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ABSTRACT

Current methods for image captioning tend to generate sen-

tences that are generally overly rigid and composed of some

most frequent words/phrases, leading to inaccurate and indis-

tinguishable descriptions. This is primarily due to the un-

even word distribution of the ground truth captions that en-

courages to generate high frequent words/phrases while sup-

pressing the less frequent but more concrete ones (see Figure

1). In this work, we propose a new Content Sensitive and

Global Discriminative objective, which is formulated as two

constraints on top of a reference model to facilitate generat-

ing concrete and discriminative image captions. More specif-

ically, the content sensitive constraint is designed to place

greater focus on the less frequent and more concrete word-

s/phrases, thus facilitating the generation of sentences that

better describe visual details of the given images. To fur-

ther improve the discriminability, the global discriminative

constraint is designed to pull the generated sentence to bet-

ter discern the corresponding image from others. We evaluate

the proposed method on the widely used MS-COCO dataset,

where it achieves superior performance over existing compet-

ing methods. We also conduct self-retrieval experiments to

demonstrate the discriminability of the proposed method.

Index Terms— Concrete image captioning, Content

sensitive constraint, Global discriminative constraint, Self-

retrieval

1. INTRODUCTION

Image captioning, i.e., automatically generating descriptive

sentences of images, has received increasing attention in the

fields of vision and language in recent years. Compared with

other image semantic analysis tasks such as image tagging or
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Fig. 1. An example of how our proposed method aids gener-

ating more concrete and accurate description.

object detection, it provides a more comprehensive and deep-

er understanding of the images and benefits a wide range of

applications including image retrieval/classification [1], im-

age editing, and scene graph generation [2].

With the advancement of deep learning, existing methods

[3, 4] generally adopt neural network based encoder-decoder

architecture [5] and resort to reinforcement learning technol-

ogy [6, 7] for optimization to address this task. Despite ac-

knowledged successes, the captions generated by these meth-

ods [4, 8] are often overly rigid and tend to replicate the

words/phrases that frequently occur in the training set; thus,

these captions can hardly accurately and concretely describe

the given images. This is primarily due to the uneven word

distribution that encourages to generate high frequent word-

s/phrases while suppressing the less frequent but more con-

crete ones. For example, given a scene as shown in Figure 1,

existing methods are inclined to generate the common phrase

“a man”. However, the less frequent phrase “an old man” is

a more accurate and concrete choice. Another reason is that

some images may share similar contents and these methods

tend to focus more on these contents, thus leading to similar

or even exactly the same descriptions. Recently, some works

have resorted to adversarial learning [9, 10] or ranking loss

[11] to enable generating diverse and discriminative captions.

However, these methods focus more on diversity and may not

1306

2019 IEEE International Conference on Multimedia and Expo (ICME)

978-1-5386-9552-4/19/$31.00 ©2019 IEEE
DOI 10.1109/ICME.2019.00227

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 17:25:00 UTC from IEEE Xplore.  Restrictions apply. 



well balance the diversity and accuracy.

In this work, we design a novel Content Sensitive and

Global Discriminative objective for training the captioning

model. Specifically, we first design a content sensitive con-

straint that pays more attention to the more concrete word-

s/phrases. As suggested in [12], the concrete words/phrases

generally occur less frequently, because they merely describe

some distinct and detailed contents of some specific images.

Thus, we implement this constraint by assigning higher re-

wards to the less frequent words. This can well address the

uneven word distribution issue, and help to capture more con-

crete visual details of the images. On the other hand, we

devise the global discriminative constraint to encourage the

generated caption to better describe the corresponding image

than other similar ones. To this, we adopt the ranking loss

that pulls the generated caption to match the corresponding

image while pushing the caption away from other similar im-

ages. The two constraints are built on top of a reference model

to facilitate generating discriminative captions and simultane-

ously improving the accuracy.

The main contributions of this work are threefolds: 1) We

design a new content sensitive and global discriminative ob-

jective for the generated caption, which encourages generat-

ing more concrete and discriminative image descriptions. 2)

We conduct extensive experiments on the widely used MS-

COCO dataset and set a new state-of-the-art on this dataset.

In particular, our method improves the CIDEr by 0.7 on the

Karpathy test split and by 2.1 on the online test server com-

pared with the previous best-performing methods. 3) We also

perform self-retrieval experiments [13] and demonstrate that

our proposed method exhibits superior discriminability over

existing leading and baseline methods.

2. RELATED WORK

Recent advances in image captioning have benefited from the

encoder-decoder pipeline that adopted CNNs to encode se-

mantic image representation and RNNs to decode the rep-

resentation into a descriptive sentence [5, 14]. Early works

[14] introduced Maximum likelihood estimation (MLE) loss

that maximized the likelihood of the ground-truth word at

timestep t to optimize the captioning models, but they suf-

fered from exposure bias problem, leading to poor captioning

performance [15]. To address this issues, recent works [15, 3]

introduced the RL technique for sequence level training.

To address these issue, recent works [15, 3] introduced the

reinforcement learning technique for sequence level training.

For example, [15] defined the sequence level metric used at

test time, such as BLEU [16] or ROUGE [17], thus leading to

notable performance improvement during testing. Although

these methods achieved impressive successes in the past sev-

eral years, they tend to generate overly rigid sentences that

are usually composed of the most frequent words/phrases,

leading to non-concrete and indistinguishable descriptions.

Most recently, since diversity and discriminability were also

considered as important properties for the generated captions

[10, 11], a series of efforts were dedicated to exploring gener-

ating diverse and discriminative descriptions. To achieve this,

recent methods resorted to adversarial learning [10, 9] to gen-

erate humanoid and natural captions or adopted the contrac-

tive objectives [11, 13] to increase the discriminability of the

generated captions. However, these methods suffered from a

serious performance drop on metrics such as CIDEr [12] as

they primarily focused on diversity and discriminability.

3. METHODOLOGY

Currently, advanced and typical image captioning method-

s adopt the encoder-decoder pipeline and generally resort to

reinforcement learning (RL) technology for optimization. In

this work, we also utilize this encoder-decoder pipeline [14]

as our reference model. During training, the sequential word

generation process is formulated as a sequential decision-

making problem, and the RL technology is introduced to learn

a policy network for decision making. Currently, the reward

is defined based on the CIDEr score [12] because it can well

measure the quality of the generated captions. However, this

reward is susceptible to the uneven word distribution that en-

courages generating highly frequent words/phrases while sup-

pressing the less frequent but more concrete ones.

To address the issues, we develop a content sensitive and

global discriminative objective, which is formulated as two

constraints on top of the above-described reference model, as

shown in Figure 2. Specifically, rather than treating all words

equally, the content sensitive constraint provides higher re-

wards for the less frequent but concrete words via word-level

reward reweighting mechanism. In this way, the model may

pay more attention to these words and thus alleviate the strong

bias of the generated words/phrases. To encourage the gen-

erated captions to well describe the corresponding images,

we further develop the global discriminative constraint that

pulls the generated caption to match the corresponding image

while pushing the caption away from other similar images vi-

a a ranking loss. The two constraints are formulated as two

additional rewards, and thus the whole reward can be defined

as

R = RC +RCS +RGD, (1)

where RC is the original reward defined based on the CIDEr

score, RCS and RGD are the two rewards defined according

to the content sensitive and global discriminative constraints,

respectively. We will introduce these two rewards in detail in

the following.

3.1. Content Sensitive Constraint

The content sensitive constraint is expected to assign high-

er rewards to the words/phrases that concretely describe the
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Fig. 2. An illustration of the proposed objective. It consists of a content sensitive constraint and a global discriminative

constraint that are formulated on top of a reference model to encourage generating more accurate and concrete descriptions.

visual contents of given images. We find that these word-

s/phrases generally occur less frequently in the dataset be-

cause they describe the distinct and detailed contents of some

specific images. Thus, we simply assign higher rewards to

these less frequent words/phrases. To this end, we introduce

the Term Frequency Inverse Document Frequency (TF-IDF)

score to compute the frequency of each n-gram phrase and

adopt a two-stage mechanism to select the less frequent but

concrete words. This mechanism first selects the less frequen-

t n-gram phrases according to the computed TF-IDF scores,

and then based on these selected phrases, it further adopts the

1-gram score to filter out the frequently occurring and com-

mon words, such as “a”, “on”, etc. We describe this the selec-

tion mechanism in detail in the following.

In the first stage, we follow [12] to compute a TF-IDF

weight for each n-gram phrase wk in the candidate sentence

c:

gωk
(c) =

nωk
(c)∑

ω∈Ω nω(c)
log(

|I|∑
Ip∈I min(1,

∑
q nωk

(spq))
),

(2)

where Ω is the vocabulary of all n-grams and I is the set of all

images in the dataset. nω(c) denotes the number of times the

n-gram ω occurs in the reference sentence c. spq is the q-th

sentence for image Ip. The TF-IDF weight gωk
(c) reflects the

saliency of the n-gram ωk in the dataset, and a higher weight

indicates that this n-gram occurs less frequently across all im-

ages in the dataset. Thus, we introduce a threshold λ to select

the n-gram phrases with TF-IDF weights higher than λ.

Note that not all the words in the selected n-gram phrases

are informative, particularly some articles and conjunction-

s. For example, “in the grass” is a less frequent n-gram, but

the article “the” and the preposition “in” occur frequently in

the dataset and are usually less relevant to the image content.

Thus, in the second stage, we utilize the TF-IDF scores to

exclude these 1-gram words using another threshold η. The

reward for the content sensitive constraint can be defined as

RCS(w
s
t ) =

∑

ws
t∈ωk

∑

j

min(gωk
(c), gωk

(sj)) · gωk
(sj)

‖gωk
(c)‖‖gωk

(sj)‖
if gωk

(c) > λ ; gws
t
(c) > η,

(3)

where gws
t
(c) denotes the 1-gram TF-IDF weight for the word

ws
t , and gωk

(sj) denotes the TF-IDF weight for the phrase ωk

in the reference sentence.

3.2. Global Discriminative Constraint

The global discriminative constraint is designed to pull the

generated captions to better match the corresponding image

than all the others. To this end, we first introduce a score

function s(I, c) that measures the similarity of an image I and

sentence c. We will introduce this score function in the Ex-

periment Setting section. Then, given an input image I and

its generated caption c̃, it is expected that the score s(I, c̃)
is higher than score s(Ia, c̃) for any image Ia taken from I.

Here, as it is impractical to generate captions for all images

during training, we approximate this target by enabling s(I, c̃)
to be higher than s(Ig, c̃), in which Ig is the image most sim-

ilar to I , formulated as

RH(Ig, c̃) = −[ε+ s(Ig, c̃)− s(I, c̃)]+, (4)

where [x]+ is a ramp function defined by max(0, x). To ob-

tain the most similar image Ig for each image I , we extract the

image feature using ResNet-101 [20] pretrained on the Ima-

geNet dataset and compute the Euclidean distance between

features of I and all other images. The image with the small-

est distance is selected as Ig . We can retrieve the most similar

image for each image before training; thus, this process does

not incur additional cost.

This reward can help improve the discriminability from a

global perspective, and it merely takes one reference image

(i.e., the most similar image) into consideration. Actually,

some other images exist that also share very similar content

with the given image. Taking these images into account can

further improve the discriminability. Inspired by [11], we in-

troduce another ranking target defined on the minibatch dur-

ing training:

RB(I, c̃) = −max
c′

[ε+ s(I, c′)− s(I, c̃)]+

−max
I′

[ε+ s(I ′, c̃)− s(I, c̃)]+,
(5)

where (I, c′) and (I ′, c̃) are mismatching pairs on minibatch.
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Model BLEU4 BLEU3 BLEU2 BLEU1 ROUGEL METEOR SPICE CIDEr

AdaAtt [18] 33.2 44.5 59.1 74.2 - 26.6 - 108.5
TD-ATT [19] 34.0 45.6 60.3 76.5 55.5 26.3 - 111.6

Rennie [3] 34.2 - - - 55.7 26.7 - 114.0
Stack-cap [4] 36.1 47.9 62.5 78.6 56.9 27.4 20.9 120.4
Up-down [8] 36.3 - - 79.8 56.9 27.7 21.4 120.1

Ours (TDA+CS-GD) 36.1 48.0 62.6 78.8 57.1 27.8 21.6 121.1
Table 1. Performance of our proposed and existing state-of-the-art methods on Karpathy test splits. We report our results that

use the more advanced TDA baseline. - indicates that the corresponding values are not available.

Finally, we simply sum the two term to obtain the global

discriminative reward:

RGD(I, Ig, c̃) = RH(Ig, c̃) +RB(I, c̃). (6)

3.3. Optimization

At the training stage, we aim to minimize the following neg-

ative expected reward, formulated as

L(θ) = −Ecs∼pθ
[

T∑

t=1

R(ws
t )], (7)

where cs = {ws
1, w

s
2, . . . , w

s
T } is a sentence sampled from the

model characterized by distribution pθ [3] and ws
t is the word

at time step t. In practice, we utilize a sample mechanism to

approximate the expectation and introduce the REINFORCE

algorithm [6] to compute the gradients, formulated as

∇L(θ) = −Ecs∼pθ
[

T∑

t=1

R(ws
t )∇log(pθ(w

s
t ))]

= − 1

M

M∑

m=1

T∑

t=1

R(ws
mt)∇log(pθ(w

s
mt)),

(8)

where M is the number of sampled sentences. The gradien-

t estimated by the above approximation is of high variance,

making the model extremely difficult to converge. To address

this issue, we follow [19] to introduce a reference sentence to

obtain an unbiased low-variance gradient estimation.

4. EXPERIMENTS

4.1. Experiment Settings

Datasets and Metrics. MS-COCO [23] is a widely used

benchmark for image captioning. This dataset contains

123,287 images, with each image annotating 5 sentences. In

this work, we follow the Karpathy split [24] that divides the

dataset into a training set of 113,287 images, a validation set

of 5,000 images, and a test set of 5,000 images for evaluation.

We also submit our results to the online MS-COCO test server

for fair comparisons with the published methods. We evalu-

ate our method, the baseline methods and other competitors

on widely used metrics including BLEU [16], CIDEr [12],

SPICE [25], ROUGEL [17], and METEOR [26].

Implementation details. We utilize two typical and ad-

vanced methods as our reference models, i.e., Show-Tell (ST)

Evaluation Metrics Diversity

BLEU4 ROUGEL METEORSPICE CIDEr Number Ave.Len.

ST 32.8 54.7 25.7 19.1 103.1 2713 9.20
ST+CS 33.1 55.0 25.8 19.0 107.2 2765 9.22
ST+GD 32.9 54.8 25.8 19.0 104.0 3040 9.28

ST+CS-GD 33.0 54.9 25.9 19.3 107.7 3140 9.29
TDA 36.1 57.1 27.5 21.0 117.0 3589 9.33

TDA+CS 36.3 57.2 27.8 21.4 121.0 3448 9.41
TDA+GD 36.1 57.1 27.6 21.3 117.9 3612 9.52

TDA+CS-GD 36.1 57.1 27.8 21.6 121.1 3797 9.56
Table 3. Performance of different baseline models on evalu-

ation metrics and diversity.

[5] and Top-Down Attention (TDA) [8]. Both baseline meth-

ods adopt the encoder-decoder pipeline, and we follow exist-

ing methods [3] to use ResNet-101 [20] for image encoding

and an LSTM with hidden state size of 512 for decoding cap-

tions. We exactly follow work [3] to train the models using

the MLE loss for the first 20 epochs and then switch to the

RL loss to continue training. During inference, we use beam

search with a size of 3 to decode the captions.

4.2. Comparison with State-of-the-art methods

We first present the comparison results on the Karpathy’s test

split [24] of MS-COCO in Table 1. As shown, the previous

best-performing methods are Stack-cap [4] and Up-down [8]

that obtain the CIDEr scores of 120.4 and 120.1, respective-

ly. Our method outperforms these competitors on nearly all

metrics, e.g., improving the CIDEr score to 121.1.

For more comprehensive comparisons, we also submit our

result to the online MS-COCO test server for evaluation, and

we present the results of our method and those of the pub-

lished leading competitors in Table 2. Our method still out-

performs these methods by a sizable margin, e.g., improving

the CIDEr (c5) score by 2.1 compared with the previous best

(i.e., Stack-cap [4]). Some methods also report the results of

ensembling several models [8, 3]. By simply ensembling four

models, our method achieves competitive performance com-

pared with existing state-of-the-art methods [8].

4.3. Ablation Study

As the proposed objective is formulated on existing reference

models (i.e., ST and TDA), we emphasize the comparison

with these models to demonstrate its effectiveness in Table

3. As shown, our method exhibits notable improvements on

all metrics, e.g., improving the CIDEr scores by 4.6 if using

the ST baseline and by 4.1 if using the TDA baseline. Mean-

while, our method also encourages generating more diverse

and concrete descriptions than these baselines. Specifically,
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BLEU1 BLEU2 BLEU3 BLEU4 METEOR ROUGE-L CIDEr

c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40 c5 c40

AdaAtt [18] 74.8 92.0 58.4 84.5 44.4 74.4 33.6 63.7 26.4 35.9 55.0 70.5 104.2 105.9
SPIDEr [21] 75.4 91.8 59.1 84.1 44.5 73.8 33.2 62.4 25.7 34.0 55.0 69.5 101.3 103.2
TD-ATT [19] 75.7 91.3 59.1 83.6 44.1 72.6 32.4 60.9 25.9 34.2 54.7 68.9 105.9 109.0

AC [22] 77.8 92.9 61.2 85.5 45.9 74.5 33.7 62.5 26.4 34.4 55.4 69.1 110.2 112.1
Stack-cap [4] 77.8 93.2 61.6 86.1 46.8 76.0 34.9 64.6 27.0 35.6 56.2 70.6 114.8 118.3

Ours (TDA+CS-GD) 78.7 93.7 62.6 86.9 47.8 77.1 35.9 65.8 27.5 36.2 56.9 71.6 116.9 119.5
Rennie† [3] 78.1 93.1 61.9 86.0 47.0 75.9 35.2 64.5 27.0 35.5 56.3 70.7 114.7 116.7

Up-down† [8] 80.2 95.2 64.1 88.8 49.1 79.4 36.9 68.5 27.6 36.7 57.1 72.4 117.9 120.5
Ours (TDA+CS-GD)† 79.0 94.0 63.0 87.4 48.2 77.7 36.3 66.6 27.7 36.6 57.1 71.9 117.9 120.4

Table 2. Performance of our proposed and existing state-of-the-art methods on the online MS-COCO test server. We report our

results that use the more advanced TDA baseline. † indicates the results of ensemble models.

Fig. 3. Captions generated by the TDA baseline and Our

TDA+CS-GD.

upon the 5,000 test images, the ST baseline can merely gen-

erate 2,713 different sentences, and our method can increase

the number to 3,140, a relative increase of 15.7%. A simi-

lar phenomenon can be observed if using the TDA baseline.

Note that the two baselines are different, and we can achieve

consistent improvement on both baselines, suggesting that our

proposed objective is capable of adapting to various caption

models.

Qualitative Comparison. To provide more direct compar-

isons, we also visualize some sentences generated by our pro-

posed and the baseline methods. As shown in Figure 3, the

baseline usually ignores the detailed contents (e.g., the sam-

ples at first row) and tends to describe the shared content for

similar images (e.g., the samples at second row). In contrast,

our method can better capture more concrete details, facilitat-

ing generating more detailed and distinguishable captions.

To give a deeper understanding of the proposed method,

we further conduct ablative studies to assess the actual contri-

butions of the CS and GD constraints.

Contribution of CS Constraint. We first evaluate the con-

tribution of the CS constraint by merely incorporating this

constraint in the reference model. As shown in Table 3, it

leads to a clear performance improvement, e.g., the CIDEr

score improvements of 4.1 and 4.0 using the two reference

models, respectively.

Contribution of GD Constraint. Similarly, we merely in-

corporate the GD constraint in the reference model to evalu-

ate its contribution. It can also improve most of the evaluation

metrics. As shown in Table 3, the CIDEr score both increas-

es by 0.9 if using the ST baseline or the TDA baseline. On

the other hand, the GD constraint can significantly increase

the diversity of generated captions. Specifically, it increases

the number of different sentences from 2,713 to 3,040 if us-

ing the ST baseline and from 3,589 to 3,612 if using the TDA

baseline.

4.4. Evaluation on Self-Retrieval

In this section, we follow previous work [13] to conduc-

t self-retrieval comparisons to evaluate the discriminabili-

ty of the proposed method. Specifically, it first random-

ly selects 5,000 images {I1, I2, . . . , I5000} from the MS-

COCO test set and adopts the captioning models to gen-

erate the corresponding 5,000 sentences {c1, c2, . . . , c5000}.
Then, for each sample i, we use ci as a query and

compute the probabilities conditioned on each image, i.e.,

{p(ci|I1), p(ci|I2), . . . , p(ci|I5000)}. We consider an image

to be top-K recalled if the conditional probability p(ci|Ii) is

within the top K highest probabilities, and we define the Re-

call@K as the fraction of samples that are top-K recalled with

respect to all samples. A high Recall@K indicates that the im-

ages are easily retrieved, and thus the generated captions are

more discriminative. Work [11] also integrates a ranking loss

to improve the discriminability of the generated captions, and

we implement this loss upon the ST and TDA baselines for

fair comparison. As shown in Table 4, our method consistent-

ly outperforms this method over all metrics.

We also compare our method with those that merely in-

corporate CS constraint or GD constraint, and the baseline

in Table 4. It can be seen that our method exhibits a no-

table improvement compared with the baseline. Additionally,

the methods that merely incorporate either the CS or the GD

constraint also lead to an improvement in the retrieval perfor-

mance. These results clearly demonstrate that our proposed

objective and both of the constraints can help improve dis-

criminability.
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Performancess on Self-retrieval

R@1 R@5 R@10

ST+[11] 60.24 86.33 93.18

ST 50.84 78.54 87.58
ST+CS 53.60 82.24 90.38
ST+GD 61.74 87.12 93.94

ST+CS-GD 62.08 88.24 94.36
TDA+[11] 73.60 93.04 96.52

TDA 66.40 88.46 94.26
TDA+CS 68.82 90.90 95.80
TDA+GD 74.53 93.67 97.03

TDA+CS-GD 76.24 94.50 97.90
Table 4. The performances on self-retrieval experiment.

5. CONCLUSIONS

Aiming at generating concrete and discriminative captions,

this work proposes a content sensitive and global discrimina-

tive objective, which can be simply formulated as two con-

straints on top of a reference model. Specifically, the con-

tent sensitive constraint is designed to focus more on the less

frequent word and thus enable describing more detailed and

concrete contents of the input image, and the global discrim-

inative constraint is utilized to pull the generated caption to

better describe the corresponding image, thus improving their

discriminability. Extensive experiments on the MS-COCO

dataset demonstrate the superior performance of the proposed

method over existing leading and baseline methods. We al-

so conduct self-retrieval experiments that verify the discrim-

inability of our proposed method.
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