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Hierarchical Ensemble of Background Models for
PTZ-Based Video Surveillance

Ning Liu, Hefeng Wu, and Liang Lin

Abstract—In this paper, we study a novel hierarchical back-
ground model for intelligent video surveillance with the pan-
tilt-zoom (PTZ) camera, and give rise to an integrated system
consisting of three key components: background modeling,
observed frame registration, and object tracking. First, we build
the hierarchical background model by separating the full range
of continuous focal lengths of a PTZ camera into several dis-
crete levels and then partitioning the wide scene at each level
into many partial fixed scenes. In this way, the wide scenes
captured by a PTZ camera through rotation and zoom are repre-
sented by a hierarchical collection of partial fixed scenes. A new
robust feature is presented for background modeling of each
partial scene. Second, we locate the partial scenes correspond-
ing to the observed frame in the hierarchical background model.
Frame registration is then achieved by feature descriptor match-
ing via fast approximate nearest neighbor search. Afterwards,
foreground objects can be detected using background subtrac-
tion. Last, we configure the hierarchical background model into a
framework to facilitate existing object tracking algorithms under
the PTZ camera. Foreground extraction is used to assist track-
ing an object of interest. The tracking outputs are fed back to
the PTZ controller for adjusting the camera properly so as to
maintain the tracked object in the image plane. We apply our
system on several challenging scenarios and achieve promising
results.

Index Terms—Hierarchical background modeling, object local-
ization, PTZ camera surveillance, video tracking.
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I. INTRODUCTION

V ISUAL surveillance is an active research area in com-
puter vision. It has a wide range of applications such

as trajectory analysis [1], traffic monitoring [2], crowd con-
trol [3], and many other related fields. Recently, pan-tilt-zoom
(PTZ) camera-based surveillance systems receive increasing
research interest [4]–[7] as their flexibility on rotation and
zoom offers a broad range of views and fine scene details.
However, most existing work proposed for fixed cameras
can not be directly applied to PTZ camera-based systems
due to the presence of varying focal lengths and scene
changes.

Background subtraction is a fundamental task in surveil-
lance applications. A great number of background subtraction
approaches with fixed cameras have been presented in the
past several decades [8]–[16], especially for handing complex
scenes with dynamic background. However, there is much less
research work for PTZ camera-based background subtraction.
This can be attributed to the following difficulties. First of
all, a fixed camera captures a scene of the same place, and
the variations in every pixel location can be modeled inde-
pendently and exhaustively in the fixed field of view. A PTZ
camera has a much broader field of view than a fixed cam-
era, but it cannot capture the broad scene at one shot. It
must rotate to capture different parts of the broad scene, and
a pixel location in the image plane can contain information
that comes from diverse locations of the scene. Furthermore,
when a PTZ camera zooms in/out, it greatly affects the local
feature descriptors that are commonly used for background
modeling.

Certain progress in PTZ-based background modeling has
been made [17]–[20]. However, there remain challenging
issues in the literature presented so far, which we will discuss
in detail in the related work. These existing problems motivate
us to put forward a hierarchical background modeling solution
for PTZ cameras in this paper. It can take full advantage of
the effective background modeling algorithms developed for
fixed cameras.

The rest of the paper is organized as follows. We first review
the related work and present an overview of the proposed
surveillance framework. Afterwards, Section II describes
the hierarchical background model for PTZ cameras, and
Section III discusses the observed frame registration approach.
The object tracking scheme is presented in Section IV, and
experiments are given in Section V. We conclude the paper in
Section VI.
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A. Related Work

Most of the background modeling approaches are discussed
in the context of stationary cameras. Mixture of Gaussians
(MoG) [8]–[10] is widely studied for modeling the real-world
scenes that contain dynamic complex backgrounds, e.g., wav-
ing trees, rippling water, moving escalators, etc. Meanwhile,
nonparametric methods [11], [12] are also proposed to build
the background model. The feature used is another important
factor in background modeling. Recently, local textures have
been considered a good alternative for modeling a pixel or a
small block. Heikkilä and Pietikäinen [14] use the local binary
pattern (LBP) descriptor as the feature, which is more robust
to illumination changes. A novel scale invariant local ternary
pattern (SILTP) feature is also presented by Liao et al. [15]
for background modeling.

PTZ-Based Background Model: In recent years, PTZ-based
background modeling gains more and more research attrac-
tions. The methods presented in the literature so far can be
divided into two main categories: frame-to-frame and frame-
to-global. Frame-to-frame methods focus on reuse of pixel
information from overlapping regions of the observed frame
and its previous frames. Kang et al. [17] present an adap-
tive background generation algorithm. They use geometric
transform to align consecutive frames when the PTZ camera
rotates. Wu et al. [18] find frame-to-frame correspondences
by using two extended Kalman filters to simultaneously esti-
mate zoom and pan-tilt parameters. The Laplacian pyramid
is employed to estimate the motion parameters between two
frames in a coarse-to-fine manner and to align the overlap-
ping image regions in [21]. Frame-to-global methods focus
on building and maintaining a background image of the
whole monitored scene. Bevilacqua et al. [19] propose to
build a global background mosaic in real-time for detecting
foreground objects under PTZ cameras. The authors stitch a
panorama for each different scale of a PTZ camera, using a
number of high-resolution frames at each scale in [20]. Xue
et al. [22] propose to build a panoramic Gaussian mixture
model (PGMM) covering the PTZ camera’s field of view. A
multilayered correspondence ensemble is used to help register
newly captured frames to the panoramic model.

B. Relations to Our Work

In this subsection, we discuss the relations and differ-
ences between the proposed PTZ-based background model and
previous work.

The frame-to-frame methods [17], [18] utilize neighbor-
ing frames for frame registration. This can obtain aligned
images with less distortion, but the registration may be
degraded by moving objects. Moreover, foreground detec-
tion in certain frame regions is intractable due to the lack
of global scene information. In addition, they cannot handle
the focus changes of PTZ cameras well. With a hierar-
chical ensemble of partial scenes to provide global infor-
mation, the proposed method can avoid the disadvantages
of the frame-to-frame methods, and utilize their advantages
by registering the observed frame to neighboring partial
scenes.

Fig. 1. Visualization of the proposed method. (a) Hierarchical background
model. (b) New frame. (c) Registration. (d) Detection. (e) Tracking.

Frame-to-global methods [19], [20] use a stitched panorama
to provide global spatial information for foreground detection.
However, these methods may provide a panoramic background
image containing moving objects. Some stitching problems,
e.g., heavy image distortion and serious artifacts, may also be
introduced. When building the panoramic image, the frame-
to-global methods commonly follow the assumption that there
is no significant motion parallax, i.e., depth variations in the
scene are not apparent from the motion of the camera. This
assumption may not hold in some scenarios. For example, in
the situations where the camera rotates in a large vertical range
or the objects in the scene are not far way from the camera
(e.g., when the camera is mounted on roadsides, street cor-
ners, inside or among buildings), depth variations will be quite
obvious from the motion of the camera. The proposed hierar-
chical background model avoids these problems by modeling
an ensemble of partial scenes [Fig. 1(a)] rather than building
the panoramic scene image. In addition, it is nontrivial to reg-
ister a frame captured at a fine scale to the panoramic model.
The registration process may fail due to few matched features.
A multilayered feature correspondence propagation method
is presented in [22] to generate enough feature correspon-
dences for better registration at the cost of high computation.
However, the background subtraction results may heavily be
affected by image distortion. On the contrary, the proposed
method register the observed frame to the partial background
models at a similar scale, which can greatly alleviate these
problems and also achieve computational efficiency. Building
a separate panoramic background model for each scale may
also provide a way for alleviating the image distortion prob-
lem in registration. But, as we discussed above, the panoramic
model is more suitable for certain scenarios. Furthermore, the
model updating process is more difficult and expensive for a
panoramic image. Instead, the proposed method can update
the background model of each partial scene independently in
a more feasible way.

Guillot et al. [23] propose a background subtraction algo-
rithm suitable for a PTZ camera performing a guard tour.
Although the problem addressed by them is different from this
paper, their method and ours share similarities in using a pre-
defined set of positions. Guillot et al. maintain a background
image for each position and obtain the foreground from the
image regions covered by nonmatching keypoints. Whilst the
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Fig. 2. Flowchart of the proposed framework. The hierarchical background
model (shown in dashed lines) is built in advance. An observed frame newly
captured by the PTZ camera is registered to the background model, and fore-
ground detection is done locally. The detection result can be used to assist
tracking the target. In addition, the tracking result will serve as feedback to
the PTZ controller for camera adjustment.

proposed method builds a hierarchical background model to
cover the whole scene monitored by the PTZ camera, it explic-
itly addresses the scale changes of the PTZ camera and the
relations of partial scenes, which are not addressed in [23]. In
addition, we also utilize more robust methods for background
modeling and foreground detection.

The proposed background model is configured into a frame-
work coupled with existing tracking methods for robust object
tracking via the PTZ camera. Most of the state-of-the-art
object tracking algorithms [24]–[29] rely on the assumptions
that the objects being tracked are not undergoing fast changes
of scales. They usually track the object with fixed-size
bounding boxes. However, it may not hold with respect to
object tracking under the PTZ camera. The camera adjust-
ments (CAs) may cause the target to change rapidly in location
and scale, which easily induces a tracking algorithm to fail.
With some recent tracking-by-detection methods [25], [28]
or object recognition methods [30], [31], it seems that one
can detect and track the object without the need of a back-
ground model. However, a detector only fits for a specific
kind of object (e.g., human), it cannot find other kinds of
foreground objects. These methods could not yet handle the
scale changes of objects well, and they have to find the tar-
get through exhaustive detection. The proposed background
model can provide a helpful complement for existing tracking
methods in PTZ-based surveillance.

C. Overview

Fig. 1 visualizes the framework of the proposed surveil-
lance system, while a flowchart of the framework is provided
by Fig. 2. The system framework is mainly composed of
three parts: hierarchical background modeling, observed frame
registration, and object tracking.

1) Hierarchical Background Modeling: As shown in
Fig. 1(a), we divide the scale range of the PTZ camera into
several discrete layers. We further partition the wide scene at
each layer, which can be captured by a PTZ camera when it
rotates, into a few partial scenes with some overlaps. A partial
scene can be captured by the PTZ camera at a certain view. All
the partial scenes together can cover the whole field of view of
the PTZ camera. A frame captured at a partial scene is termed

TABLE I
IMPORTANT NOTATIONS USED IN THE PAPER

as a key-frame. Each partial scene is then directly applied
with background modeling methods developed for fixed
cameras.

2) Frame Registration for Foreground Detection: Given an
observed frame [Fig. 1(b)] newly captured by the PTZ camera,
we need to register it to the online maintained background
model, and find its corresponding partial scenes [Fig. 1(c)].
The camera’s parameters are used to limit the search in a small
set, and accurate alignment is achieved by feature descriptor
matching. After the new frame is registered, the corresponding
local background models are used to detect foreground objects
[Fig. 1(d)].

3) Object Tracking With the Proposed Background Model:
We combine the hierarchical background model with existing
tracking algorithms to track the specified target detected from
the foreground [Fig. 1(e)]. As depicted in Fig. 2, the tracking
results that reflect the positions and scales of the target will
be used for controlling the PTZ camera. The controller sends
signal to maintain appropriate position and scale of the target
in the camera screen.

The key contributions of this paper are three-fold. 1) We
present a hierarchical background model for PTZ camera-
based surveillance, and this model integrates the advantages
of existing background modeling algorithms. 2) A novel
local texture descriptor is proposed for background model-
ing, which encodes spatio-temporal information and is more
robust for real-world challenges. 3) The proposed hierarchical
background model is configured into a framework to couple
with existing tracking methods for object tracking. Moreover,
we conduct several scenarios to validate the proposed method.
We compare and analyze the proposed PTZ-based background
model in both qualitative and quantitative ways, and ver-
ify the effectiveness of the proposed tracking framework in
challenging scenes.

In Table I, we list the main notations used in the paper.
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Fig. 3. Illustration of hierarchical scene representation and the extraction of
SCS-SILTP descriptor. (a) Hierarchial scene partitioning and correspondences.
(b) Background modeling at a partial fixed scene. (c) Local spatio-temporal
information of a pixel location. (d) Example structure for the extraction of
SCS-SILTP texture descriptor.

II. PTZ BACKGROUND MODEL

In this section, we first discuss the process of building
hierarchical scene model, and then present a novel texture
descriptor for modeling the background in a partial scene.

A. Hierarchical Ensemble Scene Representation

Assume that the scale range of the PTZ camera is discretized
into N layers. The coarsest layer (i.e., with a small focal
length) is Layer 1, and the finest layer is Layer N, as shown
in Fig. 3(a). We model the whole scene at each layer, respec-
tively, and build correspondences between consecutive layers.
As mentioned above, the whole monitoring scene of the PTZ
camera at a specific layer can be represented as an ensemble of
partial scenes. The key-frame of a partial scene can be param-
eterized by a vector K = (α, β, f ), where α is the pan angle,
β is the tilt angle, and f is the focal length. The corresponding
partial scene is denoted as Scene(K). Assume that the number
of partial scenes at Layer n ∈ {1...N} is Mn. We denote the
whole scene of Layer n by Scenen = {Scene(Kn,m)}Mn

m=1.
Different schemes can be designed to find the key-frame

ensemble of a specific layer. For example, we can have the
PTZ camera randomly capture a set of overlapping frames with
different pan and tilt angles, and design a greedy algorithm to
find the proper set of key-frames from them. However, decid-
ing the key-frame ensemble manually may yield more benefits.
For a narrow scene like street corners in between buildings,

Algorithm 1 Building Key-Frame Correspondences Between Consecutive
Layers

Require: Hierarchical ensemble of key-frames {Kn,m}, n ∈ {1...N}, m ∈
{1...Mn}.

Output: Correspondences of every pair of key-frames that share scenes
at consecutive layers.

begin
Extract feature points for each key-frame;
for each key-frame Kn,m, n ∈ {1, ..., N − 1}

for each neighboring key-frame Kn+1,i, which has adjacent pan
and tilt angles, at Layer (n + 1)

if no sufficient corresponding locations are found then
Continue to process next neighboring key-frame;

end
Estimate the homography matrix H between Kn,m and Kn+1,i
from the set of corresponding locations;
Store the homography matrix of the two key-frames;
Project their image corners into each other’s image plane and
store them;

end
end

end

we can use a sparse set of partial scenes to cover it. In a wide
scene, we can use a regular way to construct the ensemble
of partial scenes at each layer. More specifically, let [0,�pan]
and [0,�tilt], respectively, be the the ranges of pan and tilt
angles of the PTZ camera. For Layer n, we divide the pan
and tilt ranges, respectively, into P̄n and Q̄n discrete bins so
that neighboring partial scenes overlap and the union cover
the whole scene at this layer.

We build a background model for each partial scene when
the hierarchical scene representation is completed. As shown
in Fig. 3(b), a time series of frames are captured for initializing
the background model of the partial scene denoted by the key-
frame marked in red in Fig. 3(a). In Section II-B, we will
describe this process in detail.

In addition, we will build key-frame correspondences
between consecutive layers, which is useful for object tracking
when using zoom in/out with the PTZ camera. The correspon-
dences between two key-frames can be estimated through their
shared image regions if the two partial scenes have overlaps.
Specifically, given two corresponding pixel locations ui and
uj in two partial scenes Ki and Kj, their relationship can be
described by a homography transform, defined as

ui = Hijuj (1)

where Hij is a 3 × 3 matrix. The estimation of homography
correspondences will be introduced in Section III.

After the corresponding matrix between two key-frames in
the consecutive layers are found, we project the coordinates
of their four image corners into each other’s image plane.
The projected coordinates are what we stored for later use.
As exhibited in Fig. 3(a), we will build the correspondences
between the key-frames that share part of scene from neigh-
boring layers (e.g., the key-frame marked in red in Layer 1
and the key-frames marked in green in Layer 2, the key-frame
marked in light green and the key-frames marked in yellow in
the next layer). Algorithm 1 describes the process of building
key-frame correspondences.
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B. Modeling Pixel Process of Partial Scene

Each partial scene can be treated as being captured by a
fixed camera. Motivated by SILTP [15] and [32], in this paper,
we propose a novel texture descriptor termed spherical center-
symmetric scale invariant local ternary pattern (SCS-SILTP)
for background modeling. This descriptor has two important
advantages compared to original features: 1) integration of
spatio-temporal statistics and 2) better robustness to noises and
shadows based on the scale invariance property. We describe
image pixels with this pattern descriptor, and model the back-
ground scene by estimating and updating the kernel density of
each pixel.

1) SCS-SILTP Descriptor: SILTP [15] is calculated by
comparing the values of a center pixel and its neighboring
pixels, which improves from LTP [33] with a scale factor to
achieve gray-scale invariance. Given a pixel location (xc, yc),
SILTP encodes it as

SILTPτ
N̄,R

(xc, yc) =
N̄−1⊕

k=0

sτ (Ic, Ik) (2)

where Ic is value of the center pixel (xc, yc), and {Ik}N̄−1
k=0 is the

values of its N̄ neighboring pixels which are equally spaced
on a cycle of radius R,

⊕
denotes concatenation operator of

binary strings, τ is scale factor indicating the comparing range,
and sτ is defined as

sτ (Ic, Ik) =

⎧
⎪⎨

⎪⎩

01, if Ik > (1 + τ)Ic,

10, if Ik < (1 − τ)Ic,

00, otherwise.

(3)

We propose to take advantage of temporal information, and
encode the spatio-temporal information in a center-symmetric
way. It can be imagined that the circle with radius R surround-
ing the center pixel in the 2-D image plane is extended to a
sphere with radius R in the 3-D spatio-time domain, as illus-
trated in Fig. 3(c). An example of discretization is shown in
Fig. 3(d). The SCS-SILTP operator is formulated as

SCS-SILTPτ
R (xc, yc) =

(
N̄0
2 )−1⊕

k=0

sτ

(
It+0
k , It−0

CS(k)

)

R⊕

r=1

N̄r⊕

k=0

sτ

(
It+r
k , It−r

CS(k)

)
(4)

where It denotes the frame captured at time instant t, It+r
k

and It−r
CS(k) are the center-symmetric pixel locations lying on

the spherical surface, and N̄r is the number of pixel locations
used in the images It+r and It−r. The locations on the frame
It are addressed separately in (4), for their center-symmetric
locations are on the same frame.

2) Background Modeling Using Kernel Density Estimation
of Local Patterns: We utilize the pattern kernel density estima-
tion method from [15] to maintain an approximate distribution
for each pixel location in the scene.

As in [15], we define a distance function d(p, q) between
two local patterns p and q as the number of different bits
between them, which can be fast computed via XOR operation.

Then we obtain the local pattern kernel fp(q) = g(d(p, q)),
where g is a Gaussian-like weighting function.

Given a pixel location (x, y), we maintain K most frequently
occurred local patterns {pi}K

i=1, and the pattern probability
density function can be approximated smoothly by

�(q) =
K∑

i=1

wifpi(q) (5)

where wi are weighting coefficients, and
∑

wi = 1. We sort
the K patterns with the corresponding weights in descending
order.

Given a new pattern pt extracted at the pixel location (x, y),
we can update the estimated distribution �(q) accordingly.
The pattern pt is matched to the K sorted patterns {pi} in turn,
and a match is found if fpi(pt) > Tm, where Tm is a constant
threshold controlling the matching. The weight of each pattern
pi is updated as

wi = (1 − ρ)wi + ρ�(pi, pt) (6)

where ρ is a learning rate, and �(pi, pt) is an indicator variable
that takes 1 if pi and pt are matched and 0 otherwise. If none
of the K patterns matches the current pattern pt, the one with
the lowest weight is replaced with pt, and a low initial weight.

3) Foreground Detection: Given a pattern pt newly extrac-
ted at the location (x, y), we can determine whether it is
background or not. The first Q patterns from the K maintained
patterns are used to make the decision, and Q is obtained by

Q = argmin
k

(
k∑

i=1

wi > Tb

)
(7)

where Tb ∈ [0, 1] is a threshold indicating how many data
should be considered as background, so that some newly added
patterns (likely to be foreground) are excluded. Afterwards, the
probability of pattern pt being background is estimated as

P(pt) = 1
∑Q

i=1 wi

Q∑

i=1

wifpi(pt). (8)

The pixel location (x, y) is marked as foreground if P(pt) is
less than Tbg, a predefined constant parameter.

4) Analysis and Discussion: When the PTZ camera is not
activated for foreground detection or object tracking, it can
scan the monitored area and stop at each position of partial
scene to update the partial background models.

Several frames of the same position need to be captured for
foreground detection when the SCS-SILTP feature is used in
background modeling, since it contains spatio-temporal infor-
mation. Therefore, it is not suitable for continuous adjustments
of the PTZ camera. However, we can make intermittent CAs in
video surveillance, especially for tracking an object of interest.
In this way, we can reduce the computational cost for frame
registration, since not every frame needs being registration. In
addition, the proposed hierarchical background model is suit-
able for the PTZ camera performing continuous adjustments
when using features that do not contain temporal information
(e.g., color and SILTP).
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Fig. 4. Illustration of the frame registration process: feature point correspon-
dences are used for homography estimation between the observed frame and
the key-frames picked out by camera parameters.

In foreground detection, the features of the observed frame
are extracted after registration. The pixel values after registra-
tion may be interpolated, but they are quite similar with the
neighboring ones before registration. The pattern features, e.g.,
SILTP and SCS-SILTP, just make use of the comparisons of
pixel values, which makes them robust. In addition, the noise-
resisted parameter τ also contributes to the robustness of the
pattern features. In experiments, we found that the effect of
the registration error on pattern representation and further on
background subtraction is tolerable.

III. FRAME REGISTRATION

Fig. 4 visualizes the process of frame registration. As you
can see, feature point matching plays an important role in the
registration process. In initialization, feature points from key-
frames are extracted and stored in advance. However, problems
arise if a “clean” key-frame, in which no moving objects exist,
cannot be captured. Moving objects can badly corrupt the reg-
istration process because they provide incorrect information.
In such situations, we follow the technique used in [34] to
generate a clean key-frame.

In the monitoring process, when a new frame is captured
by the PTZ camera, we need to register it into the hierarchical
ensemble of partial scenes, and detect foreground objects using
corresponding local background models. First, we retrieve the
camera parameters of the current frame It from the PTZ con-
troller, i.e., the pan, tilt angles, and the focal length (αt, β t, f t).
Since the parameters of any key-frame are designed offline and
thus known in advance, we can pick out the neighboring key-
frames with the parameters surrounding (αt, β t, f t). We define
the set of neighboring key-frames by

Set(It) = { (α, β, f ) | f = rnd
(
f t) ‖α − αt‖

< Tpan, ‖β − β t‖ < Ttilt }. (9)

The function rnd(·) rounds the focal length to the nearest
layer. In order to make the registration more accurate, we may

Fig. 5. Feature point extraction by constraining subregion thresholds. (a) A
lot of feature points come from a small portion of the image. (b) Feature points
come nearly uniformly from the whole image with subregion constraints.

constrain the PTZ controller to just use focal lengths around
those of the discretized layers. Tpan and Ttilt are thresholds
for the absolute differences of pan and tilt angles. By choos-
ing appropriate values, about four related key-frames will be
picked out for further processing.

Afterwards we will find a set of location correspon-
dences for estimating the homography transform between the
observed frame and the selected key-frames, as shown in
Fig. 4. Generally speaking, the feature points used should
be robust enough for matching two images captured by the
PTZ camera at different views. We can take into consideration
some good feature point descriptors proposed in recent years,
such as SIFT [35], SURF [36], and ORB [37]. The feature
descriptors of each key-frame are extracted and stored when
initialization, so we only need to extract the descriptors of the
new frame and match them against the stored descriptors. With
the feature points of key-frames extracted offline, we can use
some fast approximate nearest neighbor algorithms [38], [39]
to speed up the online search. After a set of location corre-
spondences is found by feature matching, we further estimate
the homography matrix Hij between two frames Ki and Kj,
as previously described by (1). The RANSAC algorithm [40]
is employed to find a good solution.

There may exist another problem when extracting feature
points, that is, a lot of feature points may come from a small
portion of the image, as illustrated in Fig. 5(a). It is not suitable
for aligning the observed frame with different key-frames. To
address this problem, we propose a novel method to extract
feature points by applying subregion constraints.

We divide the image into M rows and N columns, as shown
in Fig. 5, with a total of M×N subregions. A threshold Ts is
set for the number of feature points extracted from every sub-
region. With this extraction constraint, it is unable to make the
descriptors be extracted uniformly from a subregion. However,
with appropriate M and N , we can make the feature points
come nearly uniformly from the whole image. In addition,
with a constrained number of feature points, we can estimate
the homography matrix properly while reducing the time for
matching.

After the homography between the observed frame and
a key-frame is found, we can project the observed frame
into the the image plane of the key-frame. Background
subtraction is performed using the local background model
of the corresponding partial scene, which is described in
Section II-B3. The foreground detection result is then pro-
jected back. We can fuse the foreground detection results from
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Fig. 6. Camera adjustment from tracking feedback. (a) Pan. (b) Pan and tilt.
(c) Zoom. (d) Selection from key-frame correspondences across consecutive
layers.

multiple key-frames. Specifically, we note that, when a pixel
location has several probability values {Pi}n

i=1 of being back-
ground from related key-frames, we use the geometric average
of them as the final probability n

√∏
Pi.

IV. OBJECT TRACKING WITH BACKGROUND

SUBTRACTION

When a detected foreground object is suspicious, we would
require that the PTZ camera can automatically track it and
keep it in the monitoring screen. In this section, we present a
general object tracking framework using the PTZ camera, by
combining a tracking algorithm with the proposed hierarchical
background model. In fact, any state-of-the-art object tracking
algorithm can be incorporated into the presented framework.
This framework relies on the tracking algorithm that we incor-
porate to build and update the model of the tracked object.
With the proposed hierarchical background model, we are able
to properly extract the foreground of the observed frame cap-
tured by the PTZ camera, and use it to refine the outputs of the
incorporated tracking algorithm and thus improve the tracking
performance.

Let T denote the incorporated tracker. It outputs the object
rectangle Rt that contains the tracked object in the current
frame. We can refine the tracking result by locally adjusting
the position and size of Rt, using the foreground blob that has
intersection with Rt. Moreover, we can recover from tracking
failure when the tracker drifts away due to clutter background
distraction. In this situation, we can search, from the detected
foreground objects nearby, for the most similar one to the
target model.

We can determine whether a CA is needed according to
the object rectangle Rt. Some CAs are illustrated in Fig. 6
as examples. The PTZ camera will be signaled to pan left
when the object moves left and is close to the left side of the
image rectangle (less than a predefined threshold Thorizon), as
depicted by Fig. 6(a). It will cause the camera to rotate up-
left if the object moves up-left [Fig. 6(b)] and triggers both

the horizontal and vertical constraints (Thorizon and Tvertical).
The zooming of the camera is related to the ratio rt

z of the size
of the object to that of the image. The camera would zoom in
if the ratio is less than Tin [Fig. 6(c)], while it would zoom
out if the ratio greater than Tout.

Assume the image rectangle is parametrized by [0, 0, W, H],
where W and H are, respectively, the width and height of
the image. The object rectangle is accordingly parametrized
by [xt

l, yt
u, xt

r, yt
b], the coordinates of its left, upper, right, and

bottom sides in the current image plane. The motion vec-
tor (vt

x, vt
y) of the object can be roughly estimated using the

position information of the last two frames. The CA can be
formulated as

CA =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

pan left, if xt
l < Thorizon ∧ vt

x < 0,

pan right, if W − xt
r < Thorizon ∧ vt

x > 0,

tilt up, if yt
u < Tvertical ∧ vt

y < 0,

tilt down, if H − yt
b < Tvertical ∧ vt

y > 0,

zoom in, if rt
z < Tin,

zoom out, if rt
z > Tout.

(10)

It will reduce the cost for frame registration, if we adjust
the PTZ camera to the position of some partial scene when
tracking the target. When only rotation of the PTZ camera
is needed, it is quite straightforward, since we can try to
round the pan and tilt angles to that of an appropriate neigh-
boring partial scene. However, when zooming is involved,
additional computational effort is needed: we have to esti-
mate the homography matrix between the observed frame and
a key-frame and project the object into the coordinate plane of
that key-frame to see whether the object is fully contained by
it. In this situation, it would be better to use simple zooming
and then register the new frame.

When the PTZ camera is currently set to the position of a
partial scene, it would be much easier to find an appropriate
key-frame in the neighboring layer, by using the key-frame
correspondences that we store in advance. Since the image
rectangles of the related key-frames in the neighboring layer
are already projected to the plane of the observed frame, we
just need to find the most suitable key-frame that contains the
object appropriately, as depicted in Fig. 6(d).

The general object tracking framework for PTZ-based
surveillance is described by Algorithm 2.

V. EXPERIMENTS

Extensive experiments are carried out to verify the effec-
tiveness of our system. First, we present the experimental
results on foreground detection using our hierarchical back-
ground model for the PTZ camera, and then the performance
of the proposed object tracking framework is demonstrated.

A. Implementation Details

We use a PTZ camera with the focal length ranging from 4.6
to 82.8 mm, which allows a 18× optical zoom. The ranges of
its pan and tilt angles are, respectively, 350 and 120 degrees.
In the experiments, a frame size of 480 × 360 is used. We
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Algorithm 2 Online PTZ-Based Object Tracking With Background
Subtraction

Require: Frames {It} captured online by the PTZ camera, the tracker T ,
the initial rectangle R1 that contains the tracked object, and the
hierarchical background model.

Output: The object rectangles {Rt}.
begin

Initialization (t = 1): Use I1 and R1 to initialize the tracker T ;
for each new frame It (t > 1) captured by the PTZ camera

Use It as input to the tracker T and obtain Rt;
Do frame registration and background subtraction to get the
foreground mask F ;
Use F to refine the tracking result or recover from tracking drift,
and update Rt;
Update the tracker T ;
Find out whether camera adjustment is necessary;
if zoom is needed then

Adopt simple zoom or use the key-frame correspondences to
find out the most suitable partial scene, and adjust the camera;

else if rotation is needed then
Determine the rotation parameters and adjust the camera;

end
Use the camera parameters to project the object location into the
new image plane if camera adjustment happens;

end
end

found that N = 3 layers is enough for our experiments. We
ran the experiments on a PC with Intel i5-3570K processor
(four 3.4 GHz cores) and 16 GB memory.

We implement the proposed method in C++ with the
OpenCV library. Besides the proposed SCS-SILTP descrip-
tor, three state-of-the-art background subtraction methods
used for stationary cameras, including MoG [8], Bayes deci-
sion (“Bayes”) for complex scenes [13], “SILTP” [15], are
also incorporated into our hierarchical background model for
comparison. We use both the MoG and Bayes algorithms
implemented in OpenCV2.4.5 with default parameters. For the
SILTP operator, we use N̄ = 8, R = 1, and τ = 0.05. For the
SCS-SILTP operator, we set R = 2 and τ = 0.05, and use three
adjacent frames, with N̄0 = 8 and N̄1 = 4. In kernel density
estimation, both SILTP and SCS-SILTP use the same set of
parameters: K = 5, Tm = 0.08, Tb = 0.8, Tbg = 0.01, and ρ =
0.005. In addition, we use a Gaussian with standard deviation
1.2 for g(x). Since the Hamming distance d(p, q) is an integer,
we can precalculate g(x) taking several integer values and store
them. Then, in later calculation, we can efficiently obtain the
result via a look-up table. When extracting feature points from
the observed frame, we set M = 2, N = 2, and Ts = 200.

Regarding the feature points, we tested three features, i.e.,
SIFT [35], SURF [36], and ORB [37]. In our experiments,
we observe that SIFT is most robust and distinctive among
the three, but at the cost of highest computation time. The
extraction of ORB is at least an order faster than SIFT and
is also several times faster than SURF, though ORB seems
to perform worse than SIFT and SURF in large-scale vari-
ations. However, we observe that ORB works well in the
frame registration process, for we register the observed frame
to the key-frames with a similar scale. As mentioned above,
we can use fast approximate nearest neighbor search to speed
up the feature matching process. Multiprobe locality sensitive
hashing (LSH) [39] can be used for ORB matching, while
randomized KD-trees can be used for SIFT and SURF. These

Fig. 7. Example of homography transform and foreground detection. (a)
The estimated homography between a key-frame and the observed frame. (b)
Observed frame projected to the key-frame. (c) The corresponding shared
region of observed frame. (d) Foreground detection. (e) Foreground result
projected back to the observed frame.

fast approximate nearest neighbor algorithms are also pro-
vided by OpenCV2.4.5 with the FLANN library [38], and
LSH is faster than the KD-trees. Therefore, we use ORB fea-
tures in the experiments, and use 16 hashing tables for each
key-frame to store the feature points. We adopt the measure
used in [37] to select the required number of ORB feature
points.

An example of homography transform and foreground
detection is shown in Fig. 7. We show some of the extracted
feature point locations in Fig. 7(a), and connect with green
lines the correct location correspondences found by RANSAC.
The projected regions shared by the observed frame and the
key-frame are depicted in Fig. 7(b) and (c), in which unshared
regions are marked in blue. Fig. 7(d) is the foreground
detection result by subtracting the local background model,
while the projected-back result into the observed frame is
shown in Fig. 7(e). It can be seen from Fig. 7(e) that some
region (in blue) of the observed frame is unprocessed when
using one key-frame. It can be solved by using multiple
key-frames if we want to cover the whole observed frame
and detect all the foreground objects. However, for track-
ing an object of interest [e.g., the boy in Fig. 7(c)], we are
concerned the image regions surrounding the object, as illus-
trated by the dashed-line rectangle, have been processed so as
to assist tracking. Therefore, in this case, foreground extrac-
tion can be achieved using only one key-frame, as revealed
in Fig. 7(e). In this way, we can achieve better computational
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Fig. 8. Scenes used for evaluation of foreground detection. Depth variations
in the four scenes, except Scene B, are quite apparent from the motion of the
camera.

efficiency. As a result, foreground objects that fall into the
unprocessed image region will not be detected. In general,
this key-frame can be picked out from the set of neighbor-
ing key-frames Set(It) by the minimum sum of ‖α − αt‖
and ‖β − β t‖ in (9). However, this selection step will be
iteratively carried out until the selected key-frame guarantee
that the predefined surrounding region of the tracked object is
processed.

We implement the PGM background model [22] for compar-
ison. Some of the key-frames are manually chosen to generate
the panoramic frame as described in [22], and 100 panoramic
frames are used to initialize the PGMM. In addition, lay-
ered correspondence ensemble and SURF features are used for
registering the observed frame to the panoramic background
image.

B. Experiment Results on PTZ Foreground Detection

Four scenes are used to evaluate the foreground detection
performance under the PTZ camera, as shown in Fig. 8. We
note that the four scenes, except Scene B, exhibit obvious
depth variations when the PTZ camera rotates. Scene B is a
wide crossing. The objects in the scene are a distance away
from the position of the camera, and the camera rotates in a
relatively small range. While for the other three scenes, when
the camera rotates, the distance of the objects in the scene to
the position of camera would vary from several meters to tens
of meters away. Two test videos are captured for each scene,
with the PTZ camera rotating and zooming. The test videos
varies in length, each with 20 frames manually labeled by us
as the ground truth.

In PTZ-based surveillance, it is more critical to localize
positions of foreground objects rather than obtaining accu-
rate segmentation, so we evaluate the background subtraction
algorithms in the object-level, which can also avoid pixel-level
inaccuracy caused by manual labeling and image projection.
A connected foreground blob is considered to be a fore-
ground object. We eliminate small blobs less than 20 pixels.
If a detected object has intersection with a foreground object

annotated in the ground truth and satisfies the following
formula, it is considered to be correctly detected:

SDT ∩ SGT

SDT ∪ SGT
> TDT (11)

where SDT and SGT are, respectively, the areas of the detected
object and the ground truth object, and TDT is constant
threshold that we set to 0.5 in the experiments.

By ground truth annotation, we can obtain a binary image
for a frame, in which pixels belonging to foreground objects
are marked as white and background pixels as black. Some
foreground objects may weakly connect to each other and
together form a big foreground blob in the ground truth image.
In the experiments, we further annotate a mask image, in
which curves are drawn to separate the weakly connected fore-
ground objects. In this way, the foreground detection image,
generated by a background subtraction algorithm, and the
ground truth image will be imposed with the mask before they
are further processed to find correctly detected objects.

The precision (the number of correctly detected objects to
that of all the detected objects) and the recall (the number of
correctly detected objects to that of the annotated ground truth
objects) are used as evaluation measures. Table II shows the
precision and recall evaluation of the compared background
subtraction methods. The best precisions are marked in red
bold fonts, and the second best are marked in red fonts with
underlines. The best recalls are marked in blue bold fonts,
while the second best are marked in blue fonts with under-
lines. As can be seen from the table, the proposed hierarchical
background model with SCS-SILTP does best in most of the
eight tested videos. Among the four background subtraction
methods used in the hierarchical model, SILTP ranks second,
followed by Bayes, and MoG comes last. Regarding PGMM,
it suffers much from image distortion and is greatly affected
by the panoramic image generation results. It can be seen for
Table II that PGMM gives a low recall in the eight tested
videos. In addition, we notice that PGMM does better in Scene
B than the other three scenes. In fact, we do not apply large
rotation angles in Scene B and there is no obvious depth
variations in the scene. As a result, the resulted panoramic
image is more smooth, with less image distortion introduced
by stitching. In summary, compared with PGMM that uses a
panoramic background model, the proposed hierarchical back-
ground model works better under the PTZ camera, especially
for scenes with obvious depth variations.

In addition, example foreground detection results of dif-
ferent background subtraction methods are demonstrated in
Fig. 9, with a representative frame from each test video. One
of the related key-frames of the selected frame is also shown.
For the detection results, we mark the classified backgrounds
with green color.

In the experiments, it takes roughly 34 ms for the proposed
hierarchical model to register the observed frame to one key-
frame. For foreground detection after registration, it takes 17,
26, 65, 67 ms, respectively, for our model with MoG, Bayes,
SILTP, and SCS-SILTP. While it takes 126 ms for PGMM to
register the observed frame to the panoramic image, and the
foreground detection stage takes 24 ms.
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TABLE II
OBJECT-LEVEL EVALUATION OF FOREGROUND DETECTION (%)

Fig. 9. Foreground detection results of different background subtraction methods.

Evaluation on Parameter Selection: We evaluate the effect
of important parameters on the system performance quantita-
tively. The overall precision and recall measures mentioned
above are adopted. The important parameters defined in
Section II-B are evaluated. We fix the values of the other
parameters as set in Section V-A when changing the value
of a specific parameter. The evaluation results of the param-
eters τ , Tbg, and Tm are plotted in Fig. 10. The precision is
at its peaks and is relatively stable when the scale factor τ

is between 0.04 and 0.06. More pixels are classified as fore-
ground when τ gets smaller, but these pixels do not connect

into correct foreground objects and the precision decreases.
The recall also decreases because more background pixels
are falsely classified as foreground. On the contrary, fewer
pixels are classified as foreground when τ gets larger, caus-
ing the precision to decrease. However, the recall increases
instead since fewer background pixels are falsely classified.
The precision and recall almost stay the same when the back-
ground threshold Tbg is around 0.01. They decrease slowly
when Tbg gets larger. Quick drops may sometimes happen
(e.g., when Tbg is in [0.07, 0.08]), which can be attributed to
that the pattern distance d(p, q) only outputs discrete integer
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Fig. 10. Precision (Pr) and recall (Rec) plots for different parameters of the
proposed background model.

values. For the same reason, the precision and recall are nearly
piecewise constant with respect to the matching threshold Tm,
and they have some sudden changes when Tm takes specific
values (e.g., at around 0.01 and 0.09). The precision is at
its peak when Tm is in [0.02, 0.08]. For the threshold Tb,
we find that the system performance is the best and is rela-
tively stable when it is in [0.7, 0.8]. We also note that it is
most appropriate for the number of maintained patterns K to
take 3–5, because fewer maintained patterns are not able to
model dynamic background, while more maintained patterns
would result in little performance gain at high computational
cost.

C. Experiment Results on PTZ Tracking

We incorporate two state-of-the-art tracking methods into
the proposed PTZ object tracking framework, and evaluate
the improved tracking performance achieved by combining the
proposed hierarchical background model.

The ensemble tracking (ET) algorithm [24] and a recent
tracking-by-detection algorithm (Struck [28]) are incorpo-
rated into the proposed framework for evaluation. For the ET
tracker [24], we follow the parameter settings of [24], and use
a simple particle filter to handle occlusion as in [24]. The tar-
get is manually marked with a bounding box in the first frame.
The ET tracker does not handle scale changes of the target.
In the experiments, we do scale adaption of the target with
respect to the foreground detection result and the confidence
map generated by the ET tracker. The confidence map provides
the probability of pixels belonging to the tracked object. A
pixel is said to belong to the target if it is foreground with the
probability higher than 0.4. Assume δ is the difference of the
newly detected width and the original width of the target. We
will change the width by half of δ to avoid over-adaptation.
The height of the target is dealt with likewise. For the struck
tracker [28] that is built on patched-based detection, we use
the source codes provided by the authors. Scale adaptation of
the target is performed via the foreground detection results,

similar to the case of the ET tracker. The patches are scaled
to the size of the target model.

In the experiments, we evaluate the proposed object track-
ing framework both offline and online, where offline means
that the tracking results are not fed back to the PTZ con-
troller for CAs. Four videos are captured in advance to do
the offline evaluation. As you can see from Fig. 11, three of
them are captured in the four scenes shown in Fig. 8. The 4th
video captures a boy going away from the camera, and the
scene is quite simple, which can be captured by the camera
with a small focus length. For comparison, we run the track-
ers alone on the four videos, and then with PGMM and with
the proposed framework, respectively. The foreground detec-
tion is performed every three frames when no CA happens.
To save computation time, we run the tracker and foreground
detection on a downsampled image with half of the frame
size (i.e., 240 × 180). On average, the ET tracker alone, with
PGMM and with our model runs, respectively, 23.0, 14.7, and
11.6 frames/s, while the Struck tracker alone, with PGMM and
with our model runs, respectively, 17.8, 11.4, and 9.2 frames/s.
Example frames from the tracking results are shown in Fig. 11,
also with the foreground detection results. As you can observe,
our foreground detection results are much better than that
of PGMM. We also note that some bad detection results of
PGMM in Fig. 11(d) are caused by bad registration, where few
feature point correspondences between the observed frame and
the panorama are found. The proposed method works much
better by registering the observed frame to the neighboring
key-frames.

To quantitatively evaluate the object tracking performance,
we apply a tracking precision measure, which is the ratio
between the numbers of correctly tracking frames and the total
frames for each video, as reported in Table III. A frame is
counted as correctly tracked only if the ratio of the overlap
between the detected and annotated boxes to the union of them
is over 0.5. As can been seen, the tracking performance has
been greatly improved when the trackers with our method than
themselves alone, and it is also better than with PGMM.

We further combine the ET tracker to evaluate the proposed
object tracking framework online, where the tracking results
are fed back to control the PTZ camera. A separate thread is
used to capture the frames from the PTZ camera and control
it. In addition, we perform foreground detection every five
frames or when CA happens. The tracked object does not move
before we mark it in the screen and finish the initialization.
An example is shown in Fig. 12, which run at 15.4 frames/s.
As you can notice, the scene is very large. We also run the
ET tracker with PGMM on the video offline, but it fails at the
first few frames due to bad registration and only works sightly
better than the ET tracker alone, which can be inferred from
Table III. The tracking precisions of the Struck tracker on the
video are also provided. The proposed framework improves
its performance greatly.

In Fig. 12, the resulting trajectory obtained by running the
ET tracker with the proposed framework online is demon-
strated in the hierarchical background model. The trajectory
reflects the movement of the bottom middle point of the
tracked box. Some key-frames from different layers are shown,
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Fig. 11. Tracking results of Videos 1–4. The background subtraction results of PGMM (2nd row) and Ours (3rd row) are also shown. (a) Video 1.
(b) Video 2. (c) Video 3. (d) Video 4.

TABLE III
PRECISION COMPARISON. (A) TRACKER ALONE. (B) WITH PGMM [22]. (C) WITH THE PROPOSED METHOD

and the generated trajectory of our method is mapped onto the
key-frames in red. Meanwhile, the ground truth trajectory is
also generated in dashed black lines for comparison.

Discussion: In this paper, some simple criteria are provided
for adjusting the PTZ camera. They work well for some cases,
but better criteria can be introduced. Considering that neither
the foreground detection result from the background model
NOR the performance of existing tracking methods is reliable
enough, it would be better measurements to fuse the two more
properly. In addition, more robust CAs should be studied. The
CAs can be affected by the mechanical imprecision of the PTZ
controller. A large adjustment may cause the tracked object to

fall out of the screen, while a small adjustment would lead to
frequent CAs. However, these problems go beyond the scope
of this paper and will be addressed by future work.

VI. CONCLUSION

In this paper, a solution for the PTZ camera-based surveil-
lance system has been proposed. The system is divided into
three parts: hierarchical background modeling, frame reg-
istration, and object tracking. The hierarchical background
model and frame registration can detect moving foreground
objects, which is a basic and important step for applica-
tions with the PTZ camera. Furthermore, a general object
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Fig. 12. Online tracking results of Video 5 and the resulted trajectory in the hierarchical background model.

tracking framework that combines the proposed PTZ back-
ground model and existing object tracking algorithms is put
forward. The effectiveness of the proposed method is verified
through extensive experiments.

We will focus on several issues of the proposed framework
in the future work. First, in order to decide conveniently, for
different scenes, the key-frame ensemble of the hierarchical
model, a friendly interactive user interface or a good auto-
matic algorithm should be developed. Second, the tracking
feedback and CA should be made feasible and flexible with
the parameters of different PTZ cameras. Finally, more back-
ground subtraction algorithms will be incorporated into the
background model for evaluation, and we would also like to
make the proposed surveillance system easier to compatible
with different tracking methods.
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