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Abstract

This paper investigates how to perform robust and ef-
ficient unsupervised video segmentation while suppressing
the effects of data noises and/or corruptions. We propose
a general algorithm, called Sub-Optimal Low-rank Decom-
position (SOLD), which pursues the low-rank representa-
tion for video segmentation. Given the supervoxels affin-
ity matrix of an observed video sequence, SOLD seeks a
sub-optimal solution by making the matrix rank explicitly
determined. In particular, the affinity matrix with the rank
fixed can be decomposed into two sub-matrices of low rank,
and then we iteratively optimize them with closed-form so-
lutions. Moreover, we incorporate a discriminative repli-
cation prior into our framework based on the obervation
that small-size video patterns tend to recur frequently within
the same object. The video can be segmented into several
spatio-temporal regions by applying the Normalized-Cut
(NCut) algorithm with the solved low-rank representation.
To process the streaming videos, we apply our algorithm
sequentially over a batch of frames over time, in which
we also develop several temporal consistent constraints im-
proving the robustness. Extensive experiments on the pub-
lic benchmarks demonstrate superior performance of our
framework over other state-of-the-art approaches.

1. Introduction
Video segmentation is to partition the video into sev-

eral semantically consistent spatio-temporal regions. It is
a fundamental computer vision problem in many applica-
tions, such as object tracking, activity recognition, video
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analytics, summarization and indexing. However, it is still
a challenging research area due to its computational com-
plexity and inherent difficulties, like the large intra-category
variations and the large inter-category similarities. Re-
cently, various works on video segmentation have been
introduced ranging from mean-shift [14], spectral cluster-
ing [11, 16], graph-based processing [2, 12] and superpixel
tracking [10, 13]. And some benchmarks [4, 7] have also
been provided to evaluate existing methods and help further
study. Despite of much progress on video segmentation,
there exists a critical limitation, i.e., most of video segmen-
tation methods have worse segmentation quality due to only
utilizing low-level features. On one hand, the low-level
features are easily contaminated by video noises. On the
other hand, the low-level features are usually not powerful
enough to differentiate the different semantic regions.

Motivated by the advances in subspace clustering [30],
especially the Low-Rank Representation (LRR) methods
for image segmentation [6, 22], we propose a Sub-Optimal
Low-rank Decomposition (SOLD) algorithm, which pur-
sues the low-rank representation for video segmentation.
Instead of using superpixels in previous works like [13,16],
we take supervoxels as graph nodes to infer their optimal
affinities because they can preserve local spatio-temporal
coherence as well as good boundaries. To seek the unbi-
ased and task-independent video segmentation solution, we
define our low-rank model based on very generic assump-
tion inspired by [1, 8, 20]. In particular, we assume that the
intra-class supervoxels are drawn from one identical low-
rank feature subspace, and all supervoxels in a period lie on
a union of multiple subspaces, which can be justified by nat-
ural statistic and observations of videos. Thus, we can rep-
resent each supervoxel descriptor as a linear combination of
other supervoxel descriptors, and seek for the low-rank rep-
resentation of all supervoxels in a joint fashion. Moreover,
we also integrate discriminative replication prior in the for-
mulation for enlarging its discriminative ability. As a nat-
ural extension from internal image statistics [1], this prior,
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local small-size video cubes (e.g. 6 × 6 × 6 voxels) with
certain appearance patterns tend to recur frequently within
the same semantic spatio-temporal region, but may not ap-
pear in semantically different spatio-temporal regions, can
substantially reduce the computational complexity in video
segmentation.

Unlike relaxing the rank minimization to the nuclear
norm minimization in other works [6, 22], the rank of the
affinity matrix in SOLD is explicitly determined for bet-
ter representation. In particular, the affinity matrix with
the rank fixed can be decomposed into two sub-matrices of
low rank, and thus we efficiently optimize the low-rank rep-
resentation by iteratively solving several closed-form sub-
problems to obtain a sub-optimal solution, which is utilized
to infer the affinities between supervoxls.

In the inference of video segmentation, we process the
video in the sliding windows instead of in the whole video
to facilitate the arbitrarily long video processing in the lim-
ited memory and space, and enforce the temporal consis-
tent constraints on the video stream to approximate the
full video segmentation. Specifically, one or more frames
are overlapped to propagate solutions between neighboring
windows. We construct the reasonable temporal consistent
constraints by the overlap ratio between temporal super-
voxels in overlapping frames, and apply the efficient con-
strained NCut method [9] to achieve the final supervoxel-
level segmentation.

The key contributions of this work are two-folds. First,
We propose a general algorithm for Low-Rank Represen-
tation pursuit, which decomposes the affinity matrix with
the rank fixed into two sub-matrices of low rank and con-
ducts a sub-optimal solution. Second, we develop an ef-
fective framework for unsupervised streaming video seg-
mentation, where several informative priors and constraints
over video supervoxels are developed. The extensive exper-
iments on the public challenging dataset VSB100 [7] vali-
date superior effectiveness compared to the state-of-the-art
approaches and efficiency of our approach.

2. Literature Review
Some of the relevant state-of-the-art methods on unsu-

pervised video segmentation are reviewed in this section.
Recent advances in hierarchical methods [2, 3, 28],

streaming methods [12, 17] and related evaluations [4, 7, 8]
have shown that unsupervised supervoxel segmentation has
gained potential as a first step in early video process-
ing. Hierarchical video segmentation provides a rich mul-
tiscale decomposition of a given video. Grundmann et
al. [2] proposed Hierarchical Graph-Based video segmen-
tation (HGB) algorithm based on local properties. It iter-
atively merged nodes in a region graph to produce a hier-
archical segmentation. To process arbitrary long video, Xu
et al. [12] proposed a streaming hierarchical video segmen-
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Figure 1. Sample supervoxels at level 1 (200, where 200 indicates
the number of supervoxels), 2 (150) and 3 (100) extracted from a
hierarchical video segmentation [2]. The different colors indicate
the different supervoxels.

tation framework and instantiated HGB within this frame-
work (SHGB). This method enforced a Markovian assump-
tion on the video stream, which leveraged ideas from data
streams. Galasso et al. [17] proposed a spectral graph re-
duction algorithm for efficient streaming video segmenta-
tion. In this method, the reduced superpixel graph was
reweighted such that the resulting segmentation was equiv-
alent to the full graph under certain assumptions. Xu and
Corso [4] presented a thorough evaluation of five super-
voxel methods on a suite of suitable metrics designed to
access supervoxel desiderata. A united video segmentation
benchmark was provided by Galasso et al. [7] to evaluate
effectively over- and under-segmentation of current video
segmentation. These works also encourage the progress on
new aspects of the video segmentation problem.

Recent works on video segmentation focus only on
salient moving objects by analyzing point trajectories,
while taking background as a single cluster [11]. Some
other works [13, 16] over-segment frames into superpix-
els, and partition them spatially and match them temporally.
These methods provide a desirable computational reduction
and powerful within-frame representation. For instance,
Galasso et al. [16] proposed a robust Video Segmentation
approach with Superpixels (VSS) to explore various within-
and between-frame affinities suitable for video segmenta-
tion. In addition, Tarabalka et al. [21] presented a more effi-
cient method for joint segmentation of monotonously grow-
ing or shrinking shapes in a time sequence of noisy images,
and this method was applied to three practical problems to
validate its performance and practicality.

3. SOLD Algorithm

Given an arbitrarily long input video, we adopt the over-
lapping sliding window approach for saving memory and
space, and solve the segmentation of video frames within
the observed window.

3.1. Formulation

The proposed low rank decomposition model is imposed
on the supervoxels for better tradeoff of efficiency and ac-



curacy. In one temporal window, the supervoxels are gener-
ated by unsupervised video segmentation method [2], where
each supervoxel comprises an ensemble of voxels that are
coherent both spatially and temporally, and perceptually
similar with respect to certain appearance features (e.g.
color). Although multilevel supervoxel representation can
provide more appearance and motion features, as shown
in Fig. 1, the finest-level supervoxels have good spatio-
temporal coherence and boundaries whilst the coarse-level
supervoxels usually introduce large under-segmentation er-
rors. Therefore, our model is formulated in the finest-level
supervoxels instead of enforcing multilevel consistency in
multilayers to avoid error propagation.

Each temporal window of the video is segmented into
n supervoxels. Note that n should not be set too small
(large under-segmentation errors) or too large (low compu-
tational speed). Empirically, we fix n = 200 in this work
to balance the accuracy-efficiency trade-off. For each su-
pervoxel, a set of appearance and motion features are ex-
tracted and combined into one single d-dimensional fea-
ture vector xi for supervoxel representation. Then, all the
feature vectors of the n supervoxels form the data matrix
X = [x1,x2, . . . ,xn] ∈ Rd×n.

We assume that supervoxels belonging to the same se-
mantic region are all drawn from the same low-rank sub-
space, and all supervoxels in one temporal window lie on a
union of multiple subspaces. Based on the low-rank repre-
sentation assumption, we have

X = XZ+E+ ϵ, s.t. rank(Z) ≤ r, (1)

where Z ∈ Rn×n is the desired low-rank affinity matrix,
and E ∈ Rd×n and ϵ ∈ Rd×n denote the sparse corrupted
noises and the dense Gaussian noises, respectively. r(< n)
denotes the low rank. Thus, the low-rank representation
model can be formulated as

min
Z,E

1

2
∥X−XZ−E∥2F + λ∥E∥1, s.t. rank(Z) ≤ r,

(2)
where λ denotes the regularization parameter. ∥ · ∥F and ∥ ·
∥1 denote the Frobenius norm and the ℓ1-norm of a matrix,
respectively. The model in Eq. 2 is nonconvex, and the low
rank affinity matrix is usually obtained by solving its convex
relaxation problem,

min
Z,E

1

2
∥X−XZ−E∥2F + α∥Z∥∗ + λ∥E∥1, (3)

where ∥ · ∥∗ denotes the nuclear norm of a matrix, and the
parameters α and λ are balance factors of three parts.

To enhance the discriminative ability of the low rank
affinity matrix, we further integrate into the model in Eq. 3
the discriminative replication prior based on internal video
statistics. Discriminative replication prior was proposed

...

Figure 2. Illustration of the discriminative replication prior. A
video cube consists of a set of spatially overlapped patches, where
repeatedly occurred patches are identified with the same color.
One red cube is highlighted for clarity.

for modeling statistical observation on natural images and
was successfully applied to image segmentation [1]. In this
work, we extend it to videos in a natural way: local small-
size cubes (e.g., 6× 6× 6 voxels) tend to recur frequently
within the same semantic spatio-temporal region, yet less
frequently within semantically different spatio-temporal re-
gions. Further, the extension to video also benefits the
preservation of temporal coherence and improvement on
computational efficiency, as shown in Fig. 2.

Denote Λi by the spatio-temporal subregion covered by
supervoxel i, and Q ∈ Rn×n be the discriminative repli-
cation prior matrix. Supposing that the number of cubes
within Λi is |Λi|, we have

Qij = e
−( 1

|Λi|
∑

p∈Λi
D(p, Λj)+

1
|Λj |

∑
q∈Λj

D(q, Λi))
,

D(p, Λ) =
1

|Λ|
∑
q∈Λ

δζ(κ(∥xp − xq∥)),
(4)

where xp and xq are the features extracted from the small-
size cubes p and q, and κ is a Gaussian kernel. The function
δζ(a) denotes the hard-threshold operator,

δζ(a) = aI(|a| > ζ), (5)

where I(·) is the indicator function, and the threshold ζ is
fixed to be 0.4 in this work.

From Eq. 4, one can see that larger Qij indicates that
the supervoxel i and j belong to different semantic spatio-
temporal regions with higher probability, and vice versa.
Therefore, we incorporate the discriminative replication
prior into the model in Eq. 3:

min
Z,E

1

2
∥X−XZ−E∥2F +α∥Z∥∗+λ∥E∥1+γtr(ZTQ),

(6)
where tr(·) returns the matrix trace, and γ is a tuning pa-
rameter. Therefore, high-level semantic internal statistics
can be incorporated as a soft constraint to enhance the dis-
criminative ability.



Algorithm 1 Optimization Procedure to Eq. 7
Input: The supervoxel feature matrix X, the discrimina-

tive replication prior matrix Q, the low-rank r, the pa-
rameter λ, β and γ;
Set E = 0; ε = 10−8, maxIter = 500.

Output: A, B, E.
1: while not converged do
2: Update A by Eq. 11;
3: Update B by Eq. 9;
4: Update E by Eq. 12;
5: Check the convergence condition: the maximum el-

ement change of A, B, and E between two consecu-
tive iterations is less than ε or the maximum number
of iterations reaches maxIter.

6: end while

The low rank representation model in Eq. 6 can be solved
using the augmented Lagrangian method (ALM) [20] or lin-
earized ALM [29]. However, in many applications it is
easier to explicitly determine the desired rank rather than
implicitly tuning the tradeoff parameter α [24]. For exam-
ple, rigid structure from motion (SFM) can be formulated as
a rank-3 matrix factorization problem [27], while nonrigid
SFM can be formulated as a rank-3k matrix factorization,
where k is the number of shape basis for depicting nonrigid
deformation [26]. Moreover, as demonstrated in [19, 23],
the incorporation of explicit rank constraint may result in
more efficient optimization algorithm. Therefore, we re-
move the nuclear-norm regularizer in Eq. 6, and explicitly
impose the fixed-rank constraint on Z. Supposing the rank
of the affinity matrix Z is r, we have Z = AB, where
A ∈ Rn×r, B ∈ Rr×n, and r < min(n, d). By replac-
ing Z with AB, the Sub-Optimal Low-rank Decomposition
(SOLD) method is then formulated as,

min
A,B,E

1

2
∥X−XAB−E∥2F + λ∥E∥1+

β

2
∥AB∥2F + γ tr((AB)TQ),

(7)

where β is a regularization parameter that controls overfit-
ting. Even SOLD is nonconvex and sub-optimal, as demon-
strated in our experiments, such formulation can deliver
both efficient algorithms and promising video segmentation
accuracy.

3.2. Optimization

To optimize Eq. 7, we adopt the alternating optimization
method, and denote

J(A,B,E) =
1

2
∥X−XAB−E∥2F + λ∥E∥1+

β

2
∥AB∥2F + γ tr((AB)TQ).

(8)

Given E, taking the derivative of J(A,B,E) w.r.t. B,
and setting it to zero, we obtain

B = (ATS1A)−1ATS2, (9)

where
S1 = XTX+ βI,

S2 = (XT (X−E)− γQ).
(10)

By substituting Eq. 9 back into Eq. 7, the subproblem on
A becomes

A∗ = arg max
A

tr{(ATS1A)−1ATS2S
T
2 A}. (11)

Eq. 11 can be transformed to a generalized eigen-
problem, where its global optimal solution is the top r
eigenvectors of S†

1S2S
T
2 corresponding to the nonzero

eigenvalues, where S†
1 denotes the pseudo-inverse of S1.

Given A and B, the noises matrix E can be solved by
the soft-threshold (or shrinkage) method in [20]:

E∗ = arg min
E

λ∥E∥1 +
1

2
∥E− (X−XAB)∥2F .

(12)
Please refer to the supplementary material for detailed

derivation of the above equations. A sub-optimal solution
can be obtained by alternating between the updating of {A,
B} and the updating of E, and the algorithm is summarized
in Alg. 1. Although the global convergence of the algo-
rithm is not proved, we empirically validate its convergence
in Sect. 5.4. Finally, the low rank affinity matrix of the su-
pervoxels can be obtained by Z = AB.

(a) (b) (c)

...... ...

Figure 3. Illustration of the temporal consistent constraints for
temporal consistency. Frame 41 to 61 of the video sequence
“planet earth 1” in the dataset VSB100 [7] are shown in (a), and
the segmentation results without and with the temporal consistent
constraints are shown in (b) and (c), respectively. The different
colors indicate the different segmentation labels.

3.3. Implementation Details

To make SOLD clear and complete, some important im-
plementation details are briefly introduced.

Since the hierarchical graph-based method [2] performs
well on all the metrics of the united video segmentation
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Figure 4. The generation of the temporal consistent constraints be-
tween two neighboring sliding windows Wn−1 and Wn. A de-
notes one segmentation region in Wn−1, and provides some con-
straints to the segmentation of Wn. For clarity, four typical su-
pervoxels are shown here, which stand for four typical supervoxel
types based on their relationship to the region A: complete (SV3),
almost (SV2), part (SV1) and none (SV4). Thus, only SV2 and
SV3 compose a partial grouping supervoxel set and generate a con-
straint due to A.

benchmarks [4, 7], we utilize it to generate one layer su-
pervoxels. Thus, in this work, the hierarchical graph-based
method is utilized to generate one layer supervoxels. The
only input parameter is the total number of supervoxels,
which is fixed to be 200 to balance the accuracy-efficiency
trade-off in this work.

To withstand noise and moderate appearance variation,
four low-level features are extracted from supervoxels and
normalized with unit ℓ2 norm. These feature vectors,
including 12-dimension color histogram in each channel
of RGB, 58-dimension Local Binary Pattern (LBP), 31-
dimension Histogram of Oriented Gradient (HOG) and 18-
dimension Histogram of Optical Flow (HOF) [15], are con-
catenated into a single descriptor vector.

4. Streaming Video Segmentation
An effective streaming (sometimes called online as a

synonym) algorithm can enable us to process an arbitrary
long video with limited memory and computational re-
sources, and thus is essential in video segmentation. To this
end, we segment the video in overlapping sliding windows,
and adopt the the supervoxel-level NCut for efficient video
segmentation. Besides, both the temporal consistent con-
straints and low rank affinity are considered to improve the
longer-range consistency and segmentation accuracy of the
inference algorithm.

We first define the affinity between two supervoxels as a
linear combination of three cues:

Wij =
3∑

m=1

ωmϕm
ij , (13)

where ϕm is a Gaussian kernel in the feature space, and ωm

is the linear combination weight. In this work, ϕ1 is the
intervening contours kernel, defined as

ϕ1
ij = e−α1maxx∈Lines(i,j)∥Edge(x)∥, (14)

where Lines(i, j) is a straight line set, and each line joins
centers of within-frame superpixel-pair, which belongs to
supervoxel-pair (i, j). The Edge(x) is the edge strength
computed by gradient at location x, and α1 is a tuning pa-
rameter. ϕ2 is the smoothness kernel defined as

ϕ2
ij = e−α2∥ci−cj∥, (15)

where ci represents the centroid of the supervoxel i, and α2

is the tuning parameter. And the third kernel ϕ3 is defined
as

ϕ3
ij = e−α3e

−|Zij |
2σ2

, (16)

where Zij indicates the (i, j)-the element of the low rank
affinity matrix, α3 is the tuning parameter, and σ is the
Gaussian parameter. | · | indicates the absolute operator.
The settings of all the parameters are described in Sect. 5.1.

The temporal consistent constraints are further intro-
duced to properly propagate solutions from current tempo-
ral window to the next window. In this way, we can generate
some constraints between neighboring windows to propa-
gate the segmentation labels, while avoiding some bad re-
sults should not affect the quality of segmentation in the
future frames. To this end, we divide the supervoxels into
two categories as follows. Given segmentation labels of the
current window, the supervoxels in the next are divided into
the deterministic supervoxels, which completely or almost
(over 90% in this paper) belong to one specific label, and
non-deterministic supervoxels, which partly belong to some
label. Then the partial grouping supervoxel set is composed
by only the deterministic supervoxels. Fig. 4 illustrates this
process.

Given the partial grouping supervoxel set Ut, we can ob-
tain |Ut| − 1 independent constraints, where | · | denotes
the size of a set, and t ∈ T indicates the label index.
Then, the temporal consistent constraint matrix Ū is com-
puted as follows: For each row k, there is two nonzero el-
ements Ūk(i) = 1 and Ūk(j) = −1, where i, j ∈ Ut and
k ∈ [

∑T
t=1(|Ut| − 1)], [n] indicates the set of integers be-

tween 1 and n: [n] = {1, 2, . . . , n}. Alg. 2 summarizes this
procedure, and Fig. 3 illustrates its effectiveness.

Finally, we apply the constrained NCut method [9] on W
to achieve the supervoxel-level segmentation. The tractable
K-ways normalized segmentation criterion with temporal
consistent constraints is formulated as

max
Z̄

1

K
tr(Z̄TWZ̄)

s.t. ŪZ̄ = 0, Z̄T D̄Z̄ = IK ,

(17)

where Z̄ = X̄(X̄T D̄X̄)−
1
2 , D̄ = W1N , X̄ and Z̄ are

the partition matrix and the scaled partition matrix, respec-
tively, and D̄ is the degree matrix, 1 and I denote all ones
vector and identity matrix, respectively, and N is total num-
ber of supervoxels. The optimization of Eq. 17 has been



Algorithm 2 Temporal Consistent Constraint Matrix Com-
putation between Two Neighboring Windows
Input: Label set T from the first window; Supervoxel set

S in the second window.
Output: Temporal consistent constraint matrix Ū.
1: for t = 1 : |T | do
2: Find the deterministic supervoxel set Ut (⊆ S) for

the label T (t) according to the overlap ratio of over-
lapping frame(s);

3: k = 0;
4: for s = 1 : |Ut| − 1 do
5: k = k + 1;
6: Ū(k, Ut(s)) = 1;
7: Ū(k, Ut(s+ 1)) = −1.
8: end for
9: end for

addressed in [9], and the main results are as follows. Let P̄
be the row-normalized weight matrix and Q̄ be a projector
onto the feasible solution space:

P̄ = D̄−1W, Q̄ = I− Ū−1ŪT (ŪD̄−1ŪT )−1Ū.
(18)

Let V̂′
[K] be the first K eigenvectors of the matrix

Q̄P̄Q̄, then the solutions of Eq. 17 are V̂[K] = D̄− 1
2 V̂′

[K].
The V̂[K] are discretized by spectral rotation [18] or k-
means (spectral rotation in this paper) to obtain the final
discrete solutions of graph partition.

In order to create new labels or remove old labels when
the objects enter or leave the camera view, we utilize a rea-
sonable strategy to determine the labels mapping by their
spatial overlap [13]. An overlap of one frame between
neighboring windows is used to determine whether current
labels are new ones or mapped from previous ones. For
simplicity, the overlaps between new labels (from the cur-
rent processing window) and old labels (from the preced-
ing processing window) are measured by their Dice coeffi-
cients. For a current label l, it is mapped from previous one
if it significantly overlaps with some previous label p, but
barely overlaps with any other previous label q. Otherwise,
it is considered as new one s, i.e. a new object:

l =

{
p,

s,

if o(l, p) > o1 and o(l, q) < o2

else
, (19)

where o(·, ·) denotes the Dice coefficient in overlap be-
tween two labels, and o1, o2 are fixed parameters, which
is set to be 0.8 and 0.2, respectively.

5. Experiment Results
In this section, we evaluate our video segmentation

framework on the standard benchmark VSB100 [7], and

compare with other state-of-the-art methods. Then, we fur-
ther analyze the effectiveness of our main components. At
last, the efficiency analysis of our framework is discussed.

5.1. Evaluation Settings

The selected VSB100 [7] for empirical evaluation is very
challenging. It is the largest video segmentation dataset
with high definition frames, and consists of four difficult
sub-datasets: general, motion segmentation, non-rigid mo-
tion segmentation and camera motion segmentation. The
same setting as [7], we regard the general sub-dataset (60
video sequences) as our test set for all the approaches.

To make the comparison comprehensive, we employ the
segment number set {2, 3, ..., 51} to produce multilevel seg-
mentation results, and fix all parameters in all evaluations:
we set {r, λ, β, γ} = {8, 0.5, 0.5, 0.05} in optimization,
and {ω1, ω2, ω3, α1, α2, α3, σ} = {0.4, 0.3, 0.3, 30, 0.6,
10, 0.12} in inference. In addition, the number of frames
per window is set to be 6, and one frame is overlapped be-
tween neighboring windows.

5.2. Comparison Results

We compare our approach with four state-of-the-
art video segmentation algorithms, including BMC [3],
VSS [16], HGB [2] and SHGB [12]. The first two sub-
figures of Fig. 5 illustrate the Boundary Precision-Recall
(BPR) and Volume Precision-Recall (VPR) curves of the
comparisons on the VSB100 dataset. Tab. 1 gives a sum-
mary of the aggregate performance evaluations, which in-
cludes Optimal Dataset Scale (ODS), Optimal Segmenta-
tion Scale (OSS) and Average Precision (AP) of BPR and
VPR. Herein, the baseline [7] is extension of [5] by propa-
gating the results [5] of central frame to other frames with
optical flow [25] and labeling image segments (across hi-
erarchy) with maximum voting. It adopted more complex
image features while exploiting additional cues like motion.

From Fig. 5 and Tab. 1, we can conclude that our ap-
proach achieves comparable performance against the state-
of-the-art methods in both BPR and VPR on the VSB100
dataset. Specifically, our approach achieves best ODS and
OSS values in both BPR and VPR. Though all exploiting
more informative cues as VSS, our approach performs bet-
ter for its insensitivity to noise. This owes to the proposed
sub-optimal low-rank decomposition of affinity matrix of
supervoxel features. Besides, the temporal consistent con-
straints adopted by our approach bring better performance
than other methods in VPR. It is also worth noting that
SHGB is also a streaming mode. These superior perfor-
mances demonstrate that our approach can not only effec-
tively infer the affinities between supervoxels, but also pre-
serve the longer-range temporal consistency in a streaming
mode. In addition, the qualitative comparisons to previous
works are shown in Fig. 6 to demonstrate the superior per-
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Figure 5. Comparison curves of our framework with its variants and the state-of-the-art video segmentation approaches [2, 3, 12, 16]. The
first two subfigures are the comparison curves for comparing our framework with previous works, and the last two subfigures are the
comparison curves for evaluating the variants of our framework.

Table 1. The aggregation measures of Boundary Precision-Recall
(BPR) and Volume Precision-Recall (VPR) for comparing with
previous works on dataset VSB100 [7]. (*) denotes evaluated on
video frames resized by 0.5 due to large computational demands
and the italic denotes the streaming method. Red fonts indicate
the best performance.

BPR VPR
Algorithm ODS OSS AP ODS OSS AP
*BMC [3] 0.47 0.48 0.32 0.51 0.52 0.38
*VSS [16] 0.51 0.56 0.45 0.45 0.51 0.42
*HGB [2] 0.47 0.54 0.41 0.52 0.55 0.52
SHGB [12] 0.38 0.46 0.32 0.45 0.48 0.44
*SOLD 0.54 0.58 0.40 0.53 0.60 0.46

Human 0.81 0.81 0.67 0.83 0.83 0.70
Baseline [7] 0.61 0.65 0.59 0.59 0.62 0.56

formance of our framework.
Though our framework has achieved superior perfor-

mance, its AP in both BPR and VPR is lower than some of
the state-of-the-arts (VSS and HGB). This is due to the low
recall caused by the small maximum supervoxel number for
over-segmentation. As a matter of fact, we can alleviate it
by simply increasing the supervoxel number. However, to
balance the accuracy-efficiency trade-off, we currently ex-
ploit the small number and will develop an adaptive version
in our future work.

5.3. Component Analysis

To justify the significance of the main components of
our framework, we implement three special versions and
two variants for empirical analysis. They are: 1) SOLD-
I, that sets ω3 = 0 to remove the affinity term inferred
by the sub-optimal low-rank decomposition in streaming
segmentation framework. 2) SOLD-II, that sets γ = 0
in Eq. 7 to remove the regularization term of the discrim-
inative replication prior in SOLD. 3) SOLD-III, that sets
Ū = 0 to perform segmentation without the temporal con-
sistent constraints. 4) SOLD-SV, that substitutes the optimal

Table 2. The aggregation measures of Boundary Precision-Recall
(BPR) and Volume Precision-Recall (VPR) for comparing our ap-
proach with its variants on dataset VSB100 [7]. The description of
this Table is the same as Table 1.

BPR VPR
Algorithm ODS OSS AP ODS OSS AP
*SOLD 0.54 0.58 0.40 0.53 0.60 0.46
*SOLD-I 0.51 0.55 0.34 0.52 0.58 0.41
*SOLD-II 0.53 0.56 0.38 0.53 0.59 0.47
*SOLD-III 0.54 0.57 0.41 0.47 0.54 0.39
*SOLD-SV 0.51 0.55 0.36 0.45 0.50 0.39
*SOLD-MS 0.52 0.56 0.37 0.53 0.59 0.47

affinities optimized by the sub-optimal low-rank decompo-
sition with the affinities based on feature descriptors, i.e.
letting ϕ3

ij = e−α4∥xi−xj∥2

in Eq. 16, where α4 is empir-
ically set to be 0.5 in our implementation. 5) SOLD-MS,
that enforces multiscale consistency between multilayers,
and is solved by ALM method [20]. Specifically, we im-
plement SOLD-MS as following three steps. Firstly, three
layer supervoxels are generated by hierarchical graph-based
video segmentation approach [2] with supervoxel numbers
set to be 200, 150, 100, respectively. Secondly, we intro-
duce the multiscale consistent constraint matrix and the dis-
criminative replication prior matrix into Eq. 3, and apply
ALM method to solve it. Thirdly, we integrate it into our
streaming framework to facilitate the evaluation.

The last two subfigures of Fig. 5 show the components
evaluation of our framework, and corresponding aggrega-
tion measures are reported in Tab. 2. From Fig. 5 and
Tab. 2, we can draw the following conclusions. 1) The
complete framework outperforms SOLD-I in both BPR and
VPR. This justifies the significance of the optimal affinities
optimized by the sub-optimal low-rank decomposition. 2)
Comparing to the complete framework, SOLD-II has a lit-
tle performances drop in BPR and VPR. This demonstrates
the contribution of the discriminative replication prior. 3)
Though worse than SOLD-III in BPR, the complete frame-
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Figure 6. Qualitative comparisons with the state-of-the-art video segmentation methods HGB and SHGB. We can see that our method
qualitatively improves on the algorithm of HGB, and substantially outperforms the algorithm of SHGB.
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Figure 7. Convergence curves of our approach on dataset VSB100
[7].

work with the temporal consistent constraints substantially
improves the performance in VPR, i.e., keeping longer-
range temporal consistency. 4) Our framework outperforms
SOLD-SV in both BPR and VPR, and it shows that the
affinities inferred by the sub-optimal low-rank decomposi-
tion can alleviate the noises of low-level features effectively.
It is worth noting that VPR is greatly affected by noises in
our streaming framework. 5) Our framework obtains better
results than SOLD-MS. This validates that the multiscale
consistency constraints do not help to improve the segmen-
tation results due to error propagation as we previously dis-
cussed.

5.4. Efficiency Analysis

To explore whether the proposed sub-optimal low-rank
decomposition is more efficient than the widely used ALM
method, we further compare the time efficiency of SOLD
with SOLD-MS. Herein, SOLD-MS and SOLD refer to
solving their respective low-rank problems. The experi-
ments are carried out on a desktop with an Intel i7 3.4GHz
CPU and 10GB RAM, and implemented on mixing plat-
form of C++ and MATLAB without any optimization.
Fig. 7 shows the convergence curves of SOLD-MS and

Table 3. The average iterations and running time (seconds per
frame) of SOLD-MS and SOLD.

SOLD-MS SOLD
Iteration Number 112 16

Running Time 2.40 0.12

SOLD, and Tab. 3 reports their average iterations and run-
ning time. Thanks to the proposed sub-optimal low-rank
decomposition, it only costs 0.12 sec./frame for our SOLD,
which converges faster than SOLD-MS (see Fig. 7), and
brings 20-times over it (see Tab. 3).

Furthermore, constrained NCut is also efficiently solved
within 0.01 sec./frame due to the proposed supervoxel-level
segmentation. In addition, graph-based over-segmentation
and feature extraction are mostly two time consuming pro-
cedures, and will be parallelized by GPU in future work.

6. Conclusion
In this paper, we have proposed a general algorithm for

low-rank representation pursuit by decomposing the ma-
trix with the rank fixed and proved that a sub-optimal so-
lution can be achieved by alternating closed-form optimiza-
tion. Based on this algorithm, we have developed an ef-
fective and efficient framework that automatically segments
streaming videos in an unsupervised way. Extensive exper-
iments on the standard benchmarks have demonstrated the
superior performances of our approach over other state-of-
the-art methods. In future work, we will improve our video
segmentation framework by introducing more robust video
features and over-segmentation methods. Our low-rank de-
composition algorithm can be also extended to other vision
tasks such as multi-object tracking.
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