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Abstract—Recently, significant improvement has been made on semantic object segmentation due to the development of deep
convolutional neural networks (DCNNs). Training such a DCNN usually relies on a large number of images with pixel-level segmentation
masks, and annotating these images is very costly in terms of both finance and human effort. In this paper, we propose a simple to
complex (STC) framework in which only image-level annotations are utilized to learn DCNNs for semantic segmentation. Specifically,
we first train an initial segmentation network called Initial-DCNN with the saliency maps of simple images (i.e., those with a single
category of major object(s) and clean background). These saliency maps can be automatically obtained by existing bottom-up salient
object detection techniques, where no supervision information is needed. Then, a better network called Enhanced-DCNN is learned with
supervision from the predicted segmentation masks of simple images based on the Initial-DCNN as well as the image-level annotations.
Finally, more pixel-level segmentation masks of complex images (two or more categories of objects with cluttered background),
which are inferred by using Enhanced-DCNN and image-level annotations, are utilized as the supervision information to learn the
Powerful-DCNN for semantic segmentation. Our method utilizes 40K simple images from Flickr.com and 10K complex images from
PASCAL VOC for step-wisely boosting the segmentation network. Extensive experimental results on PASCAL VOC 2012 segmentation
benchmark well demonstrate the superiority of the proposed STC framework compared with other state-of-the-arts.

Index Terms—semantic segmentation, weakly-supervised learning, convolutional neural network
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1 INTRODUCTION

IN recent years, deep convolutional neural networks
(DCNNs) have demonstrated an outstanding capa-

bility in various computer vision tasks, such as image
classification [1]–[4], object detection [5], [6] and seman-
tic segmentation [7]–[13]. Most DCNNs for these tasks
rely on strong supervision for training, i.e., ground-truth
bounding boxes and pixel-level segmentation masks.
However, compared with convenient image-level labels,
collecting annotations of bounding boxes or pixel-level
masks is much more expensive. In particular, for the se-
mantic segmentation task, annotating a large number of
pixel-level masks usually requires a considerable amount
of financial expenses as well as human effort.

To address this problem, some methods [14]–[18] have
been proposed for semantic segmentation by only uti-
lizing image-level labels as the supervised information.
However, to the best of our knowledge, the performance
of these methods is far from satisfactory compared with
fully-supervised schemes (e.g., 40.6% [15] vs. 66.4% [13]).
Given the complexity of semantic segmentation prob-
lems, such as high intra-class variation (e.g., diverse ap-
pearance, viewpoints and scale) and different interaction
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between objects (e.g., partial visibility and occlusion),
complex loss functions (e.g., multiple instance learning
based loss functions) [14], [15], [18] with image-level
annotations may not be adequate for weakly supervised
semantic segmentation due to the ignorance of intrinsic
pixel-level properties of segmentation masks.

It should be noted that, during the past few years,
many salient object detection methods [19]–[22], which
do not require high-level supervision information, have
been proposed to detect the most visually noticeable
salient object in the image. While these methods may not
work well for complex images with multiple objects and
cluttered background, they often provide satisfactory
saliency maps for images with the object(s) of single cat-
egory and clean background. By automatically retrieving
a huge amount of web images and detecting salient
objects for relatively simple images, we might be able
to obtain a large amount of saliency maps for training
semantic segmentation DCNNs at a low cost.

In this work, we propose a simple to complex frame-
work for weakly-supervised segmentation based on the
following intuitions. For complex images with clutter
background and two or more categories of objects, it
is usually difficult to infer the relationship between
semantic labels and pixels by only utilizing image-
level labels as the supervision. However, for simple
images with clean background and a single category
of major object(s), foreground and background pixels
are easily split based on the salient object detection
techniques [20]–[23]. With the indication of the image-
level label, it is naturally inferred that pixels belonging to

ar
X

iv
:1

50
9.

03
15

0v
2 

 [
cs

.C
V

] 
 7

 D
ec

 2
01

6



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XX, NO.XX, 2015 2

the foreground can be assigned with the same semantic
label. Therefore, an initial segmenter can be learned from
simple images based on their foreground/background
masks and image-level labels. Furthermore, based on the
initial segmenter, more objects from complex images can
be segmented so that a more powerful segmenter can be
continually learnt for semantic segmentation.

Specifically, semantic labels are firstly employed as
queries to retrieve images on the image hosting websites,
e.g., Flickr.com. The retrieved images from the first
several pages usually meet the definition of a simple
image. With these simple images, high quality saliency
maps are generated by the state-of-the-art saliency detec-
tion technique [22]. Based on the supervision of image-
level labels, we can easily assign a semantic label to
each foreground pixel and learn a semantic segmentation
DCNN supervised by the generated saliency maps by
employing a multi-label cross-entropy loss function, in
which each pixel is classified to both the foreground class
and background according to the predicted probabilities
embedded in the saliency map. Then, a simple to com-
plex learning process is utilized to gradually improve
the capability of DCNN, in which the predicted seg-
mentation masks of simple images by initially learned
DCNN are in turn used as the supervision to learn an
enhanced DCNN. Finally, with the enhanced DCNN,
more difficult and diverse masks from complex images
are further utilized for learning a more powerful DCNN.
Particularly, the contributions of this work are summa-
rized as follows:
• We propose a simple to complex (STC) framework

that can effectively train the segmentation DCNN
in a weakly-supervised manner (i.e., only image-
level labels are provided). The proposed framework
is general, and any state-of-the-art fully-supervised
network structure can be incorporated to learn the
segmentation network.

• A multi-label cross-entropy loss function is intro-
duced to train a segmentation network based on
saliency maps, where each pixel can adaptively con-
tribute to the foreground class and background with
different probabilities.

• We evaluate our method on the PASCAL VOC
2012 segmentation benchmark [24]. The experimen-
tal results well demonstrate the effectiveness of
the STC framework, achieving the state-of-the-art
performance.

2 RELATED WORK

2.1 Weakly Supervised Semantic Segmentation

To reduce the burden of the pixel-level mask annotation,
some weakly-supervised methods have been proposed
for semantic segmentation. Dai et al. [8] and Papan-
dreou et al. [14] proposed to estimate semantic segmen-
tation masks by utilizing annotated bounding boxes.
For example, by incorporating pixel-level masks from
the Pascal VOC [24] and annotated bounding boxes
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Fig. 1. An illustration of the proposed simple to com-
plex (STC) framework. (a) High quality saliency maps
of simple images are first generated by DRFI [22] as
the supervised foreground/background masks to train the
Initial-DCNN using the proposed loss function. (b) Then,
a better Enhanced-DCNN is learned, supervised with
the segmentation masks predicted by Initial-DCNN. (c)
Finally, more masks of complex images are predicted to
train a more powerful network, called Powerful-DCNN.

from the COCO [25], state-of-the-art results on PASCAL
VOC 2012 benchmark were achieved by [8]. To further
reduce the burden of the bounding boxes collection,
some works [14]–[16], [18], [26]–[28] proposed to train
the segmentation network by only using image-level
labels. Pathak et al. [16] and Pinheiro et al. [15] pro-
posed to utilize multiple instance learning (MIL) [29]
framework to train the DCNN for segmentation. In [14],
an alternative training procedure based on Expectation-
Maximization (EM) algorithm was presented to dynam-
ically predict foreground (with semantics)/background
pixels. Pathak et al. [18] introduced constrained con-
volutional neural networks for weakly-supervised seg-
mentation. Specifically, by utilizing object size as addi-
tional supervision, significant improvements were made
by [18]. Most recently, three kinds of loss functions,
i.e., seeding, expansion and constrain-to-boundary, were
leveraged in [28] to train the segmentation network.
Saleh et al. [27] also proposed a relevant approach using
foreground/background prior for learning to segment,
which is able to evidence the effectiveness of our frame-
work.

2.2 Self-paced Learning

Our framework first learns from simple images and then
applies the learned network to complex ones, which is
related to self-paced learning [30]. Recently, various com-
puter vision applications [31]–[33] based on self-paced
learning have been proposed. In specific, Tang et al. [31]
adapted object detectors learned from images to videos
by starting with easy samples. Jiang et al. [32] addressed
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Fig. 2. Examples of simple images and the corresponding saliency maps generated by DRFI on the 20 classes of
PASCAL VOC.

the data diversity. In [33], very few samples were used
as seeds to train a weak object detector, and then more
instances were iteratively accumulated to enhance the
object detector, which can be considered as a slightly-
supervised self-paced learning method. However, dif-
ferent from self-paced learning where each iteration
automatically selects samples for training, the simple or
complex samples are defined according to their appear-
ance (e.g., single/multiple object(s) or clean/cluttered
background) before training in this work.

Besides, many other works [17], [34]–[37] have also
addressed this task. These methods are usually applied
on simple or small scale datasets, e.g., MSRA [38] and
SIFT-flow [39]. Specifically, Liu et al. [35] proposed a
graph propagation method to automatically assign the
annotated labels at image level to those contextually
derived semantic regions. Xu et al. [34] presented a latent
structured prediction framework, where the graphical
model encodes the presence and absence of a class as
well as assignments of semantic labels to super-pixels.
Vezhnevets et al. [37] proposed a maximum expected
agreement model selection principle that evaluates the
quality of a model from the parametric family of struc-
tured models for semantic segmentation.

3 PROPOSED METHOD

Figure 1 shows the architecture of the proposed simple to
complex (STC) framework. We utilize the state-of-the-art
saliency detection method, i.e., discriminative regional
feature integration (DRFI) [22], to generate the saliency
maps of simple images. The produced saliency maps are
first employed to train an initial DCNN with a multi-
label cross-entropy loss function. Then the simple to
complex framework is proposed to gradually improve
the capability of segmentation DCNN.

3.1 Initial-DCNN
For the generated saliency map of each image, the larger
pixel value means it is more likely that this pixel belongs
to foreground. Figure 2 shows some instances of simple

images and the corresponding saliency maps generated
by DRFI. It can be observed that there exists explicit asso-
ciation between the foreground pixels and the semantic
object(s). Since each simple image is accompanied with a
semantic label, it can be easily inferred that foreground
candidate pixels can be assigned with the corresponding
image-level label. Then, a multi-label cross-entropy loss
function is proposed to train the segmentation network
supervised by saliency maps.

Suppose there are C classes in the training set. We
denote OI = {1, 2, · · · , C} and OP = {0, 1, 2, · · · , C} as
the category sets for image-level label and pixel-level
label, respectively, where 0 indicates the background
class. We denote the segmentation network filtering by
f(·), where all the convolutional layers filter the given
image I . The f(·) produces a h×w×(C+1) dimensional
output of activations, where h and w are the height
and the width of the feature map for each channel,
respectively. We utilize the softmax function to compute
the posterior probability of each pixel of I belonging to
the kth (k ∈ OP ) class, which is formulated as follows,

pkij =
exp

(
fk
ij(I)

)∑
l∈OP

exp
(
f l
ij(I)

) , (1)

where fk
ij(I) is the activation value at location (i, j) (1 ≤

i ≤ h, 1 ≤ j ≤ w) of the kth feature map. In general, we
define the probability obtained from the saliency map
of the lth class at the location (i, j) as p̂lij (

∑
l∈OP

p̂lij =

1). Then, the multi-label cross-entropy loss function for
semantic segmentation is then defined as

− 1

h× w

h∑
i=1

w∑
j=1

∑
l∈OP

p̂lij log(plij). (2)

Specifically, for each simple image, we assume that
only one semantic label is included. Suppose that the
simple image I is annotated by the cth (c ∈ OI ) class,
and then the normalized value from the saliency map is
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taken as the probability of each pixel belonging to the
class c. We resize the saliency map to the same size of
the output feature map from the DCNN and Eqn. (2) can
then be re-formulated as

− 1

h× w

h∑
i=1

w∑
j=1

(p̂cij log(pcij) + p̂0
ij log(p0

ij)), (3)

where p0
ij indicates the probability of the pixel at location

(i, j) belonging to the background (p0
ij = 1 − pcij). We

denote the segmentation network learned in this stage
as Initial-DCNN (I-DCNN for short).

It should be noted that we can also utilize Saliency-
Cut [20] to generate the foreground/background seg-
mentation masks based on the generated saliency maps.
Then, single-label cross-entropy loss can be employed
for training. We compare this scheme with our proposed
method, and find that the performance on VOC 2012 val
set will drop by 3%. The reason is that some saliency
detection results are inaccurate. Therefore, directly ap-
plying SaliencyCut [20] to generate segmentation masks
will introduce many nosies, which is harmful for training
the I-DCNN. However, based on the proposed multi-
label cross-entropy loss, correct semantic labels will still
contribute to the optimization, which can decrease the
negative effect caused by low quality saliency maps.

3.2 Simple to Complex Framework

In this section, a progressively training strategy is pro-
posed by incorporating more complex images with
image-level labels to enhance the segmentation capabil-
ity of DCNN. Based on the trained I-DCNN, segmen-
tation masks of images can be predicted, which can
be used to further improve the segmentation capability
of DCNN. Similar to the definition in Section 3.1, we
denote the predicted probability for the kth class at the
location (i, j) as pkij . Then, the estimated label gij of the
pixel at location (i, j) by the segmentation DCNN can
be formulated as

gij = arg max
k∈OP

pkij . (4)

3.2.1 Enhanced-DCNN
However, incorrect predictions from the I-DCNN may
lead to the drift in semantic segmentation when used as
the supervision for training DCNN. Fortunately, for each
simple image in the training set, the image-level label
is given, which can be utilized to refine the predicted
segmentation mask. Specifically, if the simple image I is
labeled with c (c ∈ OI ), the estimated label of the pixel
can be re-formulated as

gij = arg max
k∈{0,c}

pkij , (5)

where 0 indicates the category of background. In this
way, some false predictions for simple images in the
training set can be eliminated. Then, a more powerful
segmentation DCNN called Enhanced-DCNN (E-DCNN

for short) is trained by utilizing the predicted segmenta-
tion masks as the supervised information. We train the E-
DCNN with the single-label cross-entropy loss function,
which is widely used by fully-supervised schemes [11].

3.2.2 Powerful-DCNN
In this stage, complex images with image-level labels, in
which more semantic objects and cluttered background
are included, are utilized to train the segmentation
DCNN. Compared with I-DCNN, E-DCNN possesses a
more powerful semantic segmentation capability due to
the usage of the large number of predicted segmentation
masks. Although E-DCNN is trained with simple im-
ages, the semantic objects in those images have large va-
riety in terms of appearance, scale and viewpoint, which
is consistent with their appearance variation in complex
images. Therefore, we can apply E-DCNN to predict the
segmentation masks of complex images. Similar as Eqn.
(5), to eliminate false predictions, the estimated label for
each pixel of image I is formulated as

gij = arg max
k∈Ω

pkij , (6)

where Ω indicates the set of ground-truth semantic labels
(including background) for each image I . We denote the
segmentation network trained in this stage as Powerful-
DCNN (P-DCNN for short).

In this work, two kinds of cross-entropy losses are
utilized to train segmentation networks. In particular,
cross-entropy loss in the fully convolutional network
is a pixel-wise one. For the fully supervised scheme,
each pixel can only be assigned to one class and the
corresponding cross-entropy is a single-label one. This
matches the target of E-DCNN and P-DCNN. Therefore,
we train these two networks using the single-label loss.
For training the I-DCNN, the class information of each
pixel can not be exactly obtained. To address this issue,
each pixel is softly associated with two classes (one is
background and the other is one of the 20 foreground
classes) with different probabilities according to the pro-
duced saliency map and image-level label. We consider
the loss function for this scheme as the multi-label cross-
entropy loss. To illustrate the effectiveness of each step,
some segmentation results generated by I-DCNN, E-
DCNN and P-DCNN are shown in Figure 3. It can be
seen that the segmentation results are progressively be-
coming better based on the proposed simple to complex
framework.

4 EXPERIMENTAL RESULTS

4.1 Dataset
Flickr-Clean: We construct a new dataset called
Flickr-Clean to train the segmentation network of
I-DCNN. The keywords, whose semantics are consis-
tent with those from PASCAL VOC, are employed as
queries to retrieve images on the image hosting website
Flickr.com. We crawl images in the first several pages
of searching results and use the state-of-the-art saliency



IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, VOL.XX, NO.XX, 2015 5

I-DCNN E-DCNN P-DCNN Ground Truth Image 

Fig. 3. Examples of segmentation results generated by I-
DCNN, E-DCNN and P-DCNN on the PASCAL VOC 2012
val set, respectively.
detection method, i.e., discriminative regional feature
integration (DRFI), to generate the saliency maps of the
crawled images. In order to ensure that the images are
simple ones, we adopt a method similar to that proposed
in [40], [41] to filter the crawled images. We measure
the impreciseness and incompleteness of the Saliency-
Cut [20] segmentation as in [40]. Denote the number
of pixels of the given image I as NI and the number
of foreground pixels of the corresponding segmentation
mask as Nf . We reserve those images whose foreground
regions fit 0.3∗NI < Nf < 0.5∗NI . Without such a filter-
ing scheme to clean up the training set, the performance
of using all 100K crawled images for training results in
4% performance drop for the I-DCNN. In the end, 41,625
images are collected to train the segmentation network.
PASCAL VOC 2012: The proposed weakly-supervised
method is evaluated on the PASCAL VOC 2012 segmen-
tation benchmark [24]. The original training data contain
1,464 images. In [42], 10,582 extra images (train aug) are
annotated for training. In our experiment, 10,582 images
with only image-level labels are utilized as the complex
image set for training. The val and test sets have 1,449
and 1,456 images, respectively. For both val and test sets,
we only use the simple images from Flickr-Clean
and the complex images from train aug for training. The
performance is measured in terms of pixel intersection-
over-union (IoU) averaged on 21 classes (20 object and
one background). Extensive evaluation of the weakly-
supervised method is primarily conducted on the val
set and we also report the result on the test set (whose
ground-truth masks are not released) by submitting the
results to the official PASCAL VOC 2012 server.

4.2 Training Strategies

We employ the proposed simple to complex framework
to learn the DCNN component of the DeepLab-CRF
model [13], whose parameters are initialized by the
VGG-16 model [2] pre-trained on ImageNet [43]. For
the training of segmentation DCNNs (I-DCNN, E-DCNN

TABLE 1
Comparison of I-DCNN models trained with different

saliency maps on VOC 2012 val set (mIoU in %).

Saliency Method HS [21] DRFI [22]

I-DCNN 42.5 44.9

TABLE 2
Comparison of I-DCNN models trained on different

numbers of images on VOC 2012 val set (mIoU in %).

Flickr-Clean 1/16 1/8 1/4 1/2 All

I-DCNN 39.8 42.1 45.7 45.6 44.9

and P-DCNN), we use a mini-batch size of 8 images. Ev-
ery training image is resized to 330×n and patches with
the size of 321 × 321 are randomly cropped during the
training stage. The initial learning rate is set as 0.001 (0.01
for the last layer) and divided by 10 after almost every
5 epochs. The momentum and the weight decay are set
as 0.9 and 0.0005. The training progress is performed for
about 15 epochs. To fairly compare our results with those
from [14], [18], dense CRF inference is adopted to post-
process the predicted results. Each segmentation DCNN
is trained based on a NVIDIA GeForce Titan GPU with
6GB memory. All the experiments are conducted using
DeepLab code [13], which is implemented based on the
publicly available Caffe framework [44].

4.3 Justifications
Justifications of Different Saliency Detecton Methods:
DRFI achieves the state-of-the-art performance on 6 pop-
ular benchmark datasets indicated by [19]. To investigate
the quality of saliency maps generated by DRFI and
how the performance of our proposed method varies
with adopting different saliency detection methods, we
train another I-DCNN model based on saliency maps
produced by one of the latest methods, i.e., Hierarchical
Saliency (HS) [21] detection method. Table 1 shows
the segmentation results of I-DCNN models trained by
different saliency maps. It can be seen that using DRFI
saliency maps to train I-DCNN is effective.
Justifications of the Number of Training Images: To
investigate when the increasing number of collected
training images will saturate the performance of the pro-
posed method, we train I-DCNN models using varying
numbers of images from Flickr-Clean dataset (see
also Table 2). Each smaller set is a subset of the following
larger set. For example, the 1/16 set is a subset of the
1/8 set. We firstly observe performance improvements
when incorporating more training samples, which is
quite intuitive. After getting best performance when
using 1/4 of the training samples, further increasing the
training samples hurts the performance. We believe the
reason is that Flickr images ranked in the last few pages
are quite noisy, and cannot be efficiently utilized by our
current scheme. In this paper, our experiments are based
on all images from Flickr-Clean.
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TABLE 3
Comparison of different segmentation DCNNs on VOC

2012 val set.

Method Training Set mIoU

I-DCNN Flickr-Clean 44.9
E-DCNN Flickr-Clean 46.3
P-DCNN Flickr-Clean + VOC 49.8

Justifications of the Simple to Complex Framework:
Table 3 shows the comparisons of different segmentation
DCNNs. It can be observed that, based on the proposed
multi-label cross-entropy loss, saliency maps of simple
images accompanied with image-level labels can be con-
veniently employed to train an effective neural network
for semantic segmentation. The performance of I-DCNN
is 44.9%, which can outperform most state-of-the-arts.
Besides, training with the segmentation masks predicted
by I-DCNN can further improve the capability of seman-
tic segmentation, i.e., 46.3% vs. 44.9%. In addition, based
on the enhanced neural network (i.e., E-DCNN), the
performance can be further boosted, i.e., 49.8% vs. 46.3%,
by adding more complex images for training. Therefore,
for the weakly-supervised semantic segmentation task,
the proposed simple to complex (STC) framework is
effective. In addition, we also conduct experiments of
training I-DCNN with complex images to validate the
necessity of using simple images. The mIoU score is
17.6%, which is far below the result of ours. Please refer
to the supplementary marital for more details.

4.4 Comparison with State-of-the-art Methods

Table 4 shows the detailed results of ours compared
with those of state-of-the-art methods. * indicates those
methods that use additional images to train the seg-
mentation network. For MIL-FCN [16], EM-Adapt [14],
CCNN [18], DCSM [26], BFBP [27] and SEC [28], the
segmentation networks are trained on train aug taken
from VOC 2012. For MIL-ILP-* [15], the segmentation
network is trained with 700K images for 21 classes taken
from ILSVRC 2013. Image-level prior (ILP), and some
smooth priors, i.e., superpixels (-sppxl), BING [45] boxes
(-bb) and MCG [46] segmentations (-seg), are utilized
for post-processing to further boost the segmentation
results. The proposed framework is learned on 50K (40K
simple images from Flickr-Clean and 10K complex
images from PASCAL VOC) images, which are much
fewer compared with those of [15] (700K). Surprisingly,
our result can make a significant improvement compared
with the best result of [15] (49.8% vs. 42.0%). It can
be observed that SEC [28] achieves the state-of-the-art
performance on this challenging task. The superiority of
SEC mainly benefits from using CRF-based constrain-
to-boundary loss for network optimizing. By only using
cross-entropy loss, the mIoU score reported in [28] is
45.4%. Based on simple images that are cheap to obtain,
our STC framework can easily achieve the competitive
performance (49.8% vs. 50.7%) by simply employing

cross-entropy loss.
Table 5 reports our results on PASCAL VOC 2012 test

set and compare them with the state-of-the-art weakly-
supervised methods. It can be observed that our re-
sult is competitive compared with the state-of-the-art
performance (51.2% vs. 51.7%). For EM-Adapt [14], the
segmentation network is learned based on train aug and
val sets. In [18], by adding additional supervision of ob-
ject size information, the performance can be improved
from 35.5% to 45.1%. We also compare our result with
several fully-supervised methods in Table 5. It can be
observed that we have made a significant improvement
to approach those results learned with fully supervised
schemes. In particular, our weakly-supervised frame-
work achieves similar results compared with SDS [9],
which is learned in a fully supervised manner. Besides,
we conduct additional experiments based on the semi-
supervised setting. The experimental results demon-
strate that STC can also boost the segmentation perfor-
mance when only a small number of fully-supervised
images is available. More detailed comparative analyses
are provided in the supplementary material.

Qualitative segmentation results obtained by the pro-
posed framework are shown in Figure 4. Some failure
cases are shown in the last row of Figure 4. In the
first case (row: 6, column: 1), the chair has a similar
appearance as sofa and the pixels of foreground segmen-
tation are totally predicted as sofa. In the second (row:
6, column: 2) and the third case (row: 6, column: 3), sofa
which occupies a large region of the image is wrongly
predicted as background. Including more samples with
clean background and various appearances for training
or using classification results for post-processing may
help solve these issues.

4.5 Discussion
The comparison between the proposed STC and [15] is a
little unfair. The deep neural network utilized in [15] is
based on OverFeat [47], in which there are 10 weight
layers, while in this paper, we utilize the VGG-16 model,
which has 16 weight layers, as the basic architecture of
the segmentation network. Both two models are pre-
trained on ImageNet and the VGG-16 model works
better than the OverFeat model on the ILSVRC [43]
classification task. However, Pinheiro et al. [15] utilized
700K images with image-level labels for training, which
is a much larger number compared with the training set
(50K) of ours. In addition, the performance of [15] highly
depends on complex post-processing. Without any post-
processing step, the performance of [15] is 17.8%, which
is far below the result of ours, i.e., 49.8%.
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TABLE 4
Comparison of weakly-supervised semantic segmentation methods on VOC 2012 val set.

Methods bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

Other state-of-the-art methods:
MIL-FCN [16] - - - - - - - - - - - - - - - - - - - - - 25.7
EM-Adapt [14] - - - - - - - - - - - - - - - - - - - - - 38.2
CCNN [18] 65.9 23.8 17.6 22.8 19.4 36.2 47.3 46.9 47.0 16.3 36.1 22.2 43.2 33.7 44.9 39.8 29.9 33.4 22.2 38.8 36.3 34.5
MIL* [15] 37.0 10.4 12.4 10.8 5.3 5.7 25.2 21.1 25.2 4.8 21.5 8.6 29.1 25.1 23.6 25.5 12.0 28.4 8.9 22.0 11.6 17.8
MIL-ILP* [15] 73.2 25.4 18.2 22.7 21.5 28.6 39.5 44.7 46.6 11.9 40.4 11.8 45.6 40.1 35.5 35.2 20.8 41.7 17.0 34.7 30.4 32.6
MIL-ILP-sppxl* [15] 77.2 37.3 18.4 25.4 28.2 31.9 41.6 48.1 50.7 12.7 45.7 14.6 50.9 44.1 39.2 37.9 28.3 44.0 19.6 37.6 35.0 36.6
MIL-ILP-bb* [15] 78.6 46.9 18.6 27.9 30.7 38.4 44.0 49.6 49.8 11.6 44.7 14.6 50.4 44.7 40.8 38.5 26.0 45.0 20.5 36.9 34.8 37.8
MIL-ILP-seg* [15] 79.6 50.2 21.6 40.6 34.9 40.5 45.9 51.5 60.6 12.6 51.2 11.6 56.8 52.9 44.8 42.7 31.2 55.4 21.5 38.8 36.9 42.0
DCSM [26] 76.7 45.1 24.6 40.8 23.0 34.8 61.0 51.9 52.4 15.5 45.9 32.7 54.9 48.6 57.4 51.8 38.2 55.4 32.2 42.6 39.6 44.1
BFBP [27] 79.2 60.1 20.4 50.7 41.2 46.3 62.6 49.2 62.3 13.3 49.7 38.1 58.4 49.0 57.0 48.2 27.8 55.1 29.6 54.6 26.6 46.6
SEC [28] 82.4 62.9 26.4 61.6 27.6 38.1 66.6 62.7 75.2 22.1 53.5 28.3 65.8 57.8 62 3 52.5 32.5 62.6 32.1 45.4 45.3 50.7

Ours:
STC* 84.5 68.0 19.5 60.5 42.5 44.8 68.4 64.0 64.8 14.5 52.0 22.8 58.0 55.3 57.8 60.5 40.6 56.7 23.0 57.1 31.2 49.8

TABLE 5
Comparison of fully- and weakly- supervised semantic segmentation methods on VOC 2012 test set.

Methods bkg plane bike bird boat bottle bus car cat chair cow table dog horse motor person plant sheep sofa train tv mIoU

Fully Supervised:
SDS [9] 86.3 63.3 25.7 63.0 39.8 59.2 70.9 61.4 54.9 16.8 45.0 48.2 50.5 51.0 57.7 63.3 31.8 58.7 31.2 55.7 48.5 51.6
FCN-8s [11] - 76.8 34.2 68.9 49.4 60.3 75.3 74.7 77.6 21.4 62.5 46.8 71.8 63.9 76.5 73.9 45.2 72.4 37.4 70.9 55.1 62.2
DeepLab-CRF [13] 92.1 78.4 33.1 78.2 55.6 65.3 81.3 75.5 78.6 25.3 69.2 52.7 75.2 69.0 79.1 77.6 54.7 78.3 45.1 73.3 56.2 66.4

Weakly Supervised (other state-of-the-art methods):
MIL-FCN [16] - - - - - - - - - - - - - - - - - - - - - 24.9
EM-Adapt [14] 76.3 37.1 21.9 41.6 26.1 38.5 50.8 44.9 48.9 16.7 40.8 29.4 47.1 45.8 54.8 28.2 30.0 44.0 29.2 34.3 46.0 39.6
CCNN [18] - 21.3 17.7 22.8 17.9 38.3 51.3 43.9 51.4 15.6 38.4 17.4 46.5 38.6 53.3 40.6 34.3 36.8 20.1 32.9 38.0 35.5
MIL-ILP-sppxl* [15] 74.7 38.8 19.8 27.5 21.7 32.8 40.0 50.1 47.1 7.2 44.8 15.8 49.4 47.3 36.6 36.4 24.3 44.5 21.0 31.5 41.3 35.8
MIL-ILP-bb* [15] 76.2 42.8 20.9 29.6 25.9 38.5 40.6 51.7 49.0 9.1 43.5 16.2 50.1 46.0 35.8 38.0 22.1 44.5 22.4 30.8 43.0 37.0
MIL-ILP-seg* [15] 78.7 48.0 21.2 31.1 28.4 35.1 51.4 55.5 52.8 7.8 56.2 19.9 53.8 50.3 40.0 38.6 27.8 51.8 24.7 33.3 46.3 40.6
DCSM [26] 78.1 43.8 26.3 49.8 19.5 40.3 61.6 53.9 52.7 13.7 47.3 34.8 50.3 48.9 69.0 49.7 38.4 57.1 34.0 38.0 40.0 45.1
BFBP [27] 80.3 57.5 24.1 66.9 31.7 43.0 67.5 48.6 56.7 12.6 50.9 42.6 59.4 52.9 65.0 44.8 41.3 51.1 33.7 44.4 33.2 48.0
SEC [28] 83.5 56.4 28.5 64.1 23.6 46.5 70.6 58.5 71.3 23.2 54.0 28.0 68.1 62.1 70.0 55.0 38.4 58.0 39.9 38.4 48.3 51.7

Weakly Supervised (ours):
STC* 85.2 62.7 21.1 58.0 31.4 55.0 68.8 63.9 63.7 14.2 57.6 28.3 63.0 59.8 67.6 61.7 42.9 61.0 23.2 52.4 33.1 51.2
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