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Abstract—In this paper, we investigate a novel reconfigurable part-based model, namely And-Or graph model, to recognize object

shapes in images. Our proposed model consists of four layers: leaf-nodes at the bottom are local classifiers for detecting contour

fragments; or-nodes above the leaf-nodes function as the switches to activate their child leaf-nodes, making the model reconfigurable

during inference; and-nodes in a higher layer capture holistic shape deformations; one root-node on the top, which is also an or-node,

activates one of its child and-nodes to deal with large global variations (e.g. different poses and views). We propose a novel structural

optimization algorithm to discriminatively train the And-Or model from weakly annotated data. This algorithm iteratively determines the

model structures (e.g. the nodes and their layouts) along with the parameter learning. On several challenging datasets, our model

demonstrates the effectiveness to perform robust shape-based object detection against background clutter and outperforms the other

state-of-the-art approaches. We also release a new shape database with annotations, which includes more than 1500 challenging

shape instances, for recognition and detection.

Index Terms—Object detection, grammar model, And-Or Graph, structural optimization
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1 INTRODUCTION

AS psychophysics experiments suggested, humans can
successfully identify objects in images using contour

fragments alone [38]. In computer vision, recognizing object
shapes from salient contours is an active research area. Sev-
eral methods [10], [13], [21], [32] have demonstrated that the
contours (silhouettes) are robust against variations of illu-
mination, color, and texture. However, there are two long-
standing difficulties in the current research.

� Unreliable edge map extraction and contour tracing.
Some key contours can be missing or connected to
their background, making it difficult for accurately
localizing shapes against surrounding clutter.

� Large variations within an object category, e.g. dif-
ferent object poses, views, occlusions, and defor-
mations. Without using appearance or texture
information, this challenge might be more serious,
as shape contours are somewhat ambiguous and
less discriminative.

Some recently proposed approaches addressed the two
issues by learning hierarchical and compositional models,
and achieved substantial progresses [14], [28], [32]. These
models represent an object shape in terms of the parts (i.e.
local contours) and the inter-part relations. However, their
model structures (e.g. the number of parts and the ways of

composition) are often fixed, consequently limiting the per-
formances on complex scenarios.

In this work, we develop a novel reconfigurable part-
based model in the form of an And-Or graph representa-
tion, which is discriminatively trained from weakly anno-
tated training data (i.e. without annotating the object parts).
Our model achieves superior performances on the task of
detecting and localizing shapes from cluttered background,
compared with other state-of-the-art methods. Fig. 1 shows
an example of our And-Or graph model. The key compo-
nent of our model is the “switch variable”, referred to the
or-node, which incorporates the compositional alternatives
and makes the model reconfigurable. Specifically, the or-
node specifies the way of compositions by activating the
child nodes, to deal with the above-mentioned challenges in
shape detection. Our And-Or graph model consists of four
layers described as follows.

The leaf-nodes at the bottom represent a batch of local
classifiers that detect the salient contour fragments of
objects. Each leaf-node is defined within a divided block,
denoted by the red box in the bottom of Fig. 1. Given the
edge map extracted from an image, a leaf-node takes the
contours fallen into its block as the inputs. Once a long con-
tour exceeds the block, it is automatically truncated. This is
actually a partial matching scheme to handle the unreliable
bottom-up edge tracing, i.e. to avoid object contours con-
necting to the background. Moreover, to capture the dis-
criminability of contours, we design a new contour feature
that combines the triangle-based descriptor [20] and the
Shape Context descriptor [3].

The or-nodes defined as the switch variables that spec-
ify the activation of their child leaf-nodes, denoted by the
dashed blue circles in Fig. 1. During detection, each or-
node activates one of its child lead-nodes and also selects
the contour fragment detected by the activated leaf-node.
The or-nodes thus represent the parts of an object shape,
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while the leaf-nodes capture all of the local variabilities.
As Fig. 1 illustrates, our model can capture not only the
local variations (e.g. part 2 of the example), but also the
inconsistency caused by missing or broken edges (e.g.
part 3 of the example).

The collaborative edges in our model impose the contex-
tual information among shape contours, denoted by the
horizontal links between the leaf-nodes in Fig. 1. Some of
the existing compositional shape models ignore the contex-
tual relations among contours, or simplify the relations by
calculating the co-occurrence frequencies of neighbor con-
tours [16]. In contrast, we utilize informative spatial layout
features to define the edges, motivated by the methods for
contextualized object detection [5], [40].

The and-nodes aggregate the local shape contours that
have been selected via the or-nodes. Each and-node is
defined as a potential function that captures the holistic
shape deformations and distortions. Once the contour frag-
ments are localized, The and-nodes further verify them as a
whole to improve the discriminability of our model.

The root-node at the top functions as a switch to choose its
child and-nodes, accounting for the large global variations
(e.g. different views of shapes). It is defined exactly in the
same way as the or-nodes. For example, two horses may
appear diversely under different views, so that our model can
adaptively activate different and-nodes for detecting them.

From the bottom to the top, our model is hierarchically
constructed into an “And-Or-And-Or” structure. Note that
the leaf-nodes in our model can also be viewed as the and-
nodes, as they are defined in the same way. This structure is
very expressive and general to model object variations. The
“And” symbol indicates the combination of sub-parts while
the “Or” symbol indicates the switch between possible con-
figurations. We introduce the latent variables to make our
model reconfigurable. In particular, the latent variables
include the activation states of the or-nodes and the root-
nodes, and the locations of contour fragments. The leaf-
nodes and the and-nodes are defined as classification func-
tions whose coefficients are treated as the observable model
parameters. With the latent variables, the graph nodes and
edges are explicitly mapped with the discriminative classifi-
cation function of our model. Fig. 4 provides an intuitive
illustration of our And-Or graph model, which will be dis-
cussed later on. We regard our model as a general extension
of the pictorial and deformable part-based models [1], [7],
[9], as it incorporates not only the hierarchical decomposi-
tions, but also the explicit structural alternatives.

The training of the And-Or graph model is another
innovation of this work. The challenges lie in two aspects.
First, multiple parameters in different layers need to be
optimized along with the latent variables, and the objec-
tive function for optimization is non-convex, which can-
not be solved directly with the traditional methods such
as the support vector machines (SVMs). Second, it is non-
trivial to automatically discover the model structures in
the model learning, as the training examples are not
annotated into object parts. In the literature, learning
And-Or graph models (or other reconfigurable models)
usually relies on elaborative annotations or initializations
[15], [45], [46]. To cope with these two problems, we pro-
pose a novel learning method, called dynamical structural
optimization (DSO), which is inspired by the recently pro-
posed optimization methods [7], [42], [43]. This algorithm
iteratively optimizes the model structures together with
the multi-layer parameter learning, which includes three
main steps. (i) Apply current model on the training exam-
ples while estimating the latent variables for each exam-
ple. (ii) Discover new model structures. As the model
structures are mapped with the discriminative function of
our model (see Fig. 4), refactoring (rearranging) the fea-
ture vectors of training examples can lead to new struc-
tures. In brief, we perform clustering on the sub-feature-
vectors corresponding to different nodes, and generate
new structures according to the clustering results. For
example, at one part of the shape, if the corresponding
sub-feature-vectors are clustered into three groups, then
we create three leaf-nodes accordingly to detect the local
contours. (iii) Learn the model parameters with the newly
generated structures.

Shape detection using the And-Or graph model is real-
ized by searching over a image pyramid. We first accom-
plish two testing steps to generate several hypotheses of
detection, and each hypothesis represents a configuration
comprising detected contour fragments. (i) Local testing
uses all leaf-nodes to detector contour fragments within the
edge map. (ii) Binding testing imposes the collaborative
edges among the contour fragments to further weigh the

Fig. 1. An example of our And-Or graph model. It comprises four layers
from bottom to top: the leaf-nodes (denoted by the solid circles) at the
bottom for localizing local contour fragments, the or-nodes (denoted by
the dashed blue circles) over the bottom specifying the activations of
their child leaf-nodes, the and-nodes (denoted by the solid squares)
encoding the holistic (view-based) variances, and the root-node
(denoted by the dashed blue squares) on the top to switch the selection
of its child and-nodes. The horizontal links incorporate contextual inter-
actions among parts. Note that the leaf-nodes inherit the links that are
defined between the layer of or-nodes. The nodes and links in red indi-
cate the activation of leaf-nodes during the detection.
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hypotheses. Afterwards, the and-nodes re-score each
hypothesis by measuring the contour fragments as a whole.
The root-node decides the final detection by selecting the
most possible hypothesis.

The remainder of this paper is organized as follows.
Section 2 provides a brief review of related work. Then we
present the model representations in Section 3 and follow
with a description of the inference procedure in Section 4.
Section 5 focuses on discussing the learning algorithm. The
experimental results and comparisons are exhibited in
Section 6. Section 7 concludes this paper.

2 RELATED WORK

In this section, we review the extant techniques for shape (or
contour) matching and shape model learning.

Many methods treat shape detection as a task of match-
ing contours with certain distance measures, and they
mostly utilized hand-drawn reference templates [2], [3], [8],
[20], [21], [25], [47]. To handle diverse shape deformations
and distortions, a number of robust shape (or contour)
descriptors have been extensively discussed, such as Shape
Context [3], Geodesic-Intensity Histogram [18], Contour
Flexibility [39], and Local Angle [20], [25]. Based on these
shape features, several effective matching schemes [2], [14],
[34] have been proposed to deal with the various challenges.
For example, the inner-distance matching algorithm [18]
was presented to handle the articulated shape deforma-
tions. Tu et al. [34] presented an efficient data-driven EM
algorithm to iteratively optimize shape alignment and
matching correspondences. Felzenszwalb et al. [8] proposed
to hierarchically match shapes using the dynamic program-
ming algorithm, demonstrating good potential in capturing
large shape deformations. An MCMC-based sampling algo-
rithm was discussed in [14] to solve multi-layer shape
matching. To overcome the problems caused by incomplete
or noisy contours, Zhu et al. [47] presented a many-to-many
contour matching algorithm using a voting scheme.
Riemenschneider et al. [25] solved the partial shape match-
ing by identifying matches from fragments of arbitrary
length to the reference contours.

An alternative to shape detection is addressed by learning
shape models for a given category of shape instances. These
methods represent shapes as a loose collection of local contour
fragments or an ensemble of pairwise constraints [16], [28],
[32]. They usually involve the construction of a codebook of
contour fragments (e.g. groups of adjacent contours (GAS)
[10]) and train the shape models by supervised leaning. For
example, the boosting methods were employed to train
the discriminative classifiers with contour-based features
[24], [28]. Maji et al. [22] incorporated the Hough transform
into a discriminative learning framework, in which the con-
tour words and their spatial layout were optimized jointly.
Kokkinos and Yuille [13] suggested hierarchically parsing
shapes with the bottom-up and top-down computations, and
adopted the multiple instance learning algorithm for model
training. Another type of shape template is the active basis
model proposed by Wu et al. [35], which was trained with a
shared sketch algorithm.

Very recently, major progress has been made in appear-
ance-based object recognition using the latent structure

models [7], [36], [44], in which the latent variables effec-
tively enrich the representations. These methods owe their
success to their ability to cope with deformations, occlu-
sions, and variations. Based on these methods, Srinivasan
et al. [32] trained the descriptive contour-based detector by
using the latent-SVM algorithm, Song et al. [31] integrated
the context information with the SVM-based learning, and
Schnitzspan et al. [27] further combined the latent discrimi-
native learning with conditional random fields using multi-
types of shape features.

The And-Or graph was originally explored by Zhu and
Mumford [46] for modeling complex visual patterns. Its key
idea, using And/Or nodes to account for structure reconfi-
gurations and variabilities in hierarchical composition, has
been extensively applied in several vision tasks such as
object and scene parsing [15], [37], [45] and event analysis
[29]. However, these approaches often require elaborate
annotations or manual initializations. Si and Zhu [30]
recently presented a framework for unsupervised learning
of the And-Or image template, and demonstrated very
promising results on modeling complex object categories.
Our approach is partially motivated by these works, and we
target on an alternative way to discriminatively train the
And-Or graph model with the non-convex optimization.
Our preliminary attempts along this path have been dis-
cussed in [17], [36].

3 REPRESENTATIONS

In this section, we define all the components of our And-Or
graph models, including the shape features and the poten-
tial functions for graph nodes and edges.

3.1 Contour Descriptor

First, we introduce our contour descriptor for characterizing
local contour fragments. As Fig. 2 illustrates, this feature
combines the triangle-based descriptor [20] and the Shape
Context [3], capturing local contour deformations with the
surrounding contexts. For any contour fragment we extract
a sequence of sample points V, and for each point in V, its
triangle-based descriptor and Shape Context descriptor are
both computed and concatenated into a vector. Then we
pool the vectors of all the sample points into a histogram.

Given a point T 2 V for a contour, we collect triangles
that are formed by T and any other two A;B in V. Note that
each triangle is constructed by three different points.
As Fig. 2b illustrates, the triangle-based descriptor for T is a

3-D histogram, denoted by HtðT Þ, which contains the angle
values (e.g. ffBTA) and the two distances TA and TB in each
dimension, respectively. We use the clockwise orientation
to determine the triangle ffBTA, and the distances TB and
TA are normalized by the average distance between the
points in V. The Shape Context descriptor, denoted by

HbðT Þ, is constructed by T and all other points in V.
In our implementation, the number of sample points for

each contour fragment is fixed at 20 , and the distances
between adjacent points in V are equal. For each point T ,
ð20� 1Þ � ð20� 2Þ=2 ¼ 171 triangles are thus collected. We

define the 3-D histogram HtðT Þ including 2 bins for TA, 2
bins for TB, and 6 bins for angle ffBTA ranging from 0 to p.

We transform HtðT Þ into a 2� 2� 6 ¼ 24-bin 1-D feature
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vector. For the Shape Context descriptor HbðT Þ, we use 2
bins for lengths and 6 bins for polar angles ranging from 0
to 2p, then its length is 2� 6 ¼ 12. By concatenating these
two descriptors, we obtain the feature vector of T including
ð24þ 12Þ ¼ 36 bins. Thus, the contour fragment is repre-
sented by a feature vector of 36 � 20 ¼ 702 bins.

3.2 And-Or Graph Model

Our model is defined in the form of an And-Or graph
G ¼ ðV; EÞ, where V includes four levels of nodes and E
includes the graph edges. The root-node is indexed as 0,
indicating the switch among different shape views,(or other
different global variations, by analogy). The and-nodes are
indexed by r ¼ 1; . . . ;m, with each representing one global
classifier. For each and-node, there are a number of z or-
nodes arranged in a layout of b1 � b2 blocks to represent sev-
eral object parts, and we index all of the or-nodes as
j ¼ mþ 1; . . . ; ðzþ 1Þ �m. The leaf-nodes in the fourth layer
are indexed by i ¼ ðzþ 1Þ �mþ 1; . . . ; ðzþ 1Þ �mþ 1þ n,
where n is the number of leaf-nodes. For notation simplicity,
we definem0 ¼ ðzþ 1Þ �mþ 1; n0 ¼ ðzþ 1Þ �mþ 1þ n, and
i 2 chðjÞ indicating a child node of node j. The details of the
model G are described as follows.

Leaf-node. Each leaf-node Li is a local classifier for detect-
ing partial shape contours. We denote the location of leaf-
node Li as pi, which is determined by its parent or-node.
Given the extracted edge map X, we treat contour frag-
ments within the observed block as the inputs of Li. For a

contour c, we denote flðpi; cÞ as its feature vector using the
proposed contour descriptor, and only the part of c that has
fallen into the block will be considered. Note that we can
prune some very short contours as noises in practice. The
response of classifier Li located at pi is defined as:

Rl
iðX; piÞ ¼ max

c2X
vl
i � flðpi; cÞ; (1)

where vl
i is a parameter vector that is set to zero if the corre-

sponding leaf-node Lj is nonexistent. We can thus localize
the contour representing the shape part by ci ¼
argmaxc2Xvl

i � flðpi; cÞ. This partial detecting scheme enables
to partition true object contours from cluttered background.

Or-node. The or-node Uj; j ¼ mþ 1; . . . ; ðzþ 1Þ �m speci-
fies one of its child leaf-nodes, and also the contour detected
by the leaf-node. Every or-node is allowed to slightly per-
turb their locations with respect to the root in order to cap-
ture the inter-part deformations.

For each or-node Uj, we define the deformation feature,

fsðp0; pjÞ ¼ ðdx; dy; dx2; dy2Þ, where ðdx; dyÞ encodes the dis-
placement of the or-node position pj to the expected position
p0 determined by the root-node. The cost of locatingUj at pj is:

Djðp0; pjÞ ¼ vs
j � fsðp0; pjÞ; (2)

where vs
j is a 4-dimensional parameter vector correspond-

ing to fsðp0; pjÞ.
For each leaf-node Li associated with Uj, we introduce an

indicator variable vi 2 f0; 1g representing whether it is acti-
vated by Uj or not. We also define an auxiliary vector for Uj,
vj ¼ fvigi2chðjÞ, where jjvjjj ¼ 1 or 0. Note that jjvjjj ¼ 1 only

when one of the leaf-nodes under Uj is activated. In this way,
the or-node can adaptively activate the different leaf-nodes
to capture the diverse local shape variance. It is worth men-
tioning that the cost of locating the or-node is independent of
the selected leaf-nodes because we assume the leaf-nodes
belong to the same part (i.e. or-node) act a nearby location.

Thus, the response of the or-node Uj is defined as,

Ru
j ðX; p0; pj;vjÞ¼

X
i2chðjÞ

Rl
iðX; pjÞ � vi�Djðp0; pjÞ: (3)

And-node. The and-node, Ar, performs a global verifica-
tion for the whole shape. For each and-node, we have a set
of contour fragments, Cr ¼ fc1; c2; . . . ; czg, which are deter-
mined by its child or-nodes. Then we adopt the Shape Con-
text descriptor [3] to describe these contours as a whole,
faðCrÞ. Thus, we define the and-node’s response as,

Ra
rðCrÞ ¼ va � faðCrÞ; (4)

where va is the corresponding parameter vector.
Collaborative Edge. We impose contextual interactions

among shape parts based on the collaborative edges. Given
any two different or-nodes associated with the same and-
node, we link an edge between them and their child leaf-
nodes inherit the edge. We define the collaborative edges
using the spatial contextual features, as Fig. 3 illustrates.

Suppose one edge connects two leaf-nodes ðLi; Li0 Þ are
located at pi and pi0 respectively. We collect a 4-bin feature
cðpi; pi0 Þ for the two leaf-nodes according to their spatial
layout. Each bin of cðpi; pi0 Þ represents one of the four rela-
tions of ðLi; Li0 Þ: clockwise, anti-clockwise, near, and far. In
Fig. 3, the bold rectangle in the center indicates the location
of Li, which is connected to the red bold rectangle indicat-
ing the location of Li0 . The dashed line represents the initial
layout of the two leaf-nodes, and the red solid line is the

Fig. 2. Illustration of the proposed contour descriptor. This feature com-
bines the Shape Context descriptor in (a) and the triangle-based descrip-
tor in (b) to characterize a local contour fragment.

962 IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL. 37, NO. 5, MAY 2015



adjusted actual layout in detection. Specifically, we define
the relations as

� Near and far. If Li0 falls into the outer dashed rectan-
gle, it is near to Li, i.e. the bin of near is activated (i.e.
being set as 1); otherwise it is far from Li.

� Clockwise and anti-clockwise. One of the two relations
is activated (i.e. being set as 1) according to the angle
between the dashed line and the solid red line.

These relations intuitively encode the spatial contexts of
two leaf-nodes ðLi; Li0 Þ. Let fvjg represent the activation
variables of the leaf-nodes, and we denote P as a vector of
the positions of all or-nodes Uj. P also specifies the locations
fpig of the activated leaf-nodes. The response of the collabo-
rative edge is then parametrized as

Re
rðP; fvjgÞ ¼

X
j2chðrÞ

X
i2chðjÞ

X
i02@ðiÞ

ve
ði;i0Þ � cðpi; pi0 Þ � vi � vi0 ; (5)

where @ðiÞ represents the set of neighbor leaf-nodes of Li,
and each neighbor has a different parent node with Li. v

e
ði;i0Þ

is the corresponding weight. vi and vi0 are the activation
indicators for Li and Li0 , respectively, as the edges are
imposed only for the activated leaf-nodes.

Root-node. The root-node on the top alternatively acti-
vates one of its child and-nodes, whose definition is similar
with that of the or-node. Also, we use a variable vr 2 f0; 1g
to specify the activation of each and-node Ar, and the indi-
cator vector for the root-node is v0 ¼ fvrgmr¼1 and jjv0jj ¼ 1,
i.e. only one child is selected.

Let P imply the part-based deformation with or-nodes,
and V ¼ ðv0; fvjgÞ imply the selection of and-nodes and leaf-

nodes, the overall response of ourmodel is then defined as:

RGðX;P; V Þ

¼
Xm
r¼1

vr �
X

j2chðrÞ
Ru

j ðX;p0; pj;vjÞþRe
rðP; fvjgÞþRa

rðCrÞ
0
@

1
A:

(6)

In this model,H ¼ ðP; V Þ are the latent variables that will
be adaptively estimated in testing. For notation simplicity,
our model in Equation (6) can be re-written as :

RGðX;HÞ ¼ v � fðX;HÞ; (7)

where fðX;HÞ represents the concatenated feature vector
for all nodes and edges in the model, and v includes all
of the parameters corresponding to fðX;HÞ. Fig. 4 illus-
trates our And-Or graph model mapped with the dis-
criminative function.

We summarize the symbols used in our model in Table 1.

4 INFERENCE

Given the edgemapX extracted from the image, the inference
task is to detect the optimal contour fragments within the
detection window scanned over an image pyramid. The
detection is a search procedure to activate nodes from bottom
to top, in which a number of hypotheses are generated and
each one specifies a configuration of detected contour frag-
ments. We verify the hypotheses and prune the unlikely ones
bymaximizing themodel response defined in Equation (7).

We conduct the inference algorithm with the following
steps. An example illustrating the inference procedure
using our model is presented in Fig. 5.

Local testing.We use all of the leaf-nodes (i.e. the local con-
tour classifiers) to search for optimal contour fragments
within the edge mapX. Assume that one or-node Uj, associ-
ated with a partitioned block in the detection window, con-
tains a number of leaf-nodes fLi; i 2 chðjÞg, and that the
initial position of Uj is p

0
j. Each Uj is allowed to slightly per-

turb its location. At each location p0j þ d, we treat all of the

contours that have fallen into the block as the inputs to every
leaf-node of Uj, as Fig. 5a illustrates. By maximizing the
response in Equation (1), each leaf-node Li 2 chðjÞ can find

Fig. 3. The spatial contextual features defined for the collaborative
edges.

Fig. 4. Mapping the latent And-Or graph with the discriminative function defined in Equation (6). Different layers of nodes in our model are associated
with certain bins in the feature vector fðX;HÞ (at the bottom). The activated leaf-nodes are highlighted in red, and the feature bins are set to zeros
for the other inactivated nodes. The embedded latent variablesH ¼ ðP; V Þmake our model reconfigurable during detection.

LIN ET AL.: DISCRIMINATIVELY TRAINED AND-OR GRAPH MODELS FOR OBJECT SHAPE DETECTION 963



an optimal contour at a certain location. Recall that each or-
node can activate only one of the child leaf-nodes. Thus, the
possibility of different leaf-node selections can generate a

batch of detection hypotheses. In particular, we denote Ĥ as
the latent variables for one hypothesis, and denote ðv̂j; p̂jÞ
for a possible activation of Uj, where v̂j indicates the leaf-
node selection and p̂j is the location. The cost of ðv̂j; p̂jÞ is
thenmeasured by the functionRu

j defined in Equation (3).

Binding testing. The hypotheses from the local testing are
further weighed and filtered by imposing the collaborative
edges. In each hypothesis, each or-node proposes one leaf-
node, and any two leaf-nodes derived from different or-
nodes are connected by an edge. We measure the score by
the potential function in Equation (5).

In this way, each detection hypothesis is scored by the
two testing steps, as,

Sl
rðX; ĤÞ ¼

X
j2chðrÞ

Ru
j ðX; p0; p̂j; v̂jÞ þ Re

rðP̂ ; fv̂jgÞ; (8)

where P̂ ¼ fp̂jg denotes the locations of all of the or-nodes.
In practice, we can prune some of the hypotheses by setting
a threshold on the score.

Global verification. In this step, we apply the and-nodes to
re-score the hypotheses of detection. For any hypothesis, we
obtain an ensemble of contours, Ĉr ¼ fĉ1; ĉ2; . . . ; ĉzg, each of
which is proposed by one or-node. We can measure the con-

tours as a whole by Sg
rðX; ĤÞ ¼ Ra

rðĈrÞ in Equation (4), as
Fig. 5c illustrates.

Afterwards, the root-node determines the optimal detec-
tion by selecting the maximum aggregated score, as

H� ¼ argmax
Ĥ

Xm
r¼1
ðSlðX; ĤÞ þ Sg

rðX; ĤÞÞ � v̂0; (9)

where jjv̂0jj ¼ 1 constrains only one of the and-nodes
selected by the root-node.

The overall inference procedure appears in Algorithm 1.

Algorithm 1. Inference with the And-Or graph
representation

Input:
X: the edge map extracted from the test image.

Output:
H�: the optimal detection with the maximal detection score
RGðX;H�Þ.

Local testing:
1. Apply leaf-nodes to detect all possible local contour

fragments.
2. Generate a batch of detection hypotheses via the or-

nodes.
Binding testing:
1. Impose the collaborative edges between leaf-nodes in

each detection hypothesis.
2. Score the hypotheses by Equation (8).
3. Prune unlikely hypotheses by thresholding the score.
Global verification:
1. For each hypothesis, the local contours are measured as a

whole via the and-nodes.
2. Aggregate all potentials via the root-node in Equation (9).
3. Merge results by non-maximum suppression over all

image positions and scales.

5 AND-OR GRAPH LEARNING

We formulate the And-Or graph model learning as a joint
optimization task of model structures and parameters. To
achieve this goal, we present a novel structure learning algo-
rithm extended from the existing non-convex optimization

TABLE 1
Notation Summary of this Work

Symbol Meaning

fArgmr¼1 The and-nodes.

fUjgðzþ1Þ�mj¼mþ1 The or-nodes.

fLign
0

i¼m0 The leaf-nodes.

X The edge map of an image.
P ¼ fp0; pj; pig The locations of the root-node p0, or-nodes

pj, and leaf-nodes pi.

Rl
iðX; piÞ The response of the classifier associated

with leaf-node Li located at pi.
Ru

j ðX; p0; pj; vjÞ The response of the or-node. vj indicates
the selection of its child leaf-nodes.

Ra
rðCrÞ The response of the and-nodes, which

provides a global verification for the
shape Cr.

Re
rðP; fvjgÞ The response of the collaborative edges.

fvjg indicates the selection of the leaf-
nodes.

RGðX;P; V Þ The response of the whole model, where
P and V represent the latent variables.

H ¼ ðP; V Þ All latent variables (including positions P
and activation variables V ) of our model.

Fig. 5. Illustration of the inference procedure. (a) shows local testing for detecting contour fragments within the edge map; the blue dashed boxes rep-
resent perturbed blocks associated with the leaf-nodes. (b) shows a hypothesis of detection including candidates (indicated by the red boxes) pro-
posed by all or-nodes, in which the collaborative edges are imposed. (c) shows the global verification, in which the ensemble of contours are
measured as a whole.
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methods [36], [43]. This algorithm optimizes the objective in a
dynamical manner: the latent structuresH ¼ ðP; V Þ are itera-
tively determined along with the parameter learning in each
step. For example, new leaf-nodes are created or removed to
better adapt to the training data by adjusting the latent varia-
bles. One instance of our learning procedure is illustrated in
Fig. 6: from6a to 6b, a leaf-node associatedwithU1 is removed
and a new leaf-node underU6 is created in Fig. 6c.

5.1 Optimization Formulation

Suppose we have a set of positive and negative training
samples ðX1; y1Þ,. . .,ðXN; yNÞ, where X is the edge map and
y ¼ �1 is the label indicating positive and negative samples.
We assume that the samples indexed from 1 to K are the
positive samples, and that the feature vector for each sam-
ple ðX; yÞ is,

fðX; y;HÞ ¼ fðX;HÞ if y ¼ þ1;
0 if y ¼ �1;

�
(10)

where H represents the latent variables and fðX;HÞ the
overall feature vector of the And-Or graph model. Then we
pose the And-Or graph learning as optimizing model
parameters along with the latent structures,

v ¼ argmaxy;Hðv � fðX; y;HÞÞ: (11)

We further transfer this target into a maximum margin for-
mulation,

min
v

1

2
kvk2 þ �

XN
k¼1

�
max
y;H
ðv � fðXk; y;HÞ þ Lðyk; y;HÞÞ

�max
H
ðv � fðXk; yk;HÞÞ

�
;

(12)

where � is a penalty weight (set as 0.005 empirically), and
Lðyk; y;HÞ is the loss function. In our implementation, we
define that Lðyk; y;HÞ ¼ 0 if yk ¼ y, and 1 otherwise.

The target energy in Equation (12) is non-convex making
it difficult to be solved analytically. In this work, we propose
the DSO method to iteratively optimize this objective based
on the concave-convex procedure (CCCP) method [43].

5.2 Dynamical Structural Optimization

Following the CCCP method [43], we convert the objective
function in Equation (12) into a convex and concave form as,

min
v

1

2
kvk2 þ �

XN
k¼1

max
y;H
ðv � fðXk; y;HÞ þ Lðyk; y;HÞÞ

" #

� �
XN
k¼1

max
H
ðv � fðXk; yk;HÞÞ

" #

(13)

¼ min
v
½fðvÞ � gðvÞ	; (14)

where fðvÞ represents the first two terms, and gðvÞ repre-
sents the last term in (13). Assume vt is the solution for the

t-th iteration. The solution vtþ1 for the next iteration can be
solved by subjecting it to

rfðvtþ1Þ ¼ rgðvtÞ: (15)

A geometric explanation of CCCP is presented in Fig. 7,
wherergðvtÞ can be regarded as a hyperplane (the red line)
at vt (the black spot) to upper bound �gðvÞ. rgðvtÞ can be

solved analytically once H is fixed. Then, the vtþ1 can be

estimated accordingly by minimizing fðvtþ1Þ. Please refer
to [43] for the theoretical background.

During the training procedure, the model parameters vt

and latent structures Ht are iteratively updated. To discover
themodels structures, we add one step calledmodel reconfig-
uration in each iteration. Recall that the model structures (e.g.
graph nodes) are mapped with the feature vectors, as Fig. 4
illustrates. In this step, from the feature vectors of all positive
training examples, we first extract the sub-vectors that are cor-
responding to different nodes (i.e. and-nodes or leaf-nodes),
and each node, we perform clustering on these sub-vectors,
respectively. Then, according to the clustering results, we
rearrange each feature vector by placing the sub-vectors back
into the feature vectors (e.g. re-assigning contour fragments
to leaf-nodes). Consequently, the new model structures can
be generated. Our DSO method iteratively performs with
three following steps: (i) estimate the latent variables of

Fig. 6. Illustration of the structure reconfiguration. Parts of the model, two or-nodes (U1; U6), are visualized in three intermediate steps. (a) The initial
structure, i.e. the regular layout of an object. Two new structures are dynamically generated during the iterations. (b) A leaf-node associated with U1

is removed. (c) A new leaf-node is created and assigned to U6.
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training samples; (ii) reconfigure the model structures; (iii)
updatemodel parameters for the new structures.

(I) The model parameters vt in the previous iteration are
fixed. We find a hyperplane qt to upper bound �gðvÞ in
Equation (14),

�gðvÞ 
 �gðvtÞ þ ðv� vtÞ � qt; 8v: (16)

The optimal latent variables H�k are specified for each posi-
tive training example by,

H�k ¼ argmaxHðvt � fðXk; yk;HÞÞ: (17)

Note that we only take the positive training examples into
account as fðXk; yk;HÞ ¼ 0when yk ¼ �1. That is, we apply
the current model to perform detections on the training
samples, and the hyperplane is constructed as

qt ¼ ��
XN
k¼1

fðXk; yk;H
�
kÞ: (18)

(II) In the second step, we optimize the model struc-
tures based on the estimated latent variables H�. All
graph nodes in our model are mapped with several fea-
ture bins (i.e. sub-vectors) of fðXk; yk; H

�
kÞ for all of the

training samples, as Fig. 4 illustrates. Hence, we achieve
the model reconfiguration process by rearranging
fðXk; yk; H

�
kÞ. For example, we can remove leaf-node Lj

by setting the corresponding bins for Lj into zeros. Specif-
ically, two sub-steps are sequentially performed to gener-
ate and-nodes and leaf-nodes, respectively.

(i) Global structure reconfiguration. In the layer of and-
nodes, we perform clustering on the feature vectors corre-
sponding to the and-nodes, i.e. the global shape features
defined in Equation (4). Note that each vector is a part of
fðXk; yk;H

�
kÞ. The training object shapes detected by the

same and-node are initially grouped into one cluster. We
then perform clustering on all of the feature vectors by
using ISODATA with Euclidean distance. Based on the clus-
tering result, we rearrange the feature vectors mapping with
the and-nodes. For example, if one vector is grouped into a
new cluster Vr, we shall move it into the bins corresponding
to And-node Ar, and set its original bins as zeros. In our
implementation, we fix the number of and-nodes as m, to
simplify the computation.

(ii) Local structure reconfiguration. After the global struc-
ture reconfiguration, each and-node is associated with a
group of training examples. Suppose the and-node Ar

includes a number of or-nodes, and every or-node
Uj; j 2 chðrÞ further derives its child leaf-nodes Lj; i 2 chðjÞ.
In this step, we configure the part-level structures rooted by
Uj. Note that this step processes each or-node and its leaf-
nodes separately.

Each or-node Uj specifies one part of the whole object
shape. Given the training examples associating with Ar, we
extract the local contour features from fðXk; yk;H

0
kÞ, which

are corresponding to the shape part of Uj. Then we perform
clustering on these vectors, and rearrange these vectors in
fðXk; yk;H

0
kÞ, similarly as the operation on the and-nodes.

In our implementation, the number of leaf-nodes is not
fixed, as the local variances of shapes are usually unpredict-
able. Thus, there are two specific operators to generate the
leaf-nodes according to the clustering.

� One new leaf-node is created if an extra cluster is
generated.

� One leaf-node is removed if there are very few sam-
ples in the corresponding cluster.

We present a toy example in Fig. 8 to illustrate the struc-
ture reconfiguration. For the sample X3, a part of its feature
vector <f5; . . . ;f8> is grouped from one cluster into
another while the values of the feature bins are moved from
<f5; . . . ;f8> to <f1; . . . ;f4> .

After the reconfiguration, the latent variables for each
training example can be re-calculated, and denoted by Hd

k ,
in accordance with the arranged feature vectors (refer to
Equation (17)). We denote the feature vectors for all exam-

ples by fdðXk; yk;H
d
k Þ. Then, the hyperplane is transformed

accordingly, qdt ¼ �D
PN

k¼1 f
dðXk; yk;H

d
k Þ.

Fig. 7. Geometric illustration of the CCCP procedure. The target energy
is decomposed into two functions, fðvÞ and gðvÞ. At each step of itera-
tion, a hyperplane (represented by the red line) is calculated as the
upper-bound at vt for optimizing vtþ1.

Cluster 1

Cluster 2

Cluster 1

Cluster 2

(  1,   2,   3,   4,   5,   6,   7,   8 )

Fig. 8. A toy example for structure reconfiguration. We consider 4 sam-
ples, X1; . . . ; X4, for training the structure of Ui (or Ar). (a) shows the
feature vectors f of the samples associated with Ui (or Ar), and
the intensity of the feature bin indicates the feature value. (b) illustrates
the clustering performed with f0. The vector hf5; � � � ;f8; i of X2 is
grouped from cluster 2 to cluster 1. (c) shows the adjusted feature vec-
tors according to the clustering. Note that the model structure reconfigu-
ration is realized by the rearrange of feature vectors, as we discuss in
the text. This figure should be viewed in electronic form.
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(III) The newly generated model structures can be repre-
sented by the feature vectors fdðXk; yk;H

d
k Þ, and the model

parameters can then be learned by solving Equation (14),

vd
t ¼ argminv½fðvÞ � gðvÞ	: (19)

By substituting �gðvÞ with the upper bound hyperplane qdt ,
this optimization task can be transferred as,

min
v

1

2
kvk2 þD

XN
k¼1

h
max
y;H
ðv � fðXk; y;HÞ þ Lðyk; y;HÞÞ

� v � fdðXk; yk;H
�
kÞ
i
:

(20)

We solve it as a standard structural SVM problem, as,

v� ¼ D
X
k;y;H

a�k;y;HDfðXk; y;HÞ; (21)

where DfðXk; y;HÞ ¼ fdðXk; yk;H
�
kÞ � fðXk; y;HÞ. We cal-

culate a� by maximizing the dual form in standard SVM,

and we apply the cutting plane method [11] to solve it.

Algorithm 2. Learning latent And-Or graph model

Input:
positive and negative training samples, fXk; ykgþ

S
fXk0 ; yk0 g�; k ¼ 1::K; k0 ¼ K þ 1::N .

Output:
The trained And-Or graph model.

Initialization:
1 Initialize the model structure (the arrangement of

nodes).
2 Initialize the latent variablesH and model parameters v.

repeat
1 Estimate the latent variables H� on each positive exam-

ple ðXk; ykÞwith the current model parameters vt.
2 Generate the new graph structures.
(a) Localize the contour fragments for all examples using

the current latent variables H�k , and obtain the feature
vectors fðXk; yk;H

�
kÞ.

(b) In the layer of and-nodes, perform clustering on the
global shape features, and rearrange the feature
vectors.

(c) For each or-node Ui, perform clustering on the feature
vectors of all its child leaf-nodes.

(d) Operate on the leaf-nodes to generate a new structure,
and the latent variable is updated to Hd

k with the rear-

ranged feature vectors fdðXk; yk;H
d
k Þ.

3 Update the model parameters vtþ1 .
(a) Estimate the parameters vd

t with the newly generated
structures.

(b) IF Eðvd
t Þ < EðvtÞ,

Accept the new model structures, and vtþ1  vd
t .

ELSE
Calculate vtþ1 while keeping the structures in the

previous iteration.
until The target function defined in Equation (14) converges.

With the estimated parameters vd
t , the energy Eðvd

t Þ can
be calculated for the new model, and we then compare it
with the previous energy EðvtÞ to verify the new model

structures. If Eðvd
t Þ < EðvtÞ, we accept the new model

structures and have vtþ1  vd
t . Otherwise, we keep the

model structures as in the previous iteration and optimize
the model parameters without the structure reconfiguration,
i.e. by using qt instead: vtþ1 ¼ argminv½fðvÞ þ v � qt	.

In this way, we ensure that the optimization objective in
Equation (14) continues to decrease in iterations. Thus, the
algorithm keeps iterating until the objective converges.

5.3 Initialization

At the beginning of model training, our model can be initial-
ized as follows. For each training example, whose contours
have been extracted, we partition it into a regular layout of
partitioned blocks, and each block is corresponding to one
or-node. The contours that fall into the block are treated as
the inputs, and we initially select the one with the largest
length if more than one contour are within there. Then, the
leaf-nodes are initially generated by clustering the selected
contours without any constraints. The and-nodes are initial-
ized by the similar way. We thus obtain the initial feature
vectors for all training examples.

Algorithm 2 summarizes the overall algorithm of learn-
ing the latent And-Or graph.

6 EXPERIMENTS

To validate the advantage of our model, we present a new
shape database, SYSU-Shapes1, which includes elaborately
annotated shape contours. Compared with the existing shape
databases, this database includes more realistic challenges in
shape detection and localization, e.g. cluttered background,
large intraclass variation, and different poses/views, inwhich
part of the instances were originally used for appearance-
based object detection. We also validate our model on two
other public databases: UIUC-People [33] and INRIA-Horse
[12] and show the superior performances over other state-of-
the-art methods.

Implementation setting. We extract clutter-free object con-
tours for the positive samples, and the edge maps for the
negative samples are extracted using the Pb edge detector
[23] with an edge link algorithm. For each contour as the
input of the leaf-node, we sample 20 points and compute
the contour descriptor for each point. During detection,
the edge maps of test images are extracted as for the nega-
tive training samples. The objects are searched by sliding
windows over 6 different scales and 2 per octave, and detec-
tions are reported by non-maximum suppression. We adopt
the testing criterion defined in the PASCAL VOC challenge:
a detection is counted as correct if its overlap with the
groundtruth bounding-box is greater than 50 percent.

Ourmodel is able to flexibly adapt to the data by setting the
numbers of nodes in each layer: m for and-nodes, z for or-
nodes, and n for leaf-nodes. Recall that each or-node in our
model indicates a part of object shape, so that we can set the
number of or-nodes according to the sizes (scales) of the shape
categories. The leaf-nodes are produced during the iterative
training, and their numbers can be determined automatically.
In the experiments, to reduce computational cost, we fix the

1. http://vision.sysu.edu.cn/projects/discriminative-aog/
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number for and-nodes and set an upper limit for the number
of leaf-nodes. Table 2 summarizes the numbers of nodes on
the three databases. In the model training, the initial layout
for each sample is a regular partition (e.g. 2� 4 blocks for the
UIUC-People dataset and 3� 2 for the other two datasets).

If we keep only one and-node (i.e. m ¼ 1), our model
is simplified into a three-layer structure that is rooted by
the and-node. The training procedure (i.e. Algorithm. 2)
for this structure is kept, but we discard the step of gen-
erating and-nodes.

We conduct the experiments on a workstation with Core
Duo 3.0 GHZ CPU and 16GB memory. On average, it takes
4 � 8 hours to train a shape model, depending on the num-
bers of training examples, and the time cost for detection on
an image is around 1 � 2minutes.

Experiment 1. We first conduct the experiment on the
SYSU-Shape database, which is collected from the Internet
and other vision databases. There are 5 categories, i.e. air-
planes, boats, cars, motorbikes, and bicycles, and each cate-
gory contains 200 � 500 images. The shape contours are
carefully labeled by a professional team using the LabelMe
toolkit [26]. It is worth mentioning that each image has at
least but not limited to one object of a given category. For
each category, half of the images are randomly selected as
positive samples and the rest for testing. The images from
the other categories are randomly split into two halves as
negative samples for training and testing.

For comparison, we apply the well acknowledged
deformable part-based models (DPMs) [7] on this database,
where we modify the released code by replacing the input
feature with our shape descriptor, and keep the other set-
tings. In this implementation, three DPMs are merged into a
mixture, which accounts for different object views. More-
over, we simplify the model into a three-layer configuration
by setting m ¼ 1, and test its performances. Fig. 9 shows the
Precision-Recall curves for all five categories, and the Aver-
age Precision values are reported in Table 3. Our complete
model achieves the best mean AP and the best APs for all
five categories, and the results clearly demonstrate the bene-
fit of using the layered And-Or structures. Several represen-
tative detection results are exhibited in Fig. 10.

Experiment 2. The UIUC-People dataset contains 593
images (346 for training, 247 for testing) that are very
challenging due to large shape variations caused by dif-
ferent views and human poses. Most of the images con-
tain people playing badminton. The existing methods [4],
[37] that are tested on this dataset usually rely on rich
appearance-based image features and/or manually
labeled prior models. To the best of our knowledge, this
work is the first shape-based detector to achieve compara-
ble performances on this dataset. Fig. 11a shows the
trained And-Or model (AOG), which includes 2 and-
nodes and 8 or-nodes, and each or-node is associated

TABLE 2
Numbers of Nodes in the And-Or Graph Models for Different

Databases

SYSU-Shapes UIUC-People INRIA-Horses

and-nodes m ¼ 3 m ¼ 2 m ¼ 1
or-nodes z ¼ 6 z ¼ 8 z ¼ 6
leaf-nodes n 
 4 n 
 4 n 
 4

Fig. 9. Precision-Recall (PR) curves on the SYSU-Shape dataset.

TABLE 3
Detection Accuracies on the SYSU-Shape Dataset

Method Airplane Bicycle Boat Car Motorbike MeanAP

AOG
(full)

0.520 0.623 0.419 0.549 0.583 0.539

AOG
(3-layers)

0.348 0.482 0.288 0.466 0.333 0.383

DPMs 0.437 0.488 0.365 0.509 0.455 0.451
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with 2 � 4 leaf-nodes. Since most of the images contain
one person, we only consider the detection with the high-
est score on an image for all of the methods. Table 4
reports the quantitative detection accuracies generated by
our method and the competing approaches [1], [4], [7],
[37]. The results (except ours) come from [37]. A number
of representative detection results are presented in
Fig. 12, where the localized contours are highlighted in
black, and the green boxes and red boxes indicate
detected human and parts, respectively. We also present
several inaccurate detections indicated by the blue boxes
in Fig. 12. There are two main reasons for the failure
cases: (i) False positives are sometimes created by the
background contours segments that appear like the
objects-of-interest very much. (ii) The object contours are

insufficiently discriminative for recognition, particularly
with unconventional object poses and views.

Experiment 3. The INRIA Horse dataset comprise 170
horse images and 170 images without horses. The challenges

Fig. 10. A few typical object shape detections generated by our approach on the SYSU-Shape dataset. The localized contours are highlighted in
black, and the green boxes and red boxes indicate detected shapes and their parts, respectively.

Fig. 11. The trained And-Or graph model with the UIUC-People dataset. (a) Visualizes the model of 4 layers. (b) Exhibits leaf-nodes associated with
or-nodes, U1; . . . ; U8. A real detection case with the activated leaf-nodes are highlighted in red.

TABLE 4
Comparisons of Detection Accuracies on

the UIUC-People Dataset

Method Accuracy

AOGmodel 0.708
Wang et al. [37] 0.668
Andriluka et al. [1] 0.506
Felz et al. [7] 0.486
Bourdev et al. [4] 0.458
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of this dataset arise from background clutter and large defor-
mations, and some of the images contain more than one
horse. Following the common experiment setting, we use 50
positive examples and 80 negative examples for training
and the remaining 210 images for testing.

Some typical shape detection results on the INRIA
Horse dataset are shown in Fig. 13a. Compared with
existing approaches, we use the recall-FPPI (false posi-
tive per image) curves for evaluation, as Fig. 13b reports.
It is shown that our approach (denoted as AOG) sub-
stantially outperforms the competing methods. Our
model achieves detection rates of 89:6 percent at 1:0
FPPI; in contrast, the results of competing methods are:
87:3 percent in [41], 85:27 percent in [22], 80:77 percent
in [10], and 73:75 percent in [6].

Empirical analysis. For further evaluation, we present
two empirical analysis under different model settings as
follows.

(I) We validate the benefit of the contextual collaborative
edges. Our model can be further transferred into a tree

structure by removing the interactions, which is denoted as
“And-Or Tree (AOT)”. On the UIUC-People dataset, the
detection accuracy of the AOT model is 0:69, which is lower
than the complete form of our model, but it is also compara-
ble to the state-of-arts. On the INRIA-Horse dataset, we also
present the results yielded by the AOT model in Fig. 13b.
Based on these results, we can observe that the collaborative
edges effectively boost the detection against disturbing sur-
rounding clutter and occlusions.

(II) To analyze the model capacity during the iterative
training, we output the intermediate performance measures
of our models in the iteration steps.

We execute the experiments on the UIUC-People and
the INRIA-Horse databases. The quantitative results rep-
resented by average precisions (APs) are visualized in
Fig. 14. We also report the results generated by the mod-
els without collaborative edges, i.e. AOT models. We
observe that the discriminative capabilities of our model
increase proportinately with the iterations, and converge
after a few rounds.

Fig. 12. A few typical object shape detections generated by our method on the UIUC-People database [33]. The localized contours are highlighted in
black, and the green boxes and red boxes indicate detected peoples and parts, respectively. Two failure detections are indicated by the blue boxes.

Fig. 13. Results on the INRIA-Horse database. (a) shows several detected shapes by our method, where the localized contours are highlighted in
black, and two failure detections are indicated by the blue boxes. (b) shows the quantitative results with the recall-FPPI measurement.
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7 CONCLUSION AND FUTURE WORK

In this paper, we have introduced, first, a hierarchical
and reconfigurable object shape model in the form of an
And-Or graph representation. Second, an efficient infer-
ence algorithm for shape detection with the proposed
model. Third, a principled learning method that itera-
tively determine the model structures while optimizing
multi-layer parameters. We demonstrated the practical
applicability of our approach by effectively detecting and
localizing object shapes from cluttered edge maps. Our
model effectively captured large shape variations in
deformation for different views and poses. Experiments
were implemented on several very challenging databases,
(e.g. SYSU-Shapes, UIUC-People, and INRIA-Horse), and
our model outperformed other current state-of-the-art
approaches.

There are several directions in which we intend to extend
this work. The first is to complement our contour-based fea-
tures with rich appearance information, thereby adapting
our model to more general object recognition. The second is
to generalize our model in the context of multiclass recogni-
tion and investigate part-based structure sharing among
classes. For example, the feet of horse and sheep have simi-
lar appearances, and thus can be detected by the same local
classifier, that is, we can make local classifiers (i.e. the leaf-
nodes in our model) shared across categories. Model shar-
ing will keep the model compact while representing multi-
ple categories. Moreover, the inference algorithm will be
revised accordingly, to deal with a large number of candi-
date compositions.
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