
Human Parsing with Contextualized
Convolutional Neural Network

Xiaodan Liang, Chunyan Xu, Xiaohui Shen, Jianchao Yang,

Jinhui Tang, Liang Lin, and Shuicheng Yan

Abstract—In this work, we address the human parsing task with a novel Contextualized Convolutional Neural Network (Co-CNN)

architecture, which well integrates the cross-layer context, global image-level context, semantic edge context, within-super-pixel

context and cross-super-pixel neighborhood context into a unified network. Given an input human image, Co-CNN produces the pixel-

wise categorization in an end-to-end way. First, the cross-layer context is captured by our basic local-to-global-to-local structure, which

hierarchically combines the global semantic information and the local fine details across different convolutional layers. Second, the

global image-level label prediction is used as an auxiliary objective in the intermediate layer of the Co-CNN, and its outputs are further

used for guiding the feature learning in subsequent convolutional layers to leverage the global image-level context. Third, semantic

edge context is further incorporated into Co-CNN, where the high-level semantic boundaries are leveraged to guide pixel-wise labeling.

Finally, to further utilize the local super-pixel contexts, the within-super-pixel smoothing and cross-super-pixel neighbourhood voting are

formulated as natural sub-components of the Co-CNN to achieve the local label consistency in both training and testing process.

Comprehensive evaluations on two public datasets well demonstrate the significant superiority of our Co-CNN over other state-of-the-

arts for human parsing. In particular, the F-1 score on the large dataset [1] reaches 81:72 percent by Co-CNN, significantly higher than

62:81 percent and 64:38 percent by the state-of-the-art algorithms, M-CNN [2] and ATR [1], respectively. By utilizing our newly collected

large dataset for training, our Co-CNN can achieve 85:36 percent in F-1 score.

Index Terms—Human parsing, fully convolutional network, context modeling, semantic labeling

Ç

1 INTRODUCTION

HUMAN parsing, which refers to decomposing a human
image into semantic clothes/body regions, is an impor-

tant component for general human-centric analysis. It ena-
bles many higher level applications, e.g., clothing style
recognition and retrieval [3], clothes recognition and
retrieval [4], people re-identification [5], human behavior
analysis [6] and automatic product recommendation [7].

While there has been previous work devoted to human
parsing based on human pose estimation [8], [9], [10], non-
parametric label transferring [2], [4] and active template
regression [1], none of previous methods has achieved excel-
lent dense prediction over raw image pixels in a fully end-to-
end way. These previous methods often take complicated

preprocessing as the requisite, such as reliable human
pose estimation [11], bottom-up hypothesis generation [12]
and template dictionary learning [13], which makes the sys-
tem vulnerable to potential errors of the front-end prepro-
cessing steps.

Convolutional neural network (CNN) facilitates great
advances not only in whole-image classification [14], but
also in structure prediction such as object detection [15], [16],
part prediction [17] and general object/scene semantic seg-
mentation [18], [19]. However, they usually need supervised
pre-training with a large classification dataset, e.g., Image-
Net, and other post-processing steps such as Conditional
Random Field (CRF) [19] and extra discriminative classi-
fiers [20], [21]. Besides the above mentioned limitations,
there are still a few technical hurdles in the application of
existing CNN architectures to pixel-wise prediction for the
human parsing task. First, diverse contextual information
and mutual relationships among the key components of
human parsing (i.e., semantic labels, spatial layouts and
shape priors) should be well addressed during predicting
the pixel-wise labels. For example, the presence of a skirt will
hinder the probability of labeling any pixel as the dress/
pants, and meanwhile facilitate the pixel prediction of left/
right legs. Second, the predicted label maps are desired to be
detail-preserved and of high-resolution, in order to recog-
nize or highlight very small labels (e.g., sunglass or belt).
However,most of the previousworks on semantic segmenta-
tion with CNN can only predict the very low-resolution
labeling, such as eight times down-sampled prediction in the
fully convolutional network (FCN) [22]. Their prediction is
very coarse and not optimal for the required fine-grained
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segmentation. Finally, the critical segmentation-specific con-
text constraints, such as the local super-pixel smoothness or
the integrity and uniqueness for each semantic region, have
not been well considered in previous works on semantic seg-
mentation. For instance, the pixels within the same super-
pixel or neighboring super-pixels should have high possibili-
ties to be assigned with the same semantic label. And the
label probabilities from neighboring super-pixels should
help guide the label inference by leveraging the location pri-
ors. Meanwhile, the pixels within the same semantic region
(e.g., upper-clothes or dress) should be predicted as the same
semantic label to retain the region integrity. Moreover, the
semantic edges, i.e., the edges along the boundaries of differ-
ent semantic regions, could be inferred to better separate
these regions. For example, sometimes it is difficult to infer
whether the person is wearing a single dress, or upper
clothes with a separate skirt below. But these cases can be
easily distinguished by explicitly detecting if there is a
semantic edge in-between. The challenges for incorporating
these segmentation-specific contexts into a unified CNN
architecture lie in two aspects: in terms of local super-pixel
context, the super-pixel numbers and the neighboring super-
pixel graph structures dramatically vary for individual
images; in terms of region integrity and uniqueness, long-
term contextual information over long-range pixels should
be effectively leveraged during CNN training. Some tradi-
tional methods [1], [10] resort to bottom region proposal gen-
eration or post-processing such as graphical inference to
enforce these segmentation-specific contextual constraints.

However, their separate stages often suffer from the incon-
sistent optimization targets and high computation cost.

In this paper, we present a novel Contextualized Convo-
lutional Neural Network (Co-CNN) that successfully
addresses the above mentioned issues. Given an input
human image, our architecture produces the correspond-
ingly-sized pixel-wise labeling maps in a fully end-to-end
way, as illustrated in Fig. 1. Our Co-CNN aims to simulta-
neously capture cross-layer context, global image-level con-
text, semantic edge context and local super-pixel contexts
by using the local-to-global-to-local hierarchical structure,
global image-level label prediction, semantic edge predic-
tion, within-super-pixel smoothing and cross-super-pixel
neighborhood voting, respectively.

First, our basic local-to-global-to-local structure hierar-
chically encodes the local details from the early, fine layers
and the global semantic information from the deep, coarse
layers. Four different spatial resolutions are used for captur-
ing different levels of semantic information. The feature
maps from deep layers often focus on the global structure
and are insensitive to local boundaries and spatial displace-
ments. We up-sample the feature maps from deep layers
and then combine them with the feature maps from former
layers under the same resolution. In this way, the low-level
fine details preserved in the early layers can be incorporated
back into the deep layers. These enhanced feature maps can
be utilized for better feature learning in the subsequent
layers. In total, four cross-layer combinations are performed
to integrate different levels of context.

Fig. 1. Co-CNN integrates the cross-layer context, global image-level context, semantic edge context and local super-pixel contexts into a unified net-
work. It consists of cross-layer combination, global image-level label prediction, within-super-pixel smoothing, cross-super-pixel neighborhood voting
and semantic edge prediction. First, given an input 150� 100 image, we extract the feature maps for four resolutions (i.e., 150� 100, 75� 50, 37� 25
and 18� 12). Then we gradually up-sample the feature maps and combine the corresponding early, fine layers (blue dash line) and deep, coarse
layers (blue circle with plus) under the same resolutions to capture the cross-layer context. Second, an auxiliary objective (shown as “Squared loss
on image-level labels”) is appended after the down-sampling stream to predict global image-level labels. These predicted probabilities are then
aggregated into the subsequent layers after the up-sampling (green line) and used to re-weight pixel-wise prediction (green circle with plus). Third,
the multi-scale prediction streams are appended to predict semantic edges, and then the predicted edge maps are utilized to guide the feature learn-
ing in subsequent convolutional layers. Finally, the within-super-pixel smoothing and cross-super-pixel neighborhood voting are performed based on
the predicted confidence maps (orange planes) and the generated super-pixel over-segmentation map to produce the final parsing result. Only
down-sampling, up-sampling, and prediction layers are shown; intermediate convolution layers are omitted. For better viewing of all figures in this
paper, please see original zoomed-in color pdf file.
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Second, to utilize the global image-level context and
guarantee the coherence between pixel-wise labeling and
image label prediction, we incorporate global image label
prediction into our pixel-wise categorization network, illus-
trated as the global image-level context part of Fig. 1. An auxil-
iary objective defined for the global image label prediction
(i.e., Squared Loss) is used, which focuses on global seman-
tic information and has no relation with local variants such
as pose, illumination or precise location. We then use the
predicted image-level label probabilities to guide the feature
learning from two aspects. First, the predicted image-level
label probabilities are utilized to facilitate the feature maps
of each intermediate layer to generate the semantics-aware
feature responses, and then the combined feature maps are
further convolved by the filters in the subsequent layers,
shown as the image label concatenation part of Fig. 1. Second,
the predicted image-level label probabilities are also used in
the prediction layer to explicitly re-weight the pixel-wise
label confidences, shown as the element-wise summation part
of Fig. 1.

Third, the semantic edge prediction is incorporated into
our Co-CNN to retain the region integrity and region uni-
queness for each semantic label. We define the fine-grained
semantic edges as the boundaries between regions belonging
to different semantic labels in each image, which is different
from the traditional edge prediction task [23] that aims
to predict object boundaries. To resolve ambiguity in object
boundaries in natural images and semantic edges, multi-
scale prediction streams for semantic edges are appended to
jointly capture low-level local boundaries from the early con-
volutional layers and high-level semantic boundaries from
deep layers. Then the edge predictions from different
streams are combined to provide contextual information for
pixel-wise semantic labeling. Due to the favorable character-
istics of the learned features for semantic edge prediction
and pixel-wise labeling, the proposed Co-CNN can generate
more complete andmeaningful semantic regions.

Finally, the within-super-pixel smoothing and cross-
super-pixel neighborhood voting are leveraged to retain the
local boundaries and label consistencies within the super-
pixels. They are formulated as natural sub-components of
the Co-CNN in both the training and the testing process.
Unlike the traditional practice of treating the complex super-
pixel random field regularization as post-processing [19], we
embed the within-super-pixel smoothing and cross-super-
pixel neighborhood voting into the training stage and the
testing stage. Before the final prediction layer of our network,
the within-super-pixel smoothing is performed on the fea-
ture maps to constrain the label consistency, and then the
weighted cross-super-pixel neighborhood voting is further
used to guarantee the consistency in the larger local regions.

Comprehensive evaluations and comparisons on the ATR
dataset [1] and the Fashionista dataset [4] well demonstrate
that our Co-CNN yields results that significantly surpass all
previously published methods, boosting the performance of
the current state-of-the-arts from 64:38 [1] to 81:72 percent.
We also build a much larger dataset “Chictopia10k”, which
contains 10,000 annotated images. By adding the images of
“Chictopia10k” into the training set, the F-1 score can be fur-
ther improved to 85:36, 20:98 percent higher than the state-of-
the-arts [1], [4]. Notably, by using the semantic edge context,

the performance of Co-CNN can be significantly improved
by 5:22 percent in F-1 score.

2 RELATED WORK

Human parsing. Much research has been devoted to human
parsing [2], [4], [8], [9], [10], [24], [25], [26], [27]. Most previ-
ous works used the low-level over-segmentation, pose
estimation and bottom-up hypothesis generation as the
building blocks of human parsing. For example, Yamaguchi
et al. [8] performed human pose estimation and attribute
labeling sequentially. These traditional hand-crafted pipe-
lines often require many hand-designed processing steps,
each of which needs to be carefully designed and tuned.
Recently, Liang et al. [1] proposed to use two separate con-
volutional networks to predict the template coefficients for
each label mask and their corresponding locations, respec-
tively. However, their design may lead to sub-optimal
results. Matching CNN [2] was proposed as a quasi-para-
metric human parsing method, which highly relies on the
image gallery set.

Semantic segmentation with CNN. Our method works
directly on the pixel-level representation, similar to some
recent research on semantic segmentation with CNN [19],
[21], [22], [28], [29]. These pixel-level representations are in
contrast to the common two-stage approaches [15], [20], [30]
which consist of complex bottom-up hypothesis generation
(e.g., bounding box proposals) and CNN-based region classi-
fication. For the pixel-wise representation, by directly using
CNN, Farabet et al. [18] trained a multi-scale convolutional
network from raw pixels and employed the super-pixel tree
for smoothing. Hariharan et al. [21] proposed to concatenate
the computed intermediate convolutional features for pixel-
wise classification. The dense pixel-level CRF was used as
the post-processing step after CNN-based pixel-wise predic-
tion [31]. More recently, Long et al. [22] proposed the fully
convolutional network for predicting pixel-wise labeling.

The main difference between our Co-CNN and these
previous methods is the integration of cross-layer context,
global image-level context, local super-pixel contexts into a
unified network. It should be noted that while the fully con-
volutional network [22] also tries to combine coarse and
fine layers, they only aggregate the predictions from differ-
ent scales in the final output. In contrast, in our local-to-
global-to-local hierarchical structure, we hierarchically com-
bine feature maps from cross-layers and further feed them
into several subsequent layers for better feature learning,
which is very important in boosting the performance as
demonstrated in the experiments. Meanwhile, we produce
the same sized pixel-wise predictions with the input,
while [22] can only generate very coarse predictions. More-
over, besides the cross-layer context embedded in the local-
to-global-to-local structure, our Co-CNN incorporates
global image-level context, semantic edge context and local
super-pixel contexts, which have not been utilized in previ-
ous CNN-based approaches.

Edge detection. The task of detecting edges and object
boundaries is fundamental to many vision tasks such as
saliency detection, object detection and segmentation.
Recent progress on edge detection has been achieved using
convolutional neural networks, including DeepContour [32],
DeepEdge [23], CSCNN [23] and holistically-nested edge
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detection [33]. For instance, Xie and Tu [33] proposed to use
convolutional neural networks and deeply-supervised nets
for edge detection. Bertasius et al. [23] exploited object
related features as high-level cues for contour detection.

Different from these previous edge detection methods,
the semantic edge prediction task addressed in this paper
focuses on localizing more fine-grained semantic bound-
aries, i.e., the boundaries between regions with different
semantic labels. In addition, we believe that semantic edge
prediction and semantic segmentation are intrinsically two
related tasks, and predicting semantic edges can provide a
more global perspective for pixel-wise labeling. In our Co-
CNN the semantic edge predictions are posed as additional
features to guide feature learning in the subsequent convo-
lutional layers. The two targets of semantic edge prediction
and semantic segmentation can thus be jointly optimized in
an unified architecture.

3 THE PROPOSED CO-CNN ARCHITECTURE

Our Co-CNN exploits the cross-layer context, global image-
level context, semantic edge context and local super-pixel
contexts in a unified network, consisting of five compo-
nents, i.e., the local-to-global-to-local hierarchy, global
image label prediction, semantic edge prediction, within-
super-pixel smoothing and cross-super-pixel neighborhood
voting.

3.1 Local-to-Global-to-Local Hierarchy

Our basic local-to-global-to-local structure captures the
cross-layer context. It simultaneously considers the local
fine details and global structure information. The input to
our Co-CNN is a 150� 100 color image and then passed
through a stack of convolutional layers. The feature maps
are down-sampled three times by the max pooling with a
stride of 2 pixels to get three extra spatial resolutions
(75� 50, 37� 25, 18� 12), shown as the four early convolu-
tional layers in Fig. 1. Except for the stride of 2 pixels for
down-sampling, the convolution strides are all fixed as 1
pixel. The spatial padding of convolutional layers is set so
that the spatial resolution is preserved after convolution,
e.g., the padding of 2 pixels for 5� 5 convolutional filters.

Note that the early convolutional layers with high spatial
resolutions (e.g., 150� 100) often capture more local details
while the ones with low spatial resolutions (e.g., 18� 12)
can capture more structure information with high-level
semantics. We combine the local fine details and the high-
level structure information by cross-layer aggregation of
early fine layers and up-sampled deep layers. We transform
the coarse outputs (e.g., with resolution 18� 12) to dense
outputs (e.g., with resolution 37� 25) with up-sampling
interpolation of factor 2. The feature maps up-sampled
from the low resolutions and those from the high resolu-
tions are then aggregated with the element-wise summa-
tion, shown as the blue circle with plus in Fig. 1. Note that
we select the element-wise summation instead of other
operations (e.g., multiplication) by experimenting on the
validation set. After that, the following convolutional layers
can be learned based on the combination of coarse and fine
information. To capture more detailed local boundaries, the
input image is further filtered with the 5� 5 convolutional

filters and then aggregated into the later feature maps. We
perform the cross-layer combination four times until obtain-
ing the feature maps with the same size as the input image.
Finally, the convolutional layers are utilized to generate the
C confidence maps to predict scores for C labels (including
background) at each pixel location. Our loss function is the
sum of cross-entropy terms for all pixels in the output map.

3.2 Global Image-Level Context

An auxiliary objective for multi-label prediction is used
after the intermediate layers with spatial resolution of
18� 12, as shown in the pentagon in Fig. 1. Following the
fully-connected layer, the C-way softmax which produces a
probability distribution over the C class labels is appended.
Squared loss is used during the global image label pre-
diction. Suppose for each image I in the training set,
y ¼ ½y1; y2; . . . ; yC � is the ground-truth multi-label vector.
yc ¼ 1; ðc ¼ 1; . . . ; CÞ if the image is annotated with class c,
and otherwise yc ¼ 0. The ground-truth probability vector
is normalized as pc ¼ yc

jjyjj1 and the predictive probability vec-

tor is p̂ ¼ ½p̂1; p̂2; . . . ; p̂C �. The squared loss to be minimized is

defined as Llabel ¼PC
c¼1ðpc � p̂cÞ2. During training, the loss

of image-level labels is added to the total loss of the network
weighted by a discount factor 0.3. To utilize the predicted
global image label probabilities, we perform two types of
combination: concatenating the predicted label probabilities
with the intermediate convolutional layers (image label con-
catenation in Fig. 1) and element-wise summation with label
confidence maps (element-wise summation in Fig. 1).

First, consider that the feature maps of the mth convolu-
tional layer are a three-dimensional array of size hm�
wm � dm, where hm and wm are spatial dimensions, and dm is
the number of channels. We generate C additional probabil-

itymaps fxp
cgC1 with size hm � wm where each xp

i;j;c at location

ði; jÞ is set as the predicted probability pc of the cth class.
By concatenating the feature maps xm of the mth layer and

the probability maps fxp
cgC1 , we generate the combined fea-

ture maps x̂m ¼ ½xm; xp
1; x

p
2; . . . ; x

p
C � of the size hm � wm�

ðdm þ CÞ. We perform this concatenation after each combina-
tion of coarse and fine layers in Section 3.1, as shown in Fig. 1.

Second, we element-wisely sum the predicted confidence
maps with the global image label probabilities. If the class c
has a low probability of appearing in the image, the corre-
sponding pixel-wise probability will be suppressed. Given
the probability ri;j;c of the cth confidence map at location
ði; jÞ, the resulting probability r̂i;j;c is calculated by r̂i;j;c ¼
ri;j;c þ p̂c for the cth channel. The incorporation of global
image-level context into label confidence maps can help
reduce the confusion of competing labels.

3.3 Semantic Edge Context

In this paper, we define the semantic edge as the boundaries
of regions with different semantic labels, which is intrinsi-
cally consistent with the parsing ground-truth. The seman-
tic edge context is utilized to constrain the region integrity
and uniqueness of the predicted parsing result, which often
cannot be guaranteed by the local pixel-wise or super-pixel-
wise prediction. We denote the corresponding ground-
truth binary semantic edge map for each image I as G. We
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employ multi-scale prediction streams to increase the
semantic edge prediction accuracy. As illustrated in Fig. 1,
four multi-scale prediction streams are attached to four
convolutional layers with different spatial resolutions in the
local-to-global part. For each stream, one prediction layer
and one individual loss are utilized. We set the spatial
padding for each stream so that the spatial resolution of fea-
ture maps is preserved. That is, a corresponding-sized
semantic edge map is generated by each stream. The multi-
scale predictions from four streams are then accordingly
up-sampled to high spatial resolution (i.e., 150� 100) and
then concatenated to generate the fused feature maps. Then
the 1� 1 convolutional filters are used to generate the final
pixel-wise predictions. Benefiting from multi-scale predic-
tions, the fine local details (e.g., boundaries and local consis-
tency) captured by early layers with higher resolution and
the high-level semantic information captured by deep layers
with low resolution can jointly contribute to the final
prediction.

Suppose we have Q ¼ 4 multi-scale prediction streams,
and each stream is associated with a loss ‘oq; fq ¼ 1; 2; . . . ;

Qg. For each image, the loss for the final predicted edge
map after fusing is denoted as ‘of . The overall loss function

for predicting semantic edge maps can be calculated as

Ledge ¼
PQ

q¼1 ‘
o
qðG;G�

qÞ
Q

þ ‘of G;
XQ
q¼1

aqG
�
q

 !
; (1)

whereG�
q andG represent the predicted semantic edge confi-

dence maps in each stream and the ground-truth edge map,
respectively. aq is denoted as the fusion weight for each
stream. The learning of this fusing weight is equivalent to
training 1� 1 convolutional filters on the concatenated
semantic edge maps from all multi-scale streams. The loss
function is computed over all pixels in the image, but over
90 percent of the pixels do not belong to the semantic edge.
Following the class-balancing cross-entropy loss function
used in [33], ‘oq and ‘of can be computed by weighting the

pixel-wise cross-entropy losswith the ratio of non-edge (neg-
ative pixels) and edge (positive) pixels in the image. The loss

Ledge for semantic edge prediction is jointly optimized with
other losses of global image-level label prediction and final

semantic segmentation. We set all loss weights for the three
losses as 1.

Suppose we are given the fused semantic edge confi-
dence maps denoted as G� with size hq � wq � dq, where hq

and wq are corresponding spatial dimensions for the qth pre-
diction stream, and dq ¼ 2 is the number of channels. We
combine the predicted edge confidence maps to learn the
features for final parsing prediction. To adapt the predicted
semantic edge confidence maps G� to each convolutional
layer, we rescale G� into G�

m with the same spatial resolu-
tion with that of feature maps in the mth layer. Following
the feature map concatenation in themth layer in Section 3.2,
the combined feature map can be further extended to
x̂m ¼ ½xm; xp

1; x
p
2; . . . ; x

p
C;G

�
m� of the size hm � wm � ðdmþ

C þ 2Þ. The outputs xmþ1
i;j at location ði; jÞ in the next convo-

lutional layer are computed by

xmþ1
i;j ¼ fkðfx̂m

iþdi;jþdjg0�di;dj�kÞ; (2)

where k is the kernel size, and fk is the corresponding
convolution filters.We also perform the feature concatenation
steps three times with three different spatial resolutions, as
shown in Fig. 1. By embedding it into different convolutional
layers, the semantic edge context can be conveniently utilized
to guide feature learning for final semantic segmentation.

To better show the effectiveness of semantic edge con-
text, some parsing results with/without utilizing semantic
edge context are shown in Fig. 4. It can be observed that the

Fig. 2. Comparison of label confidence maps between Co-CNN and that
without using global labels.

Fig. 3. The comparison of exemplar parsing results between the version
of Co-CNN without using global labels and our complete Co-CNN.

Fig. 4. Comparison of example results of incorporating semantic edge
contextual information into Co-CNN. For each image, we show the
results from “Co-CNN w/o semantic edge” (i.e., no semantic edge infor-
mation is used), “Predicted Semantic Edge” and “Co-CNN” sequentially.
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wrongly predicted fragmented small regions can be suc-
cessfully fused into a complete region (in the 1st row) and
the semantic edge can help split the upper-clothes into dress
and upper-clothes (in the 2nd row). This verifies well that
the semantic edge context can help constrain the region
integrity and uniqueness, and be complementary to other
semantic contexts (e.g., global image-level context and local
super-pixel contexts). The predicted semantic edge maps
also speak well the effectiveness of the fusion of multi-scale
prediction streams.

3.4 Local Super-Pixel Context

We further integrate the within-super-pixel smoothing
and the cross-super-pixel neighborhood voting into the
training and testing process to respect the local detailed
information. They are only performed on the prediction
layer (i.e., C confidence maps) instead of all convolutional
layers. It is advantageous that super-pixel guidance is
used at the later stage, which avoids making premature
decisions and thus learning unsatisfactory convolution
filters.

Within-super-pixel smoothing. For each input image I, we
first compute the over-segmentation of I using the entropy
rate based segmentation algorithm [34] and obtain 500

super-pixels per image. Given the C confidence maps fxcgC1
in the prediction layer, the within-super-pixel smoothing is
performed on each map xc. Let us denote the super-pixel
covering the pixel at location ði; jÞ by sij, the smoothed con-
fidence maps ~xc can be computed by

~xi;j;c ¼ 1

jjsijjj
X

ði0;j0Þ2sij
xi0;j0;c; (3)

where jjsijjj is the number of pixels within the super-pixel
sij and ði0; j0Þ represents all pixels within sij.

Cross-super-pixel neighborhood voting. After smoothing
confidences within each super-pixel, we can take the
neighboring larger regions into account for better infer-
ence, and exploit more statistical structures and corre-
lations between different super-pixels. For classes with
non-uniform appearance (e.g., the common clothes items),
the inference within larger regions may better capture the
characteristic distribution for this class. For simplicity, let
~xs, ~xs0 denote the smoothed responses of the super-pixel s
and s0 on each confidence map, respectively. For each
super-pixel s, we first compute a concatenation of bag-of-
words from RGB, Lab and HOG descriptor for each super-
pixel, and the feature of each super-pixel can be denoted
as bs. The cross neighborhood voted response �xs of the
super-pixel s is calculated by

�xs ¼ ð1� aÞ~xs þ a
X
s02Ds

expð�jjbs � bs0 jj2ÞP
ŝ2Ds

expð�jjbs � bŝjj2Þ
~xs0 : (4)

Here, Ds denotes the neighboring super-pixel set of the
super-pixel s. We weight the voting of each neighboring
super-pixel s0 with the normalized appearance similarities.
If the pair of super-pixels ðs; s0Þ shares higher appearance
similarity, the corresponding weight of neighborhood
voting will be higher.

3.5 Parameter Details of Co-CNN

Our detailed Co-CNN configuration is listed in Table 1. We
use the small 3� 3 and 5� 5 receptive fields throughout the
whole network, and the non-linear rectification layers after
every convolutional layer. Six components are included in
the Co-CNN architecture that incorporates four different
kinds of contextual information in an end-to-end way. The
network has 26 layers if only the layers with parameters
are counted, or 32 layers if we also count max pooling and
up-sampling. In terms of “global-to-local”, except for the
last element-wise summation layer, all other element-wise
summations are performed on the immediate previous

TABLE 1
The Detailed Configuration of Our Co-CNN

component type kernel

size/stride

output size

convolution 5� 5=1 150� 100� 128

convolution 5� 5=1 150� 100� 192

max pool 3� 3=2 75� 50� 192

convolution 5� 5=1 75� 50� 192

convolution 5� 5=1 75� 50� 192

local-to-global max pool 3� 3=2 37� 25� 192

convolution 5� 5=1 37� 25� 192

convolution 5� 5=1 37� 25� 192

max pool 3� 3=2 18� 12� 192

convolution 5� 5=1 18� 12� 192

convolution 5� 5=1 18� 12� 192

convolution 1� 1=1 18� 12� 96

image-level label FC (dropout 30%) 1� 1� 1024

prediction FC 1� 1� 18

Squared Loss 1� 1� 18

convolution 3� 3=1 150� 100� 2

Softmax Loss 150� 100� 2

convolution 3� 3=1 75� 50� 2

Softmax Loss 75� 50� 2

semantic edge convolution 3� 3=1 37� 25� 2

prediction Softmax Loss 37� 25� 2

convolution 3� 3=1 18� 12� 2

Softmax Loss 18� 12� 2

concat 150� 100� 8

convolution 1� 1=1 150� 100� 2

Softmax Loss 150� 100� 2

upsampling 2� 2=2 37� 25� 192

convolution 5� 5=1 37� 25� 192

element sum 37� 25� 192

concat 37� 25� 212

convolution 5� 5=1 37� 25� 192

upsampling 2� 2=2 75� 50� 192

convolution 3� 3=1 75� 50� 192

element sum 75� 50� 192

global-to-local concat 75� 50� 212

convolution 5� 5=1 75� 50� 192

upsampling 2� 2=2 150� 100� 192

convolution 5� 5=1 150� 100� 192

element sum 150� 100� 192

concat 150� 100� 212

convolution 5� 5=1 150� 100� 192

convolution (image) 5� 5=1 150� 100� 192

element sum 150� 100� 192

convolution 3� 3=1 150� 100� 256

convolution 1� 1=1 150� 100� 18

prediction element sum 150� 100� 18

convolution 1� 1=1 150� 100� 18

within-S-P smoothing 150� 100� 18

super-pixel cross-S-P voting 150� 100� 18

Softmax Loss 150� 100� 18
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convolutional layers and the last convolutional layers with
the same resolution in “local-to-global”. The last element-
wise summation layer is performed on its two previous con-
volutional layers. The dropout (30 percent) of fully-con-
nected layer in the image-level label prediction is set by the
validation set.

4 EXPERIMENTS

4.1 Experimental Settings

Dataset. We evaluate the human parsing performance of our
Co-CNN on the large ATR dataset [1] and the small Fash-
ionista dataset [8]. Human parsing is to predict every pixel
with 18 labels: face, sunglass, hat, scarf, hair, upper-clothes,
left-arm, right-arm, belt, pants, left-leg, right-leg, skirt, left-
shoe, right-shoe, bag, dress and null. Totally, 7,700 images
are included in the ATR dataset [1], 6,000 for training, 1,000
for testing and 700 for validation. The Fashionista dataset
contains 685 images, in which 229 images are used for test-
ing and the rest for training. We use the Fashionista dataset
after transforming the original labels to 18 categories as
in [1] for fair comparison. We use the same evaluation crite-
rion as in [4] and [1], including accuracy, average precision,
average recall, and average F-1 score over pixels. The
images in these two datasets are near frontal-view and have
little cluttered background, and are insufficient for real-
world applications with arbitrary postures, views and back-
grounds. We collect 10,000 real-world human pictures from
a social network, chictopia.com, to construct a much larger
dataset “Chictopia10k”1, and annotate pixel-level labels fol-
lowing [1]. Our new dataset mainly contains images in the
wild (e.g., more challenging poses, occlusion and clothes),
which can help promote future research on human parsing.

Data augmentation.We tried enlarging the training data to
increase the diversity by many common techniques, such as
the horizontal reflections and translation the human body
up to 16 pixels. The horizontal reflections can help improve
the testing accuracy by about 4 percent in terms of F-1 scores
but the translation yields no noticeable improvement.

Implementation details. We augment the training images
with the horizontal reflections, which improves about
4 percent in terms of F-1 scores. Given a test image, we use
the human detection algorithm [15] to detect the human
body. The resulting human centric image is then rescaled
into 150� 100 and fed into our Co-CNN for pixel-wise pre-
diction. We choose the resolution of 150� 100 for each
image, to balance computational efficiency, practicality (e.g.,
GPU memory) and accuracy. To evaluate the performance,
we re-scale the output pixel-wise prediction back to the size
of the original ground-truth labeling. All models in our
experiment are trained and tested based on Caffe [35] on a

single NVIDIA Tesla K40c. We set the weight parameter a in
cross-super-pixel voting as 0:3 by using the validation set.
The network is trained from scratch using the annotated
training images. The weights of all network parameters are
initialized with Gaussian distribution with standard devia-
tion as 0.001. We train Co-CNN using stochastic gradient
descent with a batch size of 12 images, momentum of 0.9,
and weight decay of 0.0005. The learning rate is initialized
at 0.001 and divided by 10 after 30 epochs. We train the net-
works for roughly 90 epochs, which takes four to five days.
Our Co-CNN can rapidly process one 150� 100 image
within about 0.002 second. After incorporating the super-
pixel extraction [34], we test one image within about
0:2 second. This compares much favorably to other state-of-
the-art approaches, as current state-of-the-art approaches
have higher complexity: [4] runs in about 10 to 15 seconds,
[9] runs in 1 to 2minutes and [1] runs in 0.5 second.

4.2 Results and Comparisons

We compare our proposed Co-CNN with five state-of-the-
art approaches [1], [2], [4], [8], and [24] on two datasets. All
results of the competing methods and our methods are
obtained by using the same training and testing setting
described in the paper [1]. The [4], [8] and [24] are three
hand-crafted pipelines, which combine hand-crafted feature
extraction, pose estimation, Conditional Random Field
inference and local classification. ATR [1] and M-CNN [2]
are two deep learning pipelines.

ATR dataset [1]. Tables 2 and 4 show the performance of
our models and comparisons with four state-of-the-arts on
overall metrics and F-1 scores of foreground semantic
labels, respectively. Our “Co-CNN (full)” can significantly
outperform four baselines: 39:92 percent over Yamaguchi
et al. [8], 36:96 percent over PaperDoll [4], 18:91 percent
over M-CNN [2] and 17:34 percent over ATR [1] in terms
of average F-1 score. Our method also largely boosts the
performance in terms of F.g. accuracy, which obtains
85:22 percent, while four baselines achieve 55:59 percent of
Yamaguchi et al. [8], 62:18 percent of PaperDoll [4],
73:98 percent of M-CNN [2] and 71:04 percent of ATR [1].
The pixel-level accuracy is also increased by at least
5:19 percent over four baselines. For fair comparison, we
only take the newly collected “Chictopia10k” dataset as the
supplementary dataset to the training set and report the
results as “Co-CNN (+Chictopia10K)”. After training with
more realistic images in our newly collected dataset
“Chictopia10k”, our “Co-CNN (+Chictopia10k)” can further
improve the average F-1 score by 3:64 percent. This indicates
that our “Chictopia10k” dataset can introduce greater data
diversity and improve the network generality. We show the
F-1 scores for each label in Table 4. Generally, our Co-CNN
shows much improvement compared to other methods.
In terms of predicting small labels such as hat, belt, bag
and scarf, our method achieves a very large gain, e.g., 80:59
versus 29:20 percent [1] for sunglass, and 84:53 versus
53:66 percent [1] for bag. We also achieve much better per-
formance on human body parts, e.g., 89:58 versus 53:79
percent [1] for left-arm, and 90:03 versus 68:18 percent [1] for
hair. It demonstrates that Co-CNN performs very well on
various poses (e.g., human body parts), fine-grained details
(e.g., small labels) and diverse clothing styles.

Fig. 5. Exemplar images of our “Chictopia10k” dataset.

1. https://github.com/lemondan/HumanParsing-Dataset/
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Fashionista dataset [8]. Table 5 gives the comparison results
on the 229 test images of the Fashionista dataset. All results of
the state-of-the-art methods were reported in [1]. Note that
deep learning based algorithm requires enough training sam-
ples. Following [1], we only report the performance by train-
ing on the same large ATR dataset [1], and then testing on the
229 images on Fashionista dataset. Our method “Co-CNN
(full)” can substantially outperform the baselines by 13:52,
36:02 and 39:95 percent over “ATR [1]”, “PaperDoll [4]” and
“Yamaguchi et al. [8]” in terms of average F-1 score, respec-
tively. We cannot compare all metrics with the CRF model
proposed in [24], since it only reported the average pixel-
wise accuracy, and only achieved 84:88 percent, which only
slightly improved the results 84:68 percent of PaperDoll [4]
on Fashionista, as reported in [24].

Chictopia10k dataset. Table 3 shows the parsing results
on the 1,000 testing images which are randomly selected
from the whole Chictopia10k dataset. “Co-CNN (ATR)” and
“Co-CNN (Chictopia10k)” show the parsing results when
trained on ATR dataset and the rest of Chictopia10k dataset,
respectively. It can be observed that both results are inferior
compared to the results evaluated on the test set of ATR data-
set. These results demonstrate that our newly collected Chic-
topia10k dataset is much difficult than the previous human
parsing dataset.

4.3 Discussion on Our Network

We further evaluate the different network settings for our
four components in Tables 2 and 4.

Local-to-global-to-local hierarchy. We explore different
variants of our basic network structure. Note that all the fol-
lowing results are obtained without combining the global
image-level label context, the semantic edge context, the local
super-pixel contexts. First, different down-sampled spatial

resolutions are tested. The “baseline (150-75)”, “baseline
(150-75-37)” and “baseline (150-75-37-18)” are the versions
with down-sampling up to 75� 50, 37� 25 and 18� 12,
respectively. When only convolving the input image with
two resolutions (“baseline (150-75)”), the performance is
worse than the state-of-the-arts [1]. After further increasing
the depth of the network by down-sampling up to 37� 25
(“baseline (150-75-37)”), the F-1 score can be significantly
increased by 5:44 percent, compared to “baseline (150-75)”.
The “baseline (150-75-37-18)” can further improve the F-1
score by 3:4 percent, compared to “baseline (150-75-37)”. We
do not report results by further down-sampling the feature
maps since only slight improvement is achievedwith smaller
resolutions. It well verifies that better features can be learned
with a much deeper pyramid that continuously combines
the hierarchical featuremaps of multiple spatial resolutions.

Second, we also evaluate the effectiveness of the cross-
layer context combination. The “baseline (150-75-37-18, w/o
fusion)” represents the version without cross-layer combi-
nations. The large decrease 7:47 percent in F-1 score com-
pared with the “baseline (150-75-37-18)” demonstrates the
great advantage of the cross-layer combination. Combining
the cross-layer information enables the network to make
precise local predictions and respect global semantic infor-
mation. Third, we report the results with different filter

TABLE 2
Comparison of Human Parsing Performances with Several Architectural Variants of Our Model and Four

State-of-the-Arts When Evaluating on ATR [1]

Method Accuracy F.g. accuracy Avg. precision Avg. recall Avg. F-1 score

$ Yamaguchi et al. [8] 84.38 55.59 37.54 51.05 41.80
$ PaperDoll [4] 88.96 62.18 52.75 49.43 44.76
$M-CNN [2] 89.57 73.98 64.56 65.17 62.81
$ ATR [1] 91.11 71.04 71.69 60.25 64.38

baseline (150-75) 92.77 68.66 67.98 62.85 63.88
baseline (150-75-37) 92.91 76.29 78.48 65.42 69.32
baseline (150-75-37-18) 94.41 78.54 76.62 71.24 72.72
$ baseline (150-75-37-18, post-process) 94.48 78.85 77.22 71.78 73.25
baseline (150-75-37-18, w/o fusion) 92.57 70.76 67.17 64.34 65.25
baseline (150-75-37-18, lessfilters) 94.23 77.79 75.66 70.42 71.82
baseline (150-75-37-18, concat) 93.10 72.17 69.63 66.94 67.82

Co-CNN (concatenate with global label) 94.90 80.80 78.35 73.14 74.56
Co-CNN (summation with global label) 94.28 76.43 79.62 71.34 73.98
Co-CNN (concatenate, summation with global label) 94.87 79.86 78.00 73.94 75.27

Co-CNN (w-s-p) 95.09 80.50 79.22 74.38 76.17
Co-CNN (w-s-p, c-s-p) 95.23 80.90 81.55 74.42 76.95
Co-CNN (full) 96.30 85.22 85.26 80.04 81.72

Co-CNN (w/o edge, +Chictopia10k) 96.02 83.57 84.95 77.66 80.14
Co-CNN (edge w/o multi-scale fusion, +Chictopia10k) 96.87 87.43 86.00 82.85 84.18
Co-CNN (use edge before prediction, +Chictopia10k) 96.65 86.57 85.99 81.88 83.44
Co-CNN (+Chictopia10k) 97.18 88.84 87.12 84.05 85.36

The $ indicates the method is not a fully end-to-end framework.

TABLE 3
Human Parsing Performances on the 1,000 Testing

Images from Chictopia10k

Method Acc. F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

$ Co-CNN (ATR) 96.34 85.10 84.00 80.70 82.08
$ Co-CNN

(Chictopia10k)

96.60 86.29 85.08 81.85 83.21
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numbers in each layer. Our off-line experiments have
shown that the influence of the exact filter number in each
layer is relatively minor. After reducing the filter number
by half for each layer, i.e., “baseline (150-75-37-18,
lessfilters)”, the performance on F-1 score is slightly
decreased by 0:9 percent over “baseline (150-75-37-18)”. It
demonstrates that the depth of our network is much more
critical than the filter number. Fourth, we evaluate the other
cross-layer combination method (“baseline (150-75-37-18,
concat)”), which concatenates the feature maps from deep
and fine layers instead of element-wise summations used in
our “baseline (150-75-37-18)”. The “baseline (150-75-37-18,
concat)” is inferior to “baseline (150-75-37-18)” by
4:9 percent in terms of F-1 score.

Finally, we also test the FCN architecture [22] on seman-
tic segmentation in the human parsing task, i.e., fine-tuning
the pre-trained classification network with the human pars-
ing dataset and only performing the combination for the
pixel-wise predictions. Its performance is much worse than
our network (i.e., 64:63 versus 72:72 percent of “baseline
(150-75-37-18)” in average F-1 score).

Global image-level context. We also explore different archi-
tectures to demonstrate the effectiveness of utilizing the
global image label context. All the following results are

obtained without using semantic edge context and local
super-pixel contexts. After the summation of global image
label probabilities (“Co-CNN (summation with global
label)”), the performance can be increased by 1:26 percent,
compared to “baseline (150-75-37-18)”. After concatenating
the global image label probabilities with each subsequent
convolutional layer, “Co-CNN (concatenate with global
label)”, the performance can be improved by 1:84 percent in
F-1 score, compared to the version without using global
label (“baseline (150-75-37-18)”). The further summation of
global image label probabilities can bring 0:71 percent
increase in F-1 score, shown as “Co-CNN (concatenate,
summation with global label)”. The gradually improved
performance validates that incorporating the predicted
global image label probabilities into multiple convolutional
layers and the label confidence maps can help achieve better
pixel-wise classification. The most significant improvements
over “baseline (150-75-37-18)” can be observed from the F-1
scores for clothing items, e.g., 7:68 percent for skirt and
4:32 percent for dress. The main reason for these improve-
ments may be that by accounting for the global image-level
label probabilities, the label exclusiveness and occurrences
can be well captured during dense pixel-wise prediction.
For example, the dress is often confused with upper-clothes

TABLE 5
Comparison of Parsing Performance with Three State-of-the-Arts on the Test Images of Fashionista [8]

Method Acc. F.g. acc. Avg. prec. Avg. recall Avg. F-1 score

$ Yamaguchi et al. [8] 87.87 58.85 51.04 48.05 42.87
$ PaperDoll [4] 89.98 65.66 54.87 51.16 46.80
$ ATR [1] 92.33 76.54 73.93 66.49 69.30

Co-CNN (w/o edge) 96.08 84.71 82.98 77.78 79.37
Co-CNN (full) 96.59 86.46 86.26 81.14 82.82
Co-CNN (w/o edge, +Chictopia10k) 97.06 89.15 87.83 81.73 83.78
Co-CNN (+Chictopia10k) 97.64 90.85 88.55 85.93 87.08

TABLE 4
Per-Class Comparison of F-1 Scores with Several Variants of Our Versions and Four State-of-the-Art Methods on ATR [1]

Method Hat Hair S-gls U-cloth Skirt Pants Dress Belt L-shoe R-shoe Face L-leg R-leg L-arm R-arm Bag Scarf

$ Yamaguchi et al. [8] 8.44 59.96 12.09 56.07 17.57 55.42 40.94 14.68 38.24 38.33 72.10 58.52 57.03 45.33 46.65 24.53 11.43
$ PaperDoll [4] 1.72 63.58 0.23 71.87 40.20 69.35 59.49 16.94 45.79 44.47 61.63 52.19 55.60 45.23 46.75 30.52 2.95
$M-CNN [2] 80.77 65.31 35.55 72.58 77.86 70.71 81.44 38.45 53.87 48.57 72.78 63.25 68.24 57.40 51.12 57.87 43.38
$ ATR [1] 77.97 68.18 29.20 79.39 80.36 79.77 82.02 22.88 53.51 50.26 74.71 69.07 71.69 53.79 58.57 53.66 57.07

baseline (150-75) 28.94 81.96 63.04 74.71 50.91 70.18 53.87 37.32 64.87 60.49 86.02 72.55 72.40 78.54 72.43 63.94 18.86

baseline (150-75-37) 63.12 80.08 36.55 83.12 63.17 81.10 65.38 28.36 65.75 69.94 82.88 82.03 81.55 75.68 76.31 77.36 37.15

baseline (150-75-37-18) 59.41 84.67 69.59 82.75 65.52 80.30 65.29 43.50 75.85 72.71 88.00 85.11 84.35 80.61 80.27 72.25 22.87
$ baseline (150-75-37-18, post-process) 63.78 84.54 69.88 83.08 68.10 80.61 66.56 45.33 72.35 72.36 87.66 84.52 83.48 81.03 79.73 72.78 23.78

baseline (150-75-37-18, w/o fusion) 57.93 79.15 54.01 78.08 65.27 73.25 50.73 20.63 63.00 63.57 82.48 68.20 73.02 73.39 73.37 72.79 27.05

baseline (150-75-37-18, lessfilters) 57.07 84.40 69.59 82.24 64.65 79.71 63.27 41.57 72.39 72.02 87.97 84.21 83.40 80.21 79.89 71.70 19.46

baseline (150-75-37-18, concat) 59.37 79.50 53.96 79.03 65.63 76.50 58.78 26.64 66.33 66.57 83.18 73.84 76.32 74.83 74.70 73.24 33.81

Co-CNN (concatenate with global label) 62.96 85.09 70.42 84.20 70.36 83.02 70.67 45.71 74.26 74.23 88.14 87.09 85.99 81.94 80.73 73.91 24.39

Co-CNN (summation with global label) 69.77 87.91 78.05 79.31 61.81 80.53 57.51 28.16 74.87 73.22 91.34 82.15 83.98 84.37 84.23 79.78 35.35

Co-CNN (concatenate, summation with

global label)

65.05 85.11 70.92 84.02 73.20 81.49 69.61 45.44 73.59 73.40 88.73 83.25 83.51 82.74 82.15 77.88 35.75

Co-CNN (w-s-p) 71.25 85.52 71.37 84.70 74.98 82.23 71.18 46.28 74.83 75.04 88.76 84.39 83.38 82.84 82.62 78.97 33.66

Co-CNN (w-s-p, c-s-p) 72.07 86.33 72.81 85.72 70.82 83.05 69.95 37.66 76.48 76.80 89.02 85.49 85.23 84.16 84.04 81.51 44.94

Co-CNN (full) 78.46 90.03 80.59 87.20 76.82 88.72 71.64 51.25 80.85 80.93 92.78 90.85 91.18 89.58 89.03 84.53 47.15

Co-CNN (w/o edge, +Chictopia10k) 75.88 89.97 81.26 87.38 71.94 84.89 71.03 40.14 81.43 81.49 92.73 88.77 88.48 89.00 88.71 83.81 46.24

Co-CNN (edge w/o multi-scale fusion,

+Chictopia10k)

81.13 90.98 81.07 89.02 81.20 91.52 77.30 60.42 83.51 83.78 93.70 92.32 92.45 90.30 90.20 85.79 51.09

Co-CNN (use edge before prediction,

+Chictopia10k)

79.48 90.51 81.29 87.89 80.59 90.10 74.95 58.08 82.37 82.77 93.38 91.99 92.22 90.46 90.06 85.50 50.73

Co-CNN (+Chictopia10k) 81.83 91.41 82.23 89.91 84.17 92.88 80.03 62.07 85.07 85.43 93.86 93.89 93.90 90.76 90.83 86.02 52.20
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and the skirt, and upper-clothes often appear together with
skirt and pants.

Local super-pixel contexts. Extensive evaluations are con-
ducted on the effectiveness of using local super-pixel
contexts. All the following results are obtained without per-
forming semantic edge prediction. The average F-1 score
increases by 0:9 percent by embedding the within-super-
pixel smoothing into our network (“Co-CNN (w-s-p)”), com-
pared to the version “Co-CNN (concatenate, summation
with global label)”. Our version “Co-CNN (w-s-p, c-s-p)”
leads to 1:68 percent increase. For the F-1 score for each
semantic label, the significant improvements are obtained
for the labels of small regions (e.g., hat, sun-glasses and
scarf). For instance, the F-1 score for hat is increased by
7:02 percent, and 9:19 percent for scarf, compared with “Co-
CNN (concatenate, summation with global label)”. This
demonstrates that the local super-pixel contexts can help
preserve the local boundaries and generate more precise
classification for small regions. Previous works ofter apply
the super-pixel smoothing as the post-processing step,which
is separate with the network optimization and feature learn-
ing. To justify the superiority of using the local super-pixel
contexts during the training, we test the performance of only
using the local super-pixel smoothing and voting as the post-
processing steps, i.e., “baseline (150-75-37-18, post-process)”
is shown in Table 2. Compared to our “Co-CNN (w-s-p, c-s-
p)”, the average F-1 score of “baseline (150-75-37-18, post-
process)” is decreased by 3:7 percent. When only performing
the local super-pixel smoothing and neighborhood voting as
the post-processing steps on the “Co-CNN (concatenate,

summation with global label)”, the F-1 score drops by
1:68 percent comparedwith “Co-CNN (w-s-p, c-s-p)”.

Semantic edge context. We validate the effectiveness of
incorporating semantic edge context into Co-CNN on ATR
dataset and Fashionista dataset. The detailed comparison
results are reported in Tables 2, 4 and 5. By jointly perform-
ing semantic edge prediction, the performance in average F-
1 score by “Co-CNN (full)” can be significantly boosted by
4:77 percent compared to “Co-CNN (w-s-p, c-s-p)” on ATR
dataset. A similar significant increase in F-1 score can also be
observed when evaluating on Fashionista dataset, i.e.,
82.82 percent of “Co-CNN (full)” versus 79.37 percent of
“Co-CNN (w/o edge)”. By training with more data in
“Chictopia10k”, a 5:22 percent increase in F-1 score can be
observed when comparing “Co-CNN (+Chictopia10k)” with
“Co-CNN (w/o edge, +Chictopia10k)” on ATR dataset.

In addition, we also conduct experiments on different
variants of using semantic edge context. Some interesting
observations can be obtained. First, the effectiveness of
using multi-scale prediction streams to predict semantic

TABLE 6
Performance Analysis on Three Main Influential Factors

Affecting Human Parsing, i.e., Diverse Poses,
Background Clutters and Viewpoints

Test set Pose Background
clutters

Viewpoint

ATR (easy) 88.32 87.42 88.29
Chictopia10k (hard) 82.18 83.12 78.10

All results are evaluated by average F-1 score metric.

Fig. 6. Result comparison of our Co-CNN and two state-of-the-art methods. For each image, we show the parsing results by PaperDoll [4], ATR [1]
and our Co-CNN sequentially.
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edges can be observed when comparing “Co-CNN (edge
w/o multi-scale fusion, +Chictopia10k)” with “Co-CNN
(+Chictopia10k)”. The semantic edge is directly predicted
from the convolutional layers with resolution of 18� 12, and
then the predicted confidence maps are combined into the
features in later layers. This demonstrates that the multi-scale
prediction is critical for fine-grained semantic edge prediction
where the local details and semantic information are both
captured. All outputs from different convolutional layers
with different resolutions and theweightedmerging ofmulti-
scale predictions can contribute to the results. Second, we also
report the performance of only embedding edge confidence
maps in the final prediction layer (“Co-CNN (use edge before
prediction, +Chictopia10k)”) instead of three convolutional
layers in “Co-CNN (+Chictopia10k)”. We find combining
edge confidence maps into more convolutional layers yields
better performance than only using in the prediction layer.
This is because the hierarchical feature combinations can lead
to better features serving for the final prediction.

4.4 Discussion on Different Test Set

To further facilitate the research in human parsing and help
to identify the most promising directions of current meth-
ods, we conduct the extensive experiments to evaluate how
much different factors such as challenging poses, back-
ground clutters and viewpoints influence the final results.
All results are reported in Table 6 and evaluated by the
average F-1 score metric. For each influential factor, we
manually select 100 hard images from Chictopia10k dataset
and 100 easy images from ATR dataset as two different test
set. In terms of the selection policy, we first evaluate the

prediction accuracies for all images in two dataset using our
model and the images predicted with low accuracies form
the candidate set. Based on this candidate set, the images
with twisty arms and legs are regarded as containing hard
poses in Chictopia10k dataset. The images with the confus-
ing boundaries between the human body and background
are treated as the hard images with large background clut-
ters. The images with lying or sitting people are selected as
hard images with diverse viewpoints. The easy subsets in
ATR dataset can thus be accordingly identified. The training
set includes the rest of ATR dataset and Chictopia10k data-
set. As observed from Table 6, all the three factors decrease
the parsing performance by a large margin. Among them,
the most influential factor affecting the parsing performance
is the challenging viewpoints (such as lying person or sit-
ting person). The possible reason for such performance
decrease is the lack of enough training images for such chal-
lenging images and powerful network capability.

Fig. 7. Some failure cases generated by our Co-CNN.

Fig. 8. Some example parsing results and semantic edge prediction results of our Co-CNN.
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4.5 Visual Illustration

The qualitative comparison of parsing results is visualized in
Fig. 6. Our Co-CNN outputs more meaningful and precise
predictions than PaperDoll [4] and ATR [1] despite the large
appearance and position variations. Our method can suc-
cessfully predict the labels of small regions (e.g., hat, scarf,
sun-glasses, belt) and the label boundaries are preserved
very well. The parsing results of our method are much more
complete and cleaner while the results of [4] may be frag-
mented. The results of [4] may be influenced by the low-level
information, e.g., image clarity and color similarity, while
the method of [1] shows to suffer from the incorrectly classi-
fied label masks and predicted locations of each label.

We also show the parsing results and semantic edge pre-
diction results by the proposed Co-CNN in Fig. 8. It can be
observed that the predicted semantic edge can well capture
the detailed boundaries and semantic meaning, even for
small regions such as scarf, sunglasses and hat.

Finally, we show some representative failure cases by
our Co-CNN in Fig. 7, which can help identify some possi-
ble directions to improve the human parsing performance
in future. As observed from these qualitative results, Co-
CNN may fail to parse the challenging images with confus-
ing clothes items, large background clutters and poses.

5 CONCLUSIONS AND FUTURE WORK

In this work, we proposed a novel Co-CNN architecture for
the human parsing task, which integrates the cross-layer
context, global image label context, semantic edge context
and local super-pixel contexts into a unified network. For
each input image, our Co-CNN produces the correspond-
ing-sized pixel-wise predictions in a fully end-to-end way.
The local-to-global-to-local hierarchy is used to combine
the local detailed information and the global semantic infor-
mation. The global image label prediction, semantic edge
prediction, within-super-pixel smoothing and cross-super-
pixel neighborhood voting are formulated as the natural
components of our Co-CNN. Extensive experimental results
clearly demonstrated the effectiveness of the proposed Co-
CNN. In future work, we will further extend our Co-CNN
architecture for generic image parsing tasks, e.g., object
semantic segmentation.
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