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Abstract
Driven by recent vision and graphics applications such

as image segmentation and object recognition, assigning
pixel-accurate saliency values to uniformly highlight fore-
ground objects becomes increasingly critical. More often,
such fine-grained saliency detection is also desired to have
a fast runtime. Motivated by these, we propose a generic
and fast computational framework called PISA – Pixelwise
Image Saliency Aggregating complementary saliency cues
based on color and structure contrasts with spatial pri-
ors holistically. Overcoming the limitations of previous
methods often using homogeneous superpixel-based and
color contrast-only treatment, our PISA approach directly
performs saliency modeling for each individual pixel and
makes use of densely overlapping, feature-adaptive obser-
vations for saliency measure computation. We further im-
pose a spatial prior term on each of the two contrast mea-
sures, which constrains pixels rendered salient to be com-
pact and also centered in image domain. By fusing com-
plementary contrast measures in such a pixelwise adaptive
manner, the detection effectiveness is significantly boosted.
Without requiring reliable region segmentation or post-
relaxation, PISA exploits an efficient edge-aware image rep-
resentation and filtering technique and produces spatially
coherent yet detail-preserving saliency maps. Extensive ex-
periments on three public datasets demonstrate PISA’s su-
perior detection accuracy and competitive runtime speed
over the state-of-the-arts approaches.

1. Introduction
Saliency detection in natural images is an important task

useful for many computer vision applications. Given an in-
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put image, the general objective is to automatically detect

salient objects and assign consistently high saliency values

to them, while the background part should take on zero val-

ues ideally. Though quite challenging, being able to sep-

arate salient objects from the background is a very useful

tool for many computer vision and graphics applications

such as object recognition [22], content-aware image retar-

geting [23], and image classification [20]. Driven by these

recent applications, saliency detection has also evolved to

aim at assigning pixel-accurate saliency values to uniformly

highlight foreground objects, going far beyond its early goal

of mimicing human eye fixation. More often, such fine-

grained saliency detection is also desired to have a fast run-

time. This paper focuses on addressing these challenges

increasingly pressed by recent application requirements.

Without any user intervention, inferring (pixel-accurate)

saliency assignment for diversified natural images is a

highly ill-posed problem, because of the lack of a rigor-

ous definition of saliency itself. To tackle this problem, a

myriad of computational models [21, 11, 7, 24, 8, 15, 4]

have been proposed using various principles or priors rang-

ing from high-level biological vision [12] to low-level im-

age properties [10, 8]. Focusing on bottom-up, low-level

saliency computational models in this paper, we can clas-

sify most of the previous methods into two basic classes

depending on the way the saliency cues are defined: con-
trast priors and background priors [24]. Contrast priors

have been widely adopted in many previous methods to

model the appearance contrast between foreground objects

and the background. Various appearance contrast measures

can be computed either in a local neighborhood of a pixel

or patch [11, 15] or from an entire image context glob-

ally [5, 1]. Typical limitations of the existing methods

based on contrast priors include attenuated object interior

e.g. Fig. 1(e) and ambiguous saliency detection for images

with rich structures in foreground or/and background e.g.

Fig. 1(f-h). Complementing the prime role of contrast priors

in this research topic, background priors [24] have been pro-

posed recently to exploit two interesting priors about back-

grounds – boundary and connectivity priors. This approach
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(a) Original (b) Color (c) Structure (d) PISA (e) CA[7] (f) HC[5] (g) RC[5] (h) SF[19]

Figure 1. Saliency map comparisons on (a) four example images detected by (d) our PISA method and (e-h) a few representative contrast

prior based methods modeling only the color contrast [5, 19, 7]. (b/c) Raw saliency detection result using the color/structure contrast

measure alone in the proposed PISA framework.

demonstrates the detection effectivenesses from a new per-

spective. However, this method fails when objects touch the

image boundary to quite some extent, or when connectivity

assumptions are invalid in the presence of complex back-

grounds or textured scenes. For instance, the maple leave

case in Fig. 1 poses a challenge for this method [24].

Inspired by the insights and lessons from the significant

amount of previous work, we target studying this challeng-

ing saliency detection problem in a more holistic manner.

We also keep computational efficiency as one of important

desiderata. More specifically, this work is primarily moti-

vated by three key principles or priors supported by psycho-

logical evidence and observations of natural images:

Complementary appearance contrast in a global context.
Though the color contrast is a popular saliency cue used

dominantly in many methods [5, 19, 14], other influential

factors do exist, which make certain pixels or regions out-

standing. For instance, they can have unique appearance

features in edge/texture patterns [11].

Attention cue-adaptive receptive field and region-based
non-parametric feature modeling. It is known from per-

ceptual research [6] that different local receptive fields are

associated with different kinds of visual stimuli, so local

analysis regions where saliency cues are extracted should

be adapted to match specific image attributes. In addition,

using a non-parametric distribution to summarize the ex-

tracted features tends to be more robust than relying on just

a few quantities computed for a pixel or region [7, 15].

Spatial priors and edge-preserving spatial coherence.
Previous works have used the spatial variance to further

modulate saliency values computed from a single visual

attribute (e.g. color [19, 5]). This spatial prior can also

be generalized to consider the spatial distribution of differ-

ent saliency cues, including also other useful location pri-

ors such as the center prior [15]. Another observation is

that pixel-accurate saliency maps are often spatially coher-

ent with the discontinuities well aligned to image edges.

Based on these principles, we propose a generic and fast

computational framework called PISA – Pixelwise Image

Saliency Aggregating complementary saliency cues based

on color and structure contrasts with spatial priors holis-

tically. Overcoming the limitations of previous methods,

PISA advances in following aspects: (i) Instead of using ho-

mogeneous superpixel-based and color contrast-only treat-

ment, PISA directly performs saliency modeling for each

individual pixel on two complementary measures (color and

structure contrast) and makes use of densely overlapping,

feature-adaptive ovservations for saliency measure compu-

tation. (ii) We further impose a spatial prior term on each

of the two contrast measures, which constrains pixels ren-

dered salient to be compact and also centered in image do-

main. By fusing complementary contrast measures in such

a pixelwise adaptive manner, the detection effectiveness is

significantly boosted. (iii) Without requiring reliable re-

gion segmentation and then post-relaxation for pixelwise

saliency assignment, PISA exploits an efficient edge-aware

image representation and filtering technique [16] to pro-

duce spatially coherent yet edge-preserving saliency maps.

Fig. 1 shows a few motivating examples that highlight the

advantage of our PISA method, compared with some lead-
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ing methods [5, 19, 7].

To balance the accuracy-efficiency trade-off, we also

propose a faster version called F-PISA. It first performs

saliency computation for a feature-driven, subsampled im-

age grid, and then uses an adaptive upsampling scheme with

the color image as the guidance signal to recover a full-

resolution saliency map. Compared to segmentation-based

saliency methods [19], our F-PISA method reduces the

computational complexity similarly by considering a coarse

image grid, while having the advantage of utilizing im-

age structural information for saliency reasoning over [19].

Our extensive experiments on three public datasets demon-

strate the superior detection accuracy and competitive run-

time speed of our approach over the state-of-the-arts.

2. Overview of the PISA Framework
As motivated in Sect. 1, we propose PISA in this pa-

per as a computational framework for effective and efficient

pixel-accurate saliency detection, aggregating complemen-

tary saliency cues based on color and structure contrasts

with spatial priors holistically. In the framework, a saliency

measure representing the structure contrast is proposed in

addition to the well exploited color-based measure. These

two measures complement each other in detecting saliency

cues from different perspectives, and are combined together

to give the initial saliency value. More formally, given

an image I , we compute the initial saliency value S̃(p)
for each pixel p by aggregating the two contrast measures

{U c(p), Ug(p)} with spatial priors {Dc(p), Dg(p)}, giving

a general PISA framework as:

S̃(p) = U c(p) ·Dc(p) + Ug(p) ·Dg(p) . (1)

Four terms are computed for pixel p in (1), which are:

Appearance contrast terms {U c(p), Ug(p)}. They are

evaluated based on the general contrast prior principle that

rare or infrequent visual features in a global image context

give rise to high salient values. U c(p) denotes the rarity of

pixel p with respect to the entire image in the color feature

space (Sect. 3.1). Ug(p) computes the uniqueness of pixel

p in the orientation-magnitude (OM) feature space for all

the pixels (Sect. 3.2). Rather than describing the features

for pixel p by a single or just a few quantities, we use non-

parametric histogram distributions to capture and represent

both the color and OM features within an appropriate pixel-

wise adaptive neighborhood around p.

Spatial prior terms {Dc(p), Dg(p)}. They are evalu-

ated based on the generally valid spatial prior that salient

pixels tend to have a compact spatial distribution or small

spatial variance in image domain, while background can

distribute quite widely over the entire image. Therefore,

a pixel p should not be rendered salient, if its visually simi-

lar peers have a high spatial variance. It is also often useful

to integrate the center prior in this saliency reweighting pro-

cess. We use Dc(p) and Dg(p) to denote such an integrative

spatial reweighting term imposed on the color and structure

contrast measure contrast, respectively (Sect. 3.3).

By fusing the two complementary saliency cues in such

a pixelwise adaptive manner, the saliency detection effec-

tiveness is significantly boosted. Though the initial saliency

estimation map S̃ is already good for some applications, it

is not pixel-accurate and still exhibits many spurious noises

or unsmooth saliency values even within a small neighbor-

hood. We hence employ an efficient edge-aware image fil-

tering [16] to smooth out S̃ to generate a filtered output S ,

which is spatially coherent and with the saliency discontinu-

ities aligned to the guidance color image edges (Sect. 3.4).

In fact, the aforementioned four terms and their aggre-

gation as in (1) present only one specific implementation of

our PISA framework, other kinds of saliency cues or priors

can be integrated as well. In this paper, we instead continue

introducing a faster method to evaluate S̃ , which is called

F-PISA (Sect. 3.5). F-PISA generates saliency maps at the

detection accuracy close to that achieved by PISA, but it

brings an over 18-times speedup over PISA.

3. PISA Algorithm
3.1. Color-Based Contrast Term

Directly computing pixelwise color contrast in a global

image context is computationally expensive, as its complex-

ity is O(N2) with N being the number of pixels in I . Re-

cently, Cheng et al. [5] proposed an effective and efficient

color-based contrast measure HC. They assume that if the

spatial correlation is not accounted for, pixels with the simi-

lar appearance should be assigned the same saliency values.

However, their strategy of defining the contrast on the color

value of a single pixel individually is sensitive to noise, and

it is not extensible for measuring additional attribute. In

this work, we compute the color contrast based on non-

parametric color distributions extracted from a locally adap-

tive homogeneous region [16]. As pixels within the adaptive

region share similar appearances with the central pixel, they

provide a more robust color-based measure. Different from

those methods [19, 5] that count on image oversegmenta-

tion to delineate compact and boundary-preserving regions,

our method allows topologically more flexible region con-

struction for each pixel. Moreover, taking segments as the

atomic units for saliency evaluation does not lend itself to

easy integration of other appearance contrast measures.

For each pixel p, we first construct a shape-adaptive ob-

servation region Ωp efficiently using the CLMF method [16]

(see Fig. 2). A color histogram hc(p) for pixel p is then built

from the pixels q ∈ Ωp covered in the localized homoge-

neous region. Using hc(p) rather than Ip is more consistent

with the psychological evidence on human eyes’ receptive

field on homogeneous regions. Using the Lab color space,

we quantize each color channel uniformly into 12 bins, so

the color histogram hc(p) is a 36-d descriptor (see Fig. 2).
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Figure 2. The color descriptor is extracted from the pixel-adaptive

region Ωp/p′ (top) and the orientation-magnitude (OM) descriptor

captures the structures within a local window Wp/p′ (bottom).

Next, we cluster pixels that share similar color his-

tograms together using kmeans. The whole color feature

space for the input image I is quantized into Kc clusters,

indexed by {φ1, . . . , φKc}. As a result, we use the rarity of

color clusters as the proxy to evaluate the rarity or contrast

measure for pixels. Let φi denote the cluster that pixel p,

or more precisely hc(p), is assigned to. We estimate the

color-based contrast measure U c(p) for pixel p as,

U c(p) = U c(hc(p)) =

Kc∑
j=1

ωj‖hc(φi),h
c(φj)‖ . (2)

ωj uses the number of pixels belonging to the cluster φj as

a weight to emphasize the color contrast to bigger clusters.

hc(φi) is the average color histogram of the cluster φi.

Feature space quantization may cause undesirable arti-

facts. Similar color histograms can sometimes be quantized

into different clusters. To tackle this problem, we have ap-

plied two schemes. First, we slightly modify kmeans in its

distance calculation when clustering. In addition to the L2

distance between the two histograms, we add the color dis-

similarity between the center pixels into the distance mea-

surement. Second, we adopt a linearly-varying smoothing

scheme [5] to refine the quantization-based saliency mea-

surement. The saliency value of each cluster is replaced by

the weighted average of the saliency values of visually sim-

ilar clusters. Larger weights are assigned to those clusters

which share more similar color features. Such a refinement

smooths the saliency assignment to each pixel.

The cluster number Kc of the color feature space is adap-

tively decided with regard to image content. Specifically,

we choose the most frequently occurring color features by

ensuring they cover 95% of histogram distributions of all

pixels in the input image I . Kc typically takes values in

the range of 10 to 256. This scheme is similar to that used

in [5], and it reduces the computational complexity from

O(N2) to O(N ·Kc)+O(K2
c ), where the second term cor-

responds to the complexity of kmeans.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

Figure 3. Main workflow of PISA. (a) Input image [1]. (b) Ground-

truth map. (c) PISA result S . (d) Color contrast measure Uc. (e)

Cluster assignment in the color feature space. (f) Spatial prior-

modulated color measure Uc ·Dc. (g) Structure contrast measure

Ug . (h) Cluster assignment in the OM feature space. (i) Spatial

prior-modulated structure contrast measure Ug ·Dg .

3.2. Structure-Based Contrast Term
As motivated in Fig. 1(second and third rows), using

color information only is not adequate to discriminatively

describe and detect salient objects or parts of them from

the background. Even in the event that the color unique-

ness measurement gives a good saliency value to fore-

ground objects, other complementary contrast measures can

still be helpful in reinforcing the saliency assignment e.g.

Fig. 1(fourth row). Based on the PISA framework, we pro-

pose a structure-based descriptor to complement the color

descriptor here. The proposed structure descriptor models

the image gradient distribution for pixel p by a histogram

hg(p) in a rectangular region Wp. hg(p) measures the oc-

currence frequency of a concatenated vector consisting of

the gradient orientation component and magnitude compo-

nent. Similarly, we quantize both components into 8 bins,

and call the resulting feature space the OM space. It is clear

that a point in such a OM space is of 16-d (see Fig. 2). In

this paper, we fix the local window Wp to 9 × 9, which is

comparable to Ωp used for the color histogram extraction.

As will be shown later, we find that our OM structure de-

scriptor, though simple, is more effective and reliable than

other gradient features e.g., Gabor [17] and LBP [9] in the

image saliency detection task.

Similar to the color contrast measure, kmeans is utilized

to partition the OM feature space into Kg clusters indexed

by {ϕ1, . . . , ϕKg}. The structure contrast measure for pixel

p is equivalent to measuring ϕi that p is grouped to, as,

Ug(p) = Ug(hg(p)) =

Kg∑
j=1

ωj‖hg(ϕi),h
g(ϕj)‖ , (3)

ωj is the weight stressing the contrast against bigger clus-
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Figure 4. Precision-recall curves (top) and precision-recall bars with F-measure (bottom) for comparing previous works with the proposed

PISA and F-PISA methods on the three datasets from left to right: ASD [1], SOD [18] and SED1 [2], respectively. PISA performs

consistently better than the other methods. The visual comparisons of our methods and previous works are shown in Fig. 5.

ters. hg(ϕi) is the average OM histogram of the cluster ϕi.

Ug can suffer from the influence of side effects caused by

the brute-force feature space quantization process. Again,

we use the local smoothing scheme to alleviate these arti-

facts. The cluster number Kg is determined by representing

the most frequent OM vectors and accounting for at least

95% pixels. We observe Kg typically varies from 10 to 40.

3.3. Spatial Priors
Motivated by recent works [3, 19, 7, 15], we impose

a spatial prior term on each of the two contrast measures

{U c(p), Ug(p)}, constraining pixels rendered salient to be

compact and centered in image domain based on intra-

cluster distance which is more compelling than the use of

simpler center-surround structures. For each pixel p, we

evaluate the initial spatial prior term D̃c/g(p) based on the

cluster φi/ϕi that contains p from two aspects: 1) compact-

ness of salient objects defined by the intra-cluster spatial

variance, and 2) preference to the image center. Combining

these two criteria, we compute D̃c/g(p) as follows,

D̃c/g(p) = 1/ni

ni∑
l=1

(‖xl, μi‖+ λ · ‖xl, c‖) . (4)

ni is the number of pixels which are contained in the same

color (or OM) cluster φi (or ϕi) with p. The mean spatial

position of the cluster φi/ϕi is defined by μi =
1
ni

∑ni

l=1 xl.

c is the image center position. We use a user-specified pa-

rameter λ to control the relative weight of the center prior.

Since clusters exhibiting higher spatial variance or far-

ther from the image center are quite unlikely to be salient,

we compute the final spatial prior term Dc/g(p) for pixel p
using a threshold T as,

Dc/g(p) =

{
exp(−κ · D̃c/g(p)) D̃c/g(p) ≤ T
0 otherwise .

(5)

κ controls the fall-off rate of the exponential function.

By now we have all the four terms necessary for comput-

ing S̃(p) in (1) defined. Fig. 3 illustrates these dense maps

visually and their respective effects to saliency assignment.

3.4. Saliency Coherence
Based on (1), an initial saliency estimation map S̃ is

generated. Though good for certain applications, this ini-

tial saliency map does not consider the spatial coherence in

its evaluation, resulting in spurious noises and non-uniform

saliency assignment even for pixels close to each other.

We therefore employ the efficient CLMF filtering tech-

nique [16] here to smooth out S̃ and produce a spatially

coherent yet discontinuity-preserving saliency map S. In

fact, the same cross-based data structure already computed

when evaluating U c(p) can be reused here. This refinement

step takes the following form:

S(p) =
∑
q∈Ωp

ωpqS̃(q) . (6)

Ωp is the shape-adaptive support region defined for pixel p
in Sect. 3.1. ωpq is the normalized support weight [16].

3.5. F-PISA: Fast Implementation
Salient object detection is often applied as a pre-

processing technique for subsequent applications. To op-
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(a) SRC (b) LC[25] (c) SR[10] (d) FT[1] (e) CA[7] (f) HC[5] (g) RC[5] (h) SF[19] (i) PISA (j) F-PISA (k) GT

Figure 5. Visual comparisons between existing methods and our PISA and F-PISA methods on all the three datasets: ASD [1] (top three

rows), SOD [18] (middle three rows) and SED1 [2] (bottom three rows).

timize accuracy-complexity trade-off, we present a faster

version F-PISA. Instead of processing the full image grid,

we perform a gradient-driven subsampling of the input im-

age I , so the saliency computation in (1) is only applied to

this set of selected pixels. More specifically, for a given

image I , we pick the pixel with the largest gradient mag-

nitude from a 3 × 3 rectangular patch on the regular image

grid to form a sparse image I l. The two proposed contrast

saliency measures are then computed for I l, giving a sparse

saliency map S̃ l. To obtain a full-sized saliency map S, we

propagate the saliency values among the pixels within the

same cross support region [16], as they share the similar ap-

pearance. This propagation scheme resembles the principle

of joint bilateral upsampling [13], using a high-resolution

color image I as a guidance to upsample a sparsely-valued

solution map S̃ l. It can produce a smoothly varying dense

saliency map S without blurring the edges of salient objects.

Thus given a pixel p ∈ I , its saliency value is obtained as,

S(p) = 1

m

m∑
i=1

αpqi S̃l(qi) , (7)

where qi ∈ I l and its cross support region Ωqi contains p,

namely p ∈ Ωqi . m is the total number of such qi pixels.

αpqi = exp(−‖xp,xqi
‖

σ ), which gives higher weights to the

support pixels with a shorter spatial distance to pixel p.

4. Experiments
4.1. Evaluation on Benchmarks

We evaluate the proposed algorithm for saliency detec-

tion on three public datasets which have been used as stan-

dard benchmarks in [3]. The ASD dataset [1] contains

1,000 images, which has been widely used by recent meth-

ods [5, 19, 1]. The SOD dataset [18] is more challeng-

ing, including complex objects and scenes, and we obtain

the groundtruth for this dataset from the authors of the

work [24]. The SED1 dataset [2] is exploited recently, and

we consider a pixel salient if it is annotated as salient by

all subjects. For all the three datasets, we use the following

211821182120
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Figure 6. Extensive study for different saliency measures (CC, SC) in our method. The experiments are executed on all the three datasets,

from left to right: ASD [1], SOD [18] and SED1 [2]. We observe the advantage of aggregating the two complementary contrast measures.

CA [7] HC [5] RC [5] SF [19] PISA F-PISA

42.9 0.011 0.115 0.125 0.650 0.035

Table 1. Comparisons of the average runtime (seconds per image)

on the ASD [1] dataset. CA [7] uses the Matlab implementation,

while the rest are implemented in C++.

parameter settings {λ, κ, σ} = {1.0, 0.01, 0.17}. The only

exception is T , we set T = 25, 40, 30 for ASD, SOD and

SED1 respectively, as the spatial distributions of the fore-

ground objects in the three datasets are different. We also

set τ = 30, L = 4 for the adopted CLMF technique.

We compare our methods on all datasets with several

state-of-the-art works: Spatial-temporal Cues (LC [25]),

Spectral Residual saliency (SR [10]), Frequency-Tuned

saliency (FT [1]), Context-Aware saliency (CA [7]),

Histogram-based Contrast (HC [5]), Region-based Contrast

(RC [5]) and Saliency Filter (SF [19]). Results of LC,

SR, FT, HC, RC are generated by using the codes provided

by [5], and we adopt the public implementations from the

original authors for CA and SF.

We use (P)precision-(R)recall curves and F0.3 metric to

evaluate the detection performance similar as [1, 5, 19]. The

results of PR curves and precision, recall and F-measure

are shown in the first and second row of Fig. 4 respec-

tively. Based on the results, our PISA method achieves

state-of-the-art accuracy on all the three datasets, demon-

strating the advantages consistently. Fig. 5 shows the visual

comparisons between our methods against other competing

approaches. Our methods consistently perform better than

the others on a variety of challenging images.

The average runtimes of our approaches and competing

methods on the ASD [1] dataset are reported in Table 1. The

experiments are carried out on an Intel Core i5 3.0GHz with

2GB RAM. Our fast implementation F-PISA significantly

improves the efficiency (i.e. 18 times faster than PISA),

while keeping good detection effectiveness (see Fig. 4, 5).

4.2. Component Analysis
We further analyze the effectiveness of the two com-

plementary measures, i.e. color-based contrast (CC) and

structure-based contrast (SC). The quantitative results in

Fig. 6 demonstrate the requisite of aggregating the two mea-

(a) (b) (c) (d)
Figure 7. Visual comparisons. (a) Input image. (b) Spatial prior-

modulated color measure. (c) Spatial prior-modulated structure

measure. (d) PISA result.
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Figure 8. Empirical study on two common structure features Gabor

and LBP for replacing our OM feature in the PISA framework.

Our OM descriptor performs better on the ASD [1] dataset.

sures. We can observe that the aggregated saliency detec-

tion achieves superior performance, as CC and SC capture

saliency from different aspects, verified by the visual results

in Fig. 7. It is worth noting that we obtain favorable results

on the images in the second and third rows in Fig. 1 and the

fourth row in Fig. 5, which are exhibited in [24] and [5] as

failure cases. They serve as good evidences to advocate our

choice in fusing complementary saliency cues.

We also explored other commonly used features Ga-

bor [17] and LBP [9] to substitute OM for capturing struc-

ture information. For all the features, we choose their best
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(a) (c)
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Figure 9. An example case challenging PISA. (a) Input image [1].

(b) Color contrast measure. (c) Spatial prior-modulated color mea-

sure. (d) Structure contrast measure. (e) Spatial prior-modulated

structure measure. (f) PISA result.

results for comparison by tuning their quantizations. The

dimensions for Gabor and LBP features are 72 and 256, re-

spectively. The PR-curves of the experiments evaluated on

the ASD dataset [1] are shown in Fig. 8. The OM descrip-

tor outperforms the others. Meanwhile, under the proposed

computational model, our OM descripor also shows higher

efficiency than Gabor and LBP due to its small dimension.

4.3. Limitations
In Fig. 9, we present an unsatisfying result generated by

PISA. As our approach uses the spatial priors, it has prob-

lems when such priors are invalid. For example, if the center

prior does not hold, the background regions located near the

image center cannot be effectively suppressed in saliency

evaluation (see Fig. 9 (e)). By adjusting the contribution

of this prior through tuning λ, we can alleviate the influ-

ence of this prior. Another limitation stems from the addi-

tive form of our formulation. For any background regions

that have been assigned high saliency values from either of

the contrast cues after the modulation of the spatial priors,

they remain salient in the final saliency map (see Fig. 9 (f)).

This problem could be tackled by incorporating high-level

knowledge to adjust the confidence of two measures in the

formulation.
5. Conclusion

We have presented a generic framework for pixelwise

saliency detection via aggregating two complementary ap-

pearance contrast measures (color and structure) with spa-

tial priors. We extensively evaluate our methods on three

public datasets by comparing with previous works. Exper-

imental results demonstrate the advantages of the proposed

PISA methods in detection accuracy consistency and speed.

For future work, we plan to incorporate high-level knowl-

edge, which could be beneficial to handle more challenging

cases and investigate other kinds of saliency cues or priors

to be embedded into the PISA framework.

References
[1] R. Achanta, S. Hemami, F. Estrada, and S. Süsstrunk.
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