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Abstract

Grounding referring expressions is a fundamental yet

challenging task facilitating human-machine communica-

tion in the physical world. It locates the target object in an

image on the basis of the comprehension of the relationships

between referring natural language expressions and the im-

age. A feasible solution for grounding referring expressions

not only needs to extract all the necessary information (i.e.

objects and the relationships among them) in both the im-

age and referring expressions, but also compute and rep-

resent multimodal contexts from the extracted information.

Unfortunately, existing work on grounding referring expres-

sions cannot extract multi-order relationships from the re-

ferring expressions accurately and the contexts they obtain

have discrepancies with the contexts described by referring

expressions. In this paper, we propose a Cross-Modal Rela-

tionship Extractor (CMRE) to adaptively highlight objects

and relationships, that have connections with a given ex-

pression, with a cross-modal attention mechanism, and rep-

resent the extracted information as a language-guided vi-

sual relation graph. In addition, we propose a Gated Graph

Convolutional Network (GGCN) to compute multimodal se-

mantic contexts by fusing information from different modes

and propagating multimodal information in the structured

relation graph. Experiments on various common bench-

mark datasets show that our Cross-Modal Relationship In-

ference Network, which consists of CMRE and GGCN, out-

performs all existing state-of-the-art methods.

1. Introduction

Understanding natural languages and their relationship

with visual information is the foundation in AI for bridging

humans and machines in the physical world. This problem

involves many challenging tasks, among which, grounding
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No.61702565 and the Fundamental Research Funds for the Central Uni-
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Figure 1. Cross-Modal Relationship Inference Network. Given an

expression and image, Cross-Modal Relationship Extractor con-

structs the language-guided visual relation graph (the attention

scores of proposals and edges’ types are visualized inside green

dashed box). The Gated Graph Convolutional Network captures

semantic contexts and computes the matching score between the

context of every proposal and the context of the expression (the

matching scores of proposals are shown inside blue dashed box).

Warmer color indicates higher scores of pixels and darker blue in-

dicates higher scores of edges’ types.

referring expressions [9, 23] is a fundamental one. Ground-

ing referring expressions attempts to locate the target visual

object in an image on the basis of comprehending the re-

lationships between referring natural language expressions

(e.g. “the man with glasses”, “the dog near a car”) and the

image.

Grounding referring expressions is typically formulated

as a task that identifies a proposal referring to the expres-

sions from a set of proposals in an image [35]. Recent work

combines Convolutional Neural Networks (CNN) [13] and

Long Short-Term Memory Neural Networks (LSTM) [6] to

process the multimodal information in images and referring

expressions. CNNs are used for extracting visual features of

single objects, global visual contexts [23, 28] and pairwise

visual differences [19, 35, 36, 37], while LSTMs encode

global language contexts [19, 22, 23, 36, 37] and language

features of the decomposed phrases [7, 35, 41, 33]. CNN

cooperating with LSTM can also capture the context of ob-

ject pairs [7, 26, 41]. However, such work cannot extract

first-order relationships or multi-order relationships accu-

rately from referring expressions, and the captured contexts

also have discrepancies with the contexts described by re-

ferring expressions.
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A feasible solution for grounding referring expressions

needs to extract all the required information (i.e. objects and

the relationships among them in the image and referring ex-

pressions) accurately for any given expression. However,

as the expressions generated from the scene in an image are

often unpredictable and flexible [23], the proposed model

needs to extract information adaptively. For example, if the

target is to locate “The man holding a balloon” in an im-

age with two or more men, the required information from

the natural language expression includes nouns (“man” and

“balloon”) and the word about relationship “holding”; on

the other hand, the proposals for “man” and “balloon” and

the visual relationship (‘holding”) linking them should be

identified in the image. If the expression is more compli-

cated, such as “The man on the left of the man holding a bal-

loon”, the additional relation information we need is “left”.

In this example, we need to recognize the second-order

relationship between the target and the “balloon” through

the other “man”. Unfortunately, existing work either does

not support relationship modeling or only considers first-

order relationships among objects [7, 26, 41]. Theoreti-

cally, visual relation detectors [3, 21, 38] and natural lan-

guage parsers can help achieve that goal by detecting the

relational information in the image and parsing the expres-

sions in the language mode. However, existing visual rela-

tion detectors cannot deliver satisfactory results for highly

unrestricted scene compositions [41], and existing language

parsers have adverse effects on the performance of ground-

ing referring expressions due to their parsing errors [35].

Moreover, it is vital to represent the contextual infor-

mation of referring expressions and target object proposals

accurately and consistently because the context of an ex-

pression helps distinguish the target from other objects [26,

36, 41]. Nevertheless, existing methods for context model-

ing either cannot represent the contexts accurately or can-

not achieve high-level consistency between both types of

contexts mentioned above, and the reasons are given be-

low. First, existing work on global language context mod-

eling [19, 22, 23, 36, 37] and global visual context model-

ing [23, 28] introduces noisy information and makes it hard

to match these two types of contexts. Second, pairwise vi-

sual differences computed in existing work [19, 35, 36, 37]

can only represent instance-level visual differences among

objects of the same category. Third, existing work on con-

text modeling for object pairs [7, 26, 41] only considers

first-order relationships but not multi-order relationships

(e.g., they directly extract the context between the target

“man” and “balloon” without considering the other “man”

“holding the balloon”). In addition, multi-order relation-

ships are actually structured information, and the context

encoders adopted by existing work on grounding referring

expressions are simply incapable of modeling them.

In order to overcome the aforementioned difficulties, we

propose an end-to-end Cross-Modal Relationship Inference

Network (CMRIN). CMRIN consists of two modules, i.e.

the Cross-Modal Relationship Extractor (CMRE) and the

Gated Graph Convolutional Network (GGCN). An exam-

ple is illustrated in Figure 1. The CMRE extracts all the

required information adaptively (i.e., nouns and relation-

ship words from the expressions, and object proposals and

their visual relationships from the image) for constructing

a language-guided visual relation graph with cross-modal

attention. First, CMRE constructs a spatial relation graph

for the image. Second, it learns to classify the words in the

expression into four types and further assign the words to

the vertices and edges in the spatial relation graph. Finally,

it constructs the language-guided visual relation graph from

the normalized attention distribution of words over vertices

and edges of the spatial relation graph. The GGCN fuses

information from different modes and propagates the fused

information in the language-guided visual relation graph

to obtain the semantic context referred to by the expres-

sion. We have tested our proposed CMRIN on three com-

mon benchmark datasets, including RefCOCO [36], Ref-

COCO+ [36] and RefCOCOg [23]. Experimental results

show that our proposed network outperforms all the other

state-of-the-art methods.

In summary, this paper has the following contributions:

• Cross-Modal Relationship Extractor (CMRE) is pro-

posed to convert the pair of input expression and image

into a language-guided visual relation graph. For any

given expression, CMRE highlights objects as well as

relationships among them with a cross-modal attention

mechanism.

• Gated Graph Convolutional Network (GGCN) is pro-

posed to capture multimodal semantic contexts with

multi-order relationships. GGCN fuses information

from different modes and propagates fused informa-

tion in the language-guided visual relation graph.

• CMRE and GGCN are integrated into Cross-Modal

Relationship Inference Network (CMRIN), which

outperforms all existing state-of-the-art methods on

grounding referring expressions.

2. Related Work

2.1. Grounding Referring Expressions

Grounding referring expression and referring expression

generation [23] are dual tasks. The latter generates an un-

ambiguous text expression for a target object in an image,

and the former selects the corresponding object according

to the context in an image referred to by a text expression.

To address grounding referring expression, some previ-

ous work [19, 22, 23, 37, 36] extracts visual object fea-

tures from CNN and treats an expression as a whole to
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Figure 2. An overview of our Cross-Modal Relationship Inference Network for grounding referring expressions (better view in color). We

use color to represent semantics, i.e. yellow means “person”, green means “green shirt”, blue means “umbrella”, purple means “white

T-shirt”, brown means “wearing” and dark grey means “held by”. It includes a Cross-Modal Relationship Extractor (CMRE) and a Gated

Graph Convolutional Network (GGCN). First, CMRE constructs (a) a spatial relation graph from the visual features of object proposals and

spatial relationships between proposals. Second, CMRE highlights the vertices (red bounding boxes) and edges (solid lines) to generate

(b) a language-guided visual relation graph using cross-modal attention between words in the referring expression and the spatial relation

graph’s vertices and edges. Third, GGCN fuses the context of every word into the language-guided visual relation graph to obtain (c) a

multimodal (language, visual and spatial information) relation graph. Fourth, GGCN captures (d) multimodal semantic contexts with first-

order relationships by performing gated graph convolutional operations in the relation graph. By performing gated graph convolutional

operations for multiple iterations, (e) semantic contexts with multi-order relationships can be computed. Finally, CMRIN calculates the

matching score between the semantic context of every proposal and the global context of the referring expression.

encode language feature through an LSTM. Among them,

some methods [22, 23, 36] learn to maximize the posterior

probability of the target object given the expression and the

image, and the others [19, 37] model the joint probability

of the target object and the expression directly. Different

from the methods above, Context Modeling between Ob-

jects Network [26] inputs the concatenation of visual ob-

ject representation, visual context representation and the

word embedding to an LSTM model. Some recent meth-

ods [7, 35, 41] learn to decompose an expression into dif-

ferent components and compute the language-vision match-

ing scores of each module for objects, others [42, 4] adopt

co-attention mechanisms to build up the interactions be-

tween the expression and the objects in the image. Our

Cross-Modal Relationship Extractor also learns to classify

the words in the expression, but we treat the classified words

as a guidance to highlight all the objects and their relation-

ships described in the expression automatically to build the

language-guided visual relation graph without extra visual

relationships detection [3, 21, 38].

2.2. Context modeling

Context modeling has been utilized in many visual

recognition tasks, e.g., object detection [2, 31, 39, 14],

saliency detection [16, 17, 15] and semantic segmentation

[25, 40]. Recently, Structure Inference Network [20] for-

mulates the context modeling task as a graph structure in-

ference problem [8, 11, 24]. Previous work on ground-

ing referring expressions also attempts to capture contexts.

Some work [23, 28] encodes the entire image as a visual

context, but that global contextual information usually can-

not match with the local context described by expression.

Some work [19, 35, 36, 37] captures the visual difference

between the objects belonging to the same category in an

image, but the visual difference of the object’s appearance

is often insufficient to distinguish the target from other ob-

jects. Instead, the visual difference between the context in-

cluding appearance and relationship is essential, e.g., “Man

holding a balloon”, the necessary information to locate the

“man” is not only the appearance of the “man” but the

“holding” relation with the “balloon”. Though there are

some work [7, 26, 41] attempt to model the context from

the relationship of object pairs, they only consider the con-

text with first-order relationship between objects. Inspired

by Graph Convolutional Network [11] for classification, our

Gated Graph Convolutional Network flexibly captures the

context referring to the expression by message passing, and

the context with multi-order relationships can be captured.
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3. Cross-Modal Relationship Inference Net-

work

Our proposed Cross-Modal Relationship Inference Net-

work (CMRIN) relies on cross-modal relationships among

objects and contexts captured in the multimodal relation

graph to choose the target object proposal (in the input im-

age) referred to by the input expression. First, CMRIN

constructs a language-guided visual relation graph using

the Cross-Modal Relationship Extractor. Second, it cap-

tures multimodal contexts from the relation graph using the

Gated Graph Convolutional Network. Finally, a matching

score is computed for each object proposal according to its

multimodal context and the context of the input expression.

The overall architecture of our CMRIN for grounding refer-

ring expressions is illustrated in Figure 2. In the rest of this

section, we elaborate all the modules in this network.

3.1. CrossModal Relationship Extractor

The Cross-Modal Relationship Extractor (CMRE) adap-

tively constructs the language-guided visual relation graph

according to any given pair of image and expression using a

cross-modal attention mechanism. Our CMRE softly clas-

sifies the words in the expression into four types (i.e., entity

words, relation, absolute location, and unnecessary words)

according to the context of every word. The context of the

entire expression can be calculated from the context of each

individual word. Meanwhile, a spatial relation graph of the

image is constructed by linking object proposals in the im-

age according to their size and locations. Next, CMRE gen-

erates the language-guided visual relation graph by high-

lighting the vertices and edges of the spatial relation graph.

Highlighting is implemented as computing cross-modal at-

tention between the words in the expression and the vertices

and edges in the spatial relation graph.

3.1.1 Spatial Relation Graph

Exploring relative spatial relations among object proposals

within an image is necessary for grounding referring ex-

pressions. On one hand, spatial information frequently oc-

curs in referring expressions [35]; on the other hand, spatial

relationship is an important aspect of visual relationship in

images [3, 38]. We explore the spatial relationship between

each pair of proposals according to their size and locations,

which bears resemblance to the approach in [34].

For a given image I with K object proposals (bound-

ing boxes), O = {oi}
K
i=1, the location of each proposal oi

is denoted as loci = (xi, yi, wi, hi), where (xi, yi) are the

normalized coordinates of the center of proposal oi, wi and

hi are the normalized width and height respectively. The

spatial feature pi is defined as pi = [xi, yi, wi, hi, wihi].
For any pair of proposals oi and oj , the spatial relationship

rij between them is defined as follows. We compute the rel-

ative distance dij , relative angle θij (i.e. the angle between

the horizontal axis and vector (xi − xj , yi − yj)) and In-

tersection over Union uij between them. If oi includes oj ,

rij is set to “inside”; if oi is covered by oj , rij is set to

“cover”; if none of the above two cases is true and uij is

larger than 0.5, rij is set to “overlap”; otherwise, when the

ratio between dij and the diagonal length of the image is

larger than 0.5, rij is set to “no relationship”. In the rest of

the cases, rij is assigned to one of the following spatial rela-

tions, “right”, “top right”, “top”, “top left”, “left”, “bottom

left”, “bottom” and “bottom right”, according to the relative

angle θij . The details are shown in Figure 3.

Figure 3. All types of spatial relations between proposal oi (green

box) and proposal oj (blue box). The number following the rela-

tionship is the label index.

The directed spatial relation graph Gs = (V,E,Xs) is

constructed from the set of object proposals O and the set of

pairwise relationships R = {rij}
K
i,j=1, where V = {vi}

K
i=1

is the set of vertices and vertex vi corresponds to proposal

oi; E = {eij}
K
i,j=1 is the set of edges and eij is the index

label of relationship rij ; Xs = {xs
i}

K
i=1 is the set of features

at vertices and xs
i ∈ R

Dx is the visual feature of proposal

oi, and xs
i is extracted using a pretrained CNN model. A

valid index label of E ranges from 1 to Ne = 11 (the label

of “no relationship” is 0).

3.1.2 Language Context

Inspired by the attention weighted sum of word vectors over

different modules in [7, 41, 35], our CMRE defines atten-

tion distributions of words over the vertices and edges of

the spatial relation graph Gs. In addition, different words

in a referring expression may play different roles. For refer-

ring expressions, words can usually be classified into four

types, i.e. entity, relation, absolute location and unnecessary

words. By classifying the words into different types and dis-

tributing them over the vertices and edges of graph Gs, the

language context of every vertex and edge can be captured,

and the global language context can also be obtained.

For a given expression L = {lt}
T
t=1, CMRE uses a bi-

directional LSTM [30] to encode the context of every word.

The context of word lt is the concatenation of its forward
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and backward hidden vectors, denoted as ht ∈ R
Dh . The

weight mt of each type (i.e. entity, relation, absolute loca-

tion and unnecessary word) for word lt is defined as follows.

mt = softmax(Wl1σ(Wl0ht + bl0) + bl1), (1)

where Wl0 ∈ R
Dl0×Dh , bl0 ∈ R

Dl0×1, Wl1 ∈ R
4×Dl0

and bl1 ∈ R
4×1 are learnable parameters, Dl0 and Dh

are hyper-parameters and σ is the activation function. The

weight of entity, relation and absolute location are the first

three elements of mt. The global language context hg of

graph Gs is calculated as hg =
∑T

t=0(m
(0)
t + m

(1)
t +

m
(2)
t )ht.

Next, on the basis of the word contexts H = {ht}
T
t=1

and the entity weight of every word {m
(0)
t }

T
t=1, a weighted

normalized attention distribution over the vertices of graph

Gs is defined as follows.

αt,i = Wn[tanh(Wvx
s
i +Whht)],

λt,i = m
(0)
t

exp(αt,i)∑K

i exp(αt,i)
,

(2)

where Wn ∈ R
1×Dn , Wv ∈ R

Dn×Dx and Wh ∈
R

Dn×Dh are transformation matrices and Dn is hyper-

parameter. λt,i is the weighted normalized attention, in-

dicating the probability that word lt refers to vertex vi. The

language context ci at vertex vi is calculated by aggregating

all attention weighted word contexts.

ci =

T∑

t=1

λt,iht. (3)

3.1.3 Language-Guided Visual Relation Graph

Different object proposals and different relationships be-

tween proposals do not have equal contributions in solv-

ing grounding referring expressions. The proposals and

relationships mentioned in the referring expression should

be given more attention. Our CMRE highlights the ver-

tices and edges of the spatial relation graph Gs, that have

connections with the referring expression, to generate the

language-guided visual relation graph Gv . The highlight-

ing operation is implemented by designing a gate for each

vertex and edge in graph Gs.

The gate pvi for vertex vi is defined as the sum over the

weighted probabilities that individual words in the expres-

sion refer to vertex vi,

pvi =
T∑

t=1

λt,i (4)

Each edge has its own type and the gates for edges are

formulated as the gates for edges’ types. The weighted nor-

malized distribution of words over the edges of graph Gs is

defined as follows.

we
t = softmax(We1σ(We0ht + be0) + be1)m

(1)
t , (5)

where We0 ∈ R
De0×Dh , be0 ∈ R

De0×1, We1 ∈ R
Ne×De0

and be1 ∈ R
Ne×1 are learnable parameters, and De0 is

hyper-parameter. we
t,j is the j-th element of we

t , which is

the weighted probability of word lt referring to edge type

j. And the gate pej for edges with type j ∈ {1, 2, ..Ne} is

the sum over all the weighted probabilities that individual

words in the expression refer to edge type j,

pej =
T∑

t=1

we
t,j . (6)

The language-guided visual relation graph is defined as

Gv = (V,E,X, P v, P e), where P v = {pvi }
K
i=1, and P e =

{pej}
Ne

j=1.

3.2. Multimodal Context Modeling

Our proposed Gated Graph Convolutional Network

(GGCN) further fuses the language contexts into the

language-guided visual relation graph to generate multi-

modal relation graph Gm, and computes a multimodal se-

mantic context for every vertex by performing gated graph

convolutional operations on the graph Gm.

3.2.1 Language-Vision Feature

As suggested by visual relationships detection [3, 38], the

spatial locations together with the appearance features of

objects are the key indicators of visual relationship, and

the categories of objects is highly predictive of relationship.

Our GGCN fuses the language context of every vertex into

the language-guided visual relation graph Gv (Gv encodes

the spatial relationships and appearance features of propos-

als) to generate multimodal relation graph Gm, which forms

the basis for computing the semantic context of every ver-

tex.

We define feature xm
i at vertex vi in Gm to be the

concatenation of the visual feature xs
i at vertex vi in the

language-guided visual relation graph and the language

context ci at vertex vi, i.e. xm
i = [xs

i , ci]. The mul-

timodal graph is defined as Gm = (V,E,Xm, P v, P e),
where Xm = {xm

i }
K
i=1.

3.2.2 Semantic Context Modeling

Multi-order relationships may exist in referring expressions.

We obtain semantic contexts representing multi-order rela-

tionships through message passing. On one hand, semantic

features are obtained by learning to fuse the spatial rela-

tions, visual features and language features. On the other

hand, contexts representing multi-order relationships are

computed by propagating pairwise contexts in graph Gm.
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Inspired by Graph Convolutional Network (GCN) for

classification [11, 32], our GGCN adopts graph convolu-

tional operations in multimodal relation graph Gm for com-

puting semantic contexts. Different from GCN operat-

ing in unweighted graphs, GGCN operates in weighted di-

rected graphs with extra gate operations. The n-th gated

graph convolution operation at vertex vi in graph Gm =
(V,E,Xm, P v, P e) is defined as follows.

−→
xi

(n) =
∑

ei,j>0

peei,j (
−→
W(n)x̂

(n−1)
j pvj + b(n)

ei,j
),

←−
xi

(n) =
∑

ej,i>0

peej,i(
←−
W(n)x̂

(n−1)
j pvj + b(n)

ej,i
),

x̃
(n)
i = W̃(n)x̂

(n−1)
j + b̃(n),

x̂
(n)
i = σ(−→xi

(n) +←−xi
(n) + x̃

(n)
i ),

(7)

where x̂
(0)
i = xm

i ,
−→
W(n),

←−
W(n),W̃(n) ∈ R

De×(Dx+Dh)

{b
(n)
j }

Ne

j=1, b̃
(n) ∈ R

De×1 are learnable parameters, and

De is hyper-parameter. −→xi
(n) and ←−xi

(n) are encoded fea-

tures for out- and in- relationships respectively. x̃
(n)
i is the

updated feature for itself. The final encoded feature x̂
(n)
i is

the sum of the above three features and σ is the activation

function. By performing the gated graph convolution opera-

tion multiple iterations (N ), semantic contexts representing

multi-order relationships among vertices can be computed.

Such semantic contexts are denoted as Xc = {xc
i}

K
i=1.

Finally, for each vertex vi, we concatenate its encoded

spatial feature pi mentioned before and its language-guided

semantic context xc
i to obtain the multimodal context xi =

[Wppi,x
c
i ], where Wp ∈ R

Dp×5.

3.3. Loss Function

The matching score between proposal oi and expression

L is defined as follows,

si = L2Norm(Ws0xi)⊙ L2Norm(Ws1hg), (8)

where Ws0 ∈ R
Ds×(Dp+Dx) and Ws0 ∈ R

Ds×Dh are

transformation matrices.

Inspired by the deep metric learning algorithm for face

recognition in [29], we adopt the triplet loss with online

hard negative sample mining to train our CMRIN model.

The triplet loss is defined as

loss = max(sneg +∆− sgt, 0), (9)

where sgt and sneg are the matching scores of the ground-

truth proposal and the negative proposal respectively. The

negative proposal is randomly chosen from the set of online

hard negative proposals, {oj |sj + ∆ − sgt > 0}, where ∆
is the margin. During testing, we predict the target object

by choosing the object proposal with the highest matching

score.

4. Experiments

4.1. Datasets

We have evaluated our CMRIN on three commonly

used benchmark datasets for grounding referring expres-

sions (i.e., RefCOCO [36], RefCOCO+ [36] and Ref-

COCOg [23]).

In RefCOCO, there are 50,000 target objects, collected

from 19,994 images in MSCOCO [18], and 142,210 refer-

ring expressions. RefCOCO is split into train, validation,

test A, and test B, which has 120,624, 10,834, 5,657 and

5,095 expression-target pairs, respectively. Test A includes

images with multiple people, and test B includes images

with multiple objects of other categories.

RefCOCO+ has 49,856 target objects collected from

19,992 images in MSCOCO, and 141,564 expressions col-

lected from an interactive game interface. Different from

RefCOCO, RefCOCO+ forbids absolute location descrip-

tions in the expressions. It is split into train, validation, test

A, and test B, which has 120,191, 10,758, 5,726 and 4,889

expression-target pairs, respectively.

RefCOCOg includes 49,822 target objects from 25,799

images in MSCOCO, and 95,010 long referring expressions

collected in a non-interactive setting. RefCOCOg [26] has

80,512, 4,896 and 9,602 expression-target pairs for training,

validation, and testing, respectively.

4.2. Evaluation and Implementation

The Precision@1 metric (the fraction of correct predic-

tions) is used for performance evaluation. A prediction is

considered to be a true positive if the top predicted proposal

is the ground-truth one w.r.t the referring expression.

For a given dataset, we count the number of occurrences

of each word in the training set. If a word appears more

than five times, we add it to the vocabulary. Each word in

the expression is initially an one-hot vector, which is fur-

ther converted into a 512-dimensional embedding. Anno-

tated regions of object instances are provided in RefCOCO,

RefCOCO+ and RefCOCOg. The target objects in the three

datasets belong to the 80 object categories in MSCOCO,

but the referring expressions may mention objects beyond

the 80 categories. In order to make the scope of target ob-

jects consistent with referring expressions, it is necessary

to recognize objects in expressions, even when they are not

within the 80 categories.

Inspired by the Bottom-Up Attention Model in [1] for

image caption and visual question answering, we train

ResNet-101 based Faster R-CNN [5, 27] over selected

1,460 object categories in the Visual Genome dataset [12],

excluding the images in the training, validation and testing

sets of RefCOCO, RefCOCO+ and RefCOCOg. We com-

bine the detected objects and the ground-truth objects pro-

vided by MSCOCO to form the final set of objects in the im-
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RefCOCO RefCOCO+ RefCOCOg

feature val testA testB val testA testB val test

1 MMI [23] vgg16 - 63.15 64.21 - 48.73 42.13 - -

2 Neg Bag [26] vgg16 76.90 75.60 78.00 - - - - 68.40

3 CG [22] vgg16 - 74.04 73.43 - 60.26 55.03 - -

4 Attr [19] vgg16 - 78.85 78.07 - 61.47 57.22 - -

5 CMN [7] vgg16 - 75.94 79.57 - 59.29 59.34 - -

6 Speaker [36] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 - -

7 Listener [37] vgg16 77.48 76.58 78.94 60.50 61.39 58.11 69.93 69.03

8 Speaker+Listener+Reinforcer [37] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 71.65 71.92

9 VariContext [41] vgg16 - 78.98 82.39 - 62.56 62.90 - -

10 AccumulateAttn [4] vgg16 81.27 81.17 80.01 65.56 68.76 60.63 - -

11 ParallelAttn [42] vgg16 81.67 80.81 81.32 64.18 66.31 61.46 - -

12 MAttNet [35] vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.04 72.79

13 Ours CMRIN vgg16 84.02 84.51 82.59 71.46 75.38 64.74 76.16 76.25

14 MAttNet [35] resnet101 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12

15 Ours CMRIN resnet101 86.99 87.63 84.73 75.52 80.93 68.99 80.45 80.66

Table 1. Comparison with state-of-the-art approaches on RefCOCO, RefCOCO+ and RefCOCOg. The two best performing methods using

VGG-16 are marked in red and blue.

ground-truth ground-truthattention score attention score matching score  matching score

(a) front grill of car behind a parking meter (b) green plant behind a table visible behind a lady’s head 

(c) right man (d) an elephant between two other elephants 

Figure 4. Qualitative results showing initial attention score (gate) maps and final matching score maps. We compute the score of a pixel as

the highest score value among all proposals covering it, and normalize the score maps to 0 to 1. Warmer color indicates higher score.

ages. We extract the visual features of objects as the 2,048-

dimensional output from the pool5 layer of the ResNet-101

based Faster R-CNN model. Since some previous meth-

ods use VGG-16 as the feature extractor, we also extract the

4,096-dimensional output from the fc7 layer of VGG-16 for

fair comparison. We set the mini-batch size to 64. The

Adam optimizer [10] is adopted to update network parame-

ters with the learning rate set to 0.0005 initially. Margin is

set to 0.1 in all our experiments.

4.3. Comparison with the State of the Art

We compare the performance of our proposed CMRIN

against the state-of-the-art methods, including MMI [23],

Neg Bag [26], CG [22], Attr [19], CMN [7], Speaker [36],

Listener [37], VariContext [41], AccumulateAttn [4], Paral-

lelAttn [42] and MAttNet [35].

4.3.1 Quantitative Evaluation

Table 1 shows quantitative evaluation results on RefCOCO,

RefCOCO+ and RefCOCOg datasets. Our proposed CM-

RIN consistently outperforms existing methods across all

the datasets by a large margin. Specially, CMRIN im-

proves the average Precision@1 over validation and test-

ing sets achieved by existing best-performing algorithm by

2.44%, 5.54% and 3.29% respectively on the RefCOCO,

RefCOCO+ and RefCOCOg datasets when VGG-16 is used

as the backbone. Our CMRIN significantly improves on

the person category (testA of RefCOCO and RefCOCO+),

which indicates that casting appearance attributes (e.g.,

shirt, glasses and shoes) of a person as external relation-

ships between person and appearance attributes can effec-

tively distinguish the target person from other persons. Af-

ter we switch to the visual features extracted by ResNet-

101 based Faster R-CNN, the Precision@1 of our CMRIN
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RefCOCO RefCOCO+ RefCOCOg

val testA testB val testA testB val test

1 global langcxt+vis instance 79.05 81.47 77.86 63.85 69.82 57.80 70.78 71.26

2 global langcxt+global viscxt(2) 82.61 83.22 82.36 67.75 73.21 63.06 74.29 75.23

3 weighted langcxt+guided viscxt(2) 85.29 86.09 84.12 73.70 79.60 67.52 78.47 79.39

4 weighted langcxt+guided viscxt(1)+fusion 85.80 86.09 83.98 73.95 78.43 67.21 79.37 78.90

5 weighted langcxt+guided viscxt(3)+fusion 86.55 87.50 84.53 75.29 80.46 68.79 80.11 80.45

6 weighted langcxt+guided viscxt(2)+fusion 86.99 87.63 84.73 75.52 80.93 68.99 80.45 80.66

Table 2. Ablation study on variances of our proposed CMRIN on RefCOCO, RefCOCO+ and RefCOCOg. The number following the

“viscxt” refers to the number of gated graph convolutional layers used in the model.

is further improved by another∼3.61%. It improves the av-

erage Precision@1 over validation and testing sets achieved

by MAttNet [35] by 1.29%, 4.38% and 2.45% respectively

on the three datasets. Note that our CMRIN only uses the

2048-dimensional features from pool5, but MattNet uses

multi-scale feature maps generated from the last convolu-

tional layers of both the third and fourth stages.

4.3.2 Qualitative Evaluation

Visualizations of some samples along with their attention

scores and matching scores are shown in Figure 4. They are

generated from our CMRIN using ResNet-101 based Faster

R-CNN features. Without relationship modeling, our CM-

RIN can identify the proposals appearing in the given ex-

pression (second columns), and it achieves this goal on the

basis of single objects (e.g. the parking meter in Figure 4(a)

and the elephant in full view in Figure 4(d) have higher

attention scores). After fusing information from differ-

ent modes and propagating multimodal information in the

structured relation graph, it is capable of learning semantic

contexts and locating target proposals (third columns) even

when the target objects do not attract the most attention at

the beginning. It is worth noting that our CMRIN learns se-

mantic relations (“behind”) for pairs of proposals with dif-

ferent spatial relations (“bottom right” between “car” and

“parking meter” in Figure 4(a); “top” between “green plant”

and “lady’s head” in Figure 4(b)), which indicates that CM-

RIN is able to infer semantic relationships from the ini-

tial spatial relationships. In addition, CMRIN learns the

context for target “elephant” (Figure 4(d)) from “two other

elephants” by considering the relations from multiple ele-

phants together. Moreover, multi-order relationships are

learned through propagation in CMRIN, e.g., the relation-

ships (“right” in Figure 4(c)) between object pairs are prop-

agated gradually to the target proposal (most “right man”).

4.4. Ablation Study

Our proposed CMRIN includes CMRE and GGCN mod-

ules. To demonstrate the effectiveness and necessity of each

module and further compare each module against its vari-

ants, we have trained five additional models for the com-

parison with the ResNet-101 based Faster R-CNN features.

The results are shown in Table 2. As a baseline (row 1),

we use the concatenation of instance-level visual features of

objects and the location features as the visual features, and

use the last hidden state of the expression encoding LSTM

as the language feature, and then compute a matching score

between every visual feature and the language feature. In

comparison, a simple variant (row 2) that relies on a global

visual context, which is computed by applying graph con-

volutional operations to the spatial relation graph, already

outperforms the baseline. This demonstrates the importance

of visual contexts. Another variant (row 3) with visual con-

texts computed in the language-guided visual relationship

graph outperforms the above two versions. It captures the

contexts by considering cross-modal information. By fus-

ing the context of every word into the language-guided vi-

sual relationship graph, semantic contexts can be captured

by applying gated graph convolutional operations (row 6,

the final version of CMRIN). Finally, we explore the num-

ber of gated graph convolutional layers used in CMRIN.

The 1-layer CMRIN (row 4) performs worse than the 2-

layer CMRIN because it only captures contexts with first-

order relationships. The 3-layer CMRIN (row 5) does not

further improve the performance. One possible reason is

that third-order relationships merely occur in the expres-

sions.

5. Conclusions

In this paper, we have proposed an end-to-end Cross-

Modal Relationship Inference Network (CMRIN) to com-

pute and represent multimodal contexts for the task of

grounding referring expressions in images. It consists of a

Cross-Modal Relationship Extractor (CMRE) and a Gated

Graph Convolutional Network (GGCN). CMRE extracts

all the required information adaptively for constructing a

language-guided visual relation graph with cross-modal at-

tention. GGCN fuses information from different modes and

propagates the fused information in the language-guided re-

lation graph to obtain semantic contexts. Experimental re-

sults on three commonly used benchmark datasets show that

our proposed method outperforms all existing state-of-the-

art methods.
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