiza-
tion results in R-CNN-based face detection, we have observed
a significant increase in both accuracy and efficiency. In the
future, we will integrate our BB-FCN model with object
recognition and detection systems where accurate part-based
localization can be helpful in improving object detection
performance.
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