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ROSA: Robust Salient Object Detection against
Adversarial Attacks

Haofeng Li, Guanbin Li, Yizhou Yu

Abstract—Recently salient object detection has witnessed re-
markable improvement owing to the deep convolutional neural
networks which can harvest powerful features for images. In
particular, state-of-the-art salient object detection methods enjoy
high accuracy and efficiency from fully convolutional network
(FCN) based frameworks which are trained from end to end and
predict pixel-wise labels. However, such framework suffers from
adversarial attacks which confuse neural networks via adding
quasi-imperceptible noises to input images without changing the
ground truth annotated by human subjects. To our knowledge,
this paper is the first one that mounts successful adversarial
attacks on salient object detection models and verifies that adver-
sarial samples are effective on a wide range of existing methods.
Furthermore, this paper proposes a novel end-to-end trainable
framework to enhance the robustness for arbitrary FCN-based
salient object detection models against adversarial attacks. The
proposed framework adopts a novel idea that first introduces
some new generic noise to destroy adversarial perturbations,
and then learns to predict saliency maps for input images
with the introduced noise. Specifically, our proposed method
consists of a segment-wise shielding component, which preserves
boundaries and destroys delicate adversarial noise patterns and
a context-aware restoration component, which refines saliency
maps through global contrast modeling. Experimental results
suggest that our proposed framework improves the performance
significantly for state-of-the-art models on a series of datasets.

Index Terms—Deep Neural Network, Adversarial Attack,
Salient Object Detection.

I. INTRODUCTION

SALIENT object detection aims at locating and segmenting
objects, which are most visually distinctive to human sub-

jects, in an image or a video frame. Designing a salient object
detection model for simulating this process not only improves
our understanding of the inner mechanism of human vision
and psychology, but also benefits many applications in the field
of computer vision and graphics. For example, salient object
detection has been widely studied and applied to robotics [1],
context-aware image editing [2], object segmentation [3] [4]
and person re-identification [5]. Since salient object detection
algorithms are usually adopted during the initialization or pre-
processing stage of a system, efficiency and robustness are
of considerable importance. Imagine if the performance of
the pre-processing stage is seriously affected by corrupt input

This work was supported in part by the National Natural Science Foundation
of China (NSFC) under Grant No. 61702565 and Grant No. U1811463, and in
part by the Science and Technology Planning Project of Guangdong Province
under Grant No. 2017B010116001. (Corresponding author: Guanbin Li.)

H. Li and Y. Yu are with the Department of Computer Science, The
University of Hong Kong, Hong Kong, and Y. Yu is also with Deepwise
AI Lab (e-mail: lhaof@foxmail.com; yizhouy@acm.org).

G. Li is with the school of Data and Computer Science, Sun Yat-sen
University, Guangzhou, 510006, China (e-mail: liguanbin@mail.sysu.edu.cn).

Original Adversarial (a) DSS [6] (b) DSS+ours Ground
Images Samples Truth

Fig. 1. Effectiveness of our proposed method. The leftmost column shows
original images while the second column from the left displays the correspond-
ing adversarial samples. The L∞ norm of the adversarial perturbations is set
as 25 pixel values. Column (a) is the saliency maps of adversarial samples,
and is predicted by DSS [6]. Column (b) is the saliency maps of adversarial
samples, and is predicted by our proposed method with DSS as the backbone
network stream. The rightmost column is the ground truth saliency maps. As
can be seen in the above, the adversarial samples are almost visually the same
as their original images. Besides, DSS incorporated with our proposed method
yields saliency maps of higher quality, in comparison to the original DSS.

images, succeeding stages might produce unpromising results,
which could be a catastrophe to the entire system.

For the last several years, significant successes have been
achieved in the computer vision community, as training deep
convolutional neural networks (CNN) on large-scale datasets
becomes feasible. A deep CNN is composed of stacked con-
volution filters with learnable parameters. Since those filters
harvest information naturally from local neighborhoods in the
input image and their parameters are adaptively determined by
a training set, deep CNNs demonstrate a high fitting capacity
superior to traditional methods using handcrafted features.
Nowadays deep learning has been widely employed in image
classification, semantic segmentation, object localization as
well as salient object detection.

Deep learning based salient object detection models can be
roughly divided into two groups. One group adopts segment-
wise labeling while the other group predicts pixel-level re-
sults. Segment-wise labeling methods first divide an image
into regions. Pixels in the same region most probably share
similar saliency values. CNN features for each region are
then extracted to evaluate its saliency. In contrast, pixel-wise
methods usually embrace fully convolutional network archi-
tectures, which take a whole image as input and yield a dense
saliency map directly. Such methods not only demonstrate
higher efficiency but also achieve state-of-the-art accuracy in
virtue of their end-to-end trainable property.
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However, those FCN driven approaches have weaknesses
that might degrade their performance in practice. First, being
end-to-end trainable allows gradients propagated easily from
supervision target to the input image, which puts the salient
object detection models at the risk of adversarial attacks.
Adversarial attacks generate adversarial samples that do not
change the ground truth assigned by human subjects but in-
crease the prediction error of neural models by making visually
imperceptible changes to the image, as shown in Figure 1.
Second, dense labeling models do not explicitly model contrast
among different image parts but implicitly estimate saliency in
a single FCN. Once input images are polluted by adversarial
noise, low-level features and high-level features that cannot
correct themselves will be affected as well. Third, current
largest training datasets of salient object detection contain only
several thousands of images, in comparison to some image
classification benchmark with millions of samples [7]. At the
same time, the salient object categories included are very lim-
ited. Thus to some extent existing models are fitting bias within
the data, for example, detecting objects frequently appearing
in training set rather than locating the most distinctive ones.
Those approaches might rely on capturing too much high-level
semantics and could be sensitive to low-level perturbations,
such as adversarial noises.

Segment-wise labeling approaches enjoy higher robustness
as they model contrast explicitly and determine saliency score
depending on multiple regions, such as the considered segment
and its context. For different segments, gradients calculated by
the same target might conflict when propagating on the input
image, since different regions could share the same local or
global context. Nevertheless, it is inefficient to adopt sparse
labeling methods in practice, due to evaluating hundreds of
segments.

To enhance robustness and maintain efficiency for existing
dense labeling methods, this paper proposes a novel framework
ROSA (named after RObust SAliency) that can take any FCN
as a backbone. We first observe that adversarial noise itself is
fragile as it is computed accurately by backward propagation.
Adversarial noise forms some subtle curve-like pattern that
may play an important role. Destructing such patterns could
reduce the attack effects. And then we notice that convo-
lutional neural networks are less sensitive to some generic
noise than adversarial noises, since adversarial samples are
aimed at neural models. We also consider a priori that nearby
pixels with similar low-level features have similar saliency
values. Thus we come up with a novel framework that first
destroys adversarial perturbations by introducing some new
generic noise, and then learns to adaptively predict saliency
maps against the new introduced noise. To destroy adversar-
ial noises, we develop a segment-wise shielding component
placed before the backbone network. Segment-wise shielding
component divides an image into small parts according to
low-level similarity and shuffles pixels in each part randomly.
It introduces another generic noise to destroy the structural
pattern in adversarial samples and therefore alleviates the
attack effect. To refine results affected by the newly introduced
noise, we conceive another component known as context-ware
restoration placed after the backbone network. The restoration

component adjusts saliency score at some position according
to similarities among raw pixel values of the position and its
context. The overall system with a backbone network is fine-
tuned end-to-end in the training stage.

Our proposed framework demonstrates several strengths in
the following. First, the ROSA framework is not so suscep-
tible to adversarial attacks. Since the shielding component
has no learnable parameters, it does not support backward
propagating gradients onto the input image to generate ad-
versarial samples. Even when adversarial samples are found,
their adversarial noise can still be destroyed by the shielding
component during the testing stage. Second, the shielding
component shuffles pixels in the same segment and thus
does boundary less harm. Moreover, ROSA adopts a FCN
based model as its backbone and the restoration component is
implemented by convolutional operator that supports parallel
computing. Both designs help maintain acceptable efficiency
for the entire system.

In short, our contributions have three folds.
• We for the first time launch adversarial attacks on state-

of-the-art salient object detection models successfully.
• We propose a novel salient object detection framework

that first introduces some new noise to resist adversarial
perturbations, and then adaptively predicts saliency maps
for inputs with the new introduced noises. The proposed
framework is instantiated by an arbitrary FCN backbone
and two strongly coupled and complementary compo-
nents.

• Experimental results verify that the implemented adver-
sarial attacks are effective for a wide range of existing
salient object detection models. Moreover, extensive ex-
periments demonstrate that the our proposed framework
is resistant to adversarial samples, and more robust than
existing defense baselines.

II. RELATED WORK

In this section we brief several groups of previous work
related to our proposed approach, salient object detection,
adversarial attacks and defenses against adversarial attacks.

A. Salient Object Detection

Algorithms for detecting salient objects can be separated
into two categories. One category is the conventional meth-
ods that do not use neural networks but resort to prior
knowledge and handcrafted features [8], [9], [10], [11], [12],
[2], [13], [14], [15], [16], [17]. Ranking saliency [16] is a
saliency detection algorithm based on graph-based manifold
ranking, which ranks the relevances of images elements to
foreground or background seeds. Another category driven by
deep convolutional neural networks can be categorized as two
groups, sparse labeling and dense labeling. Sparse labeling
methods [18], [19] appeared in early years. Li and Yu [18],
[20] trained a binary classifier to estimate visual saliency for
each superpixel with multi-scale learned CNN features. Wang
et al. [21] developed a local DNN estimating coarse saliency
for object proposals and a global DNN evaluating weights to
combine different proposals. Zhao et al. [22] employed deep
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CNN to predict visual saliency for single superpixel with local
context and global context. Qin et al. [23] introduce Single-
layer Cellular Automata (SCA) which can exploit the intrinsic
relevance of similar image regions to detect salient objects,
based on extracted deep features. Since these methods take
a region as a unit of computation and contain two separate
steps of feature extraction and salient value inference, they are
generally inefficient and require a large amount of space for
feature storage. Inspired by the successful application of fully
convolutional networks in pixel-level semantic segmentation,
recently dense labeling approaches have established the new
state-of-the-art in salient object detection [24], [25], [26], [27],
[28], [29], [30], [31], [32], [33]. Li and Yu [34] modeled visual
saliency by combining a fully convolutional stream with a
segment-wise spatial pooling stream. Wang et al. [35] em-
ployed fully convolutional networks to refine coarse saliency
maps based on prior knowledge in a recurrent way. Hou et
al. [6] adapted Holistically-Nested Edge Detector (HED) [36]
architecture by introducing short connections to the skip-layer
structures.

B. Adversarial Attack

Existing adversarial attacks consist of several groups, one-
step gradient-based methods [37], iterative methods [38], [39],
[40], [41], [42], [43], [44], optimization-based methods [45],
[46] and generative networks [47], [48] based methods. The
fast gradient sign method (FGSM) [37] computes one-step
gradient to maximize the loss L(·) between model output
and the ground truth, within some L∞ norm bound ε. FGSM
generates adversarial sample as in Equation 1:

x∗ = x+ ε · sign(5xL(f(x; θ), y)) (1)

where x∗, x, y are the adversarial sample, original image, and
ground truth respectively. f(·; θ) denotes some neural model
with parameters θ. Iterative approaches [41], [44] conduct
FGSM multiple times with a small step length α as Equation 2
shows:

x∗t+1 = clip(x∗t + α · sign(5xL(f(x; θ), y)), ε) (2)

where x∗t denotes an adversarial sample obtained at t-th time
step. x∗0 is initialized as x. clip(x, ε) keeps each element
xi of x within the range of [xi − ε, xi + ε]. Szegedy et
al. [49] solved a box-constrained optimization with L-BFGS
to find an adversarial sample. Y. Dong et al. [38] proposed
an iterative algorithm that integrates a momentum term into
the iterative process to boost adversarial attacks. Moustapha
Cisse et al. [40] proposed an approach called ‘Houdini’ to
attack structured prediction problems (including human pose
estimation and speech recognition) whose final performance
measure is a combinatorial non-decomposable quantity. Dai,
Hanjun et al. [50] proposed to fool a family of graph neural
networks by modifying the combinatorial structure of data.
They developed a reinforcement learning based methods,
variants of genetic algorithms and gradient based methods to
attack graph neural networks. Adversarial attack on salient
object detection remains a gap before this paper.

C. Defense against Adversarial Attacks

Some defense methods are proposed to protect attacked
target neural networks form potential adversarial samples [51],
[52], [53], [54], [55], [56], [57], [58]. J. H. Metzen et al. [52]
augmented the attacked target network by small subnetworks,
which take output feature maps at some layers as inputs, and
predict a probability of the input containing adversarial noise.
SafetyNet [53] equips a convolutional neural network classifier
with an RBF-SVM to detect adversarial samples with discrete
codes calculated from the final RELU outputs. Images trans-
formations including bit quantization, vectorization [59], JPEG
compression and total variance minimization may remove or
destroy adversarial perturbations [54], before feeding an input
image into the target network. C. Xie et al. [55] proposed a
simple method that randomly resizes an input image and pads
it with zeros, to destroy the effect of adversarial attacks. F.
Liao et al. [57] developed a neural network based denoiser
that is trained with a loss function based on some high-level
features of the attacked target classifier. Many existing defense
baselines struggle to remove potential adversarial noises from
input images, which is different from our proposed idea that
adaptively predicts saliency maps for inputs with some new
introduced generic noise to resist adversarial attacks.

III. METHOD

This section first describes how we launch an adversarial at-
tack on state-of-the-art visual saliency models, and then detail
how our proposed robust salient object detection framework
works.

A. Adversarial Samples for Salient Object Detection

Adversarial attack aims at synthesizing some perturbed
input that fools neural models without changing its ground
truth label. In this section, we introduce the pipeline to yield an
adversarial sample for a given salient object detection model f ,
and it can be directly used to attack other detection models as
most of the existing visual saliency models have similar FCN-
based network architectures and are usually initialized by the
same pre-trained image classification model [60], [61]. Ad-
versarial samples can be divided into two categories. Targeted
adversarial samples make attacked models produce specific
results as predicted saliency maps while non-targeted ones
maximize mean absolute error (MAE) and/or minimize Fβ
measure. In this paper, only non-targeted attacks are concerned
and targeted samples may be investigated in the future.

Inspired by [62], we implement an iterative gradient-based
pipeline to synthesize adversarial samples. To generate those
samples, it requires a neural network pre-trained on salient
object detection, some natural images and their corresponding
saliency maps densely labeled at pixel level. Let f(·, θ) be
the pre-trained model with parameters θ. x, x∗ and y denote
a natural image, its corresponding adversarial sample and
ground truth, respectively. Before synthesizing the adversarial
sample, x is subtracted by mean pixel values. After the
generation, x∗ is enlarged to the range of [0, 255] and rounded
to RGB image. Each element yi of y belongs to {0, 1}, with
0 denoting non-salient and 1 denoting salient. To ensure the
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Fig. 2. ROSA, Robust Salient Object Detection Framework. To defend against adversarial samples, the proposed method exploits a novel idea that first
introduces some novel generic noise to destroy adversarial perturbations, and then learns to predict saliency maps for images with the introduced generic
noise. Such idea is different from those resorting to image smoothing or transformations before feeding input images into target networks. As shown in the
above, the segment-wise shielding component introduces some generic noise to perturb the adversarial noises. Then a fully convolutional network (FCN)
based backbone takes the noisy image as input, and yields a coarse saliency map. Afterwards, a context-aware restoration component utilizes a graph model
to refine the coarse saliency map, with a smoothed image providing pairwise pixel-level similarity. The smoothed image is obtained by applying bilateral
filter on the input image. Lastly, a pixel-wise binary cross-entropy loss function is calculated between the refined saliency map and the ground truth. The
FCN-based backbone network and the context-aware restoration component are end-to-end trained to adapt to the input images with the introduced noise. The
proposed method can theoretically incorporate arbitrary FCN-based backbone network.

adversarial perturbation unnoticeable, parameter ε is set as
upper bound of L∞ norm such that ||x − x∗|| ≤ ε. The
maximum number of iterations T limits the overall running
time cost. Once T iterations are finished or the L∞ norm
bound is reached, the generation stops and returns adversarial
sample obtained at current time step.

In each iteration t, supposing that adversarial sample x∗t
from previous time step or initialization is prepared, we update
the adversarial sample as in Equation 3.

x∗0 = x, x∗t+1 = x∗t + pt (3)

where pt denotes adversarial perturbation computed at t-th
step. We formulate the goal making the predictions of all
pixels in x go wrong as ∀i, argmaxc{fi,c(x∗t + pt; θ)} 6= yi.
Here, i denotes one of all n pixels in x and c denotes two
categories: salient and non-salient. To determine pt, gradient
descent algorithm is applied as in Equation 4

p′t =
∑
i∈St

[5x∗
t
fi,1−yi(x

∗
t ; θ)−5x∗

t
fi,yi(x

∗
t ; θ)] (4)

where St denotes the set of pixels that f still can classify
correctly. Then pt is obtained by normalization as α·p′t/||p′t||∞
where α is a fixed step length. The pseudocode of the entire
generation pipeline is shown in Algorithm 1.

B. Robust Salient Object Detection Framework

In this section, we propose a novel salient object detection
framework ROSA that demonstrates high robustness against
adversarial attacks. As shown in Figure 2, the ROSA frame-
work consists of a segment-wise shielding component, a FCN-
based backbone network and a context-aware restoration com-
ponent. Virtually the backbone can be chosen as an arbitrary
FCN-based visual saliency model that takes a whole image as
input and yields a densely labeled saliency map. The FCN
backbone enjoys high efficiency and accuracy but displays
sensitivity on adversarial samples. The shielding component

Algorithm 1 Adversarial Sample Generation
Require: natural image x;

corresponding saliency annotation y;
pre-trained visual saliency model f(·; θ);
pixels set S = {1, 2, ..., n} of x;
maximum number of iterations T ;
step length α; upper bound ε of L∞ norm;

x∗0 ← x, p← 0, t← 0, e← 0, S0 = S;
while t < T and e ≤ ε and |St| > 0 do

calculate p′t by Equation 4;
pt ← α · p′t/||p′t||∞;
p← p+ pt;
calculate x∗t+1 by Equation 3;
e← ||x∗t+1 − x||∞;
t← t+ 1;
St ← {i|argmaxc{fi,c(x∗t ; θ)} = yi};

end while
x∗ ← x∗t + x;
x∗ ← round(x∗);
return x∗;

and the restoration component play an important role in
improving the robustness of the proposed framework.

A segment-wise shielding component destroys potential
adversarial noise patterns in an input image before sending
it to the backbone, by introducing some “shuffling” noise that
is easier to resist. The observation behind is that adversarial
noises are some delicate perturbations deliberately synthesized
for convolutional neural networks, while CNN is not sensitive
to and can adapt to some other noise. To alleviate harms caused
by the new noise, the shielding component first divides the
input image into non-overlapping regions, namely superpix-
els. We follow the region decomposition method developed
by [63]. Specifically, k cluster centers in the joint space of
color and pixel position are initialized by sampling pixels at
regular grid steps. Then we assign each pixel to the cluster
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center with minimum distance, and update each cluster center
as the mean vector of pixels belonging to the cluster, in an
iterative way. The iteration ends when L2 norm error between
new location and previous location of each cluster center
converges.

After region decomposition, we permute all pixels within
the same superpixel randomly. Such shuffling operation
strongly destroy the adversarial perturbation while it limits the
introduced noise within each single superpixel. Thus object
boundaries that those superpixels are adhere to are not spoiled
and the noisy saliency map output by the backbone network
has a chance to be restored. Some may suggest an option that
smooths each superpixel by averaging pixels inside. Recall
what we argue in the introduction, existing FCN models
overfit too much high-level semantics in visual saliency data.
The random permutation makes capturing high-level semantics
more difficult and enforces neural networks to harvest low-
level contrast among regions. It also plays a role in augmenting
dataset and reducing the overfitting issue.

A context-aware restoration component exploits low-level
similarity between each pixel and its context to refine the
saliency scores provided by the backbone network. As adver-
sarial perturbations aim at parameterized convolution filters,
the restoration component adopts a complete graph model
instead of CNN architecture. We measure similarity among
pixels in low-level color space and spatial position, since previ-
ous high-level convolutional features have been polluted. The
restoration component adjusts saliency maps by minimizing
some energy function as Equation 5:

E(y∗) =
∑
i

Eu(y
∗
i , yi) +

∑
i<j

Ep(y
∗
i , y
∗
j ) (5)

where y denotes the coarse saliency map and y∗ denotes the
resulted saliency map. The first unary energy term measures
the cost (inverse likelihood) of assigning i with y∗i . The second
term pairwise energy measures the cost of assigning i and j
with y∗i and y∗j at the same time. It encourages similar nearby
pixels to be labeled the same. The pairwise energy is defined
as Equation 6 where p denotes pixel position and x′i denotes
pixel color. x′ is a smoothed image output by the bilateral
filter that takes the adversarial sample x∗ as input, as shown
in Figure 2. ω1 and ω2 are tuned by training. θα, θβ and θγ
are chosen as 160, 3 and 3 respectively. µ is a learnable label
compatibility function that penalizes assigning i and j with
different labels.

Ep(y
∗
i , y
∗
j ) =µ(y

∗
i , y
∗
j ){ω1exp(−

|pi − pj |2

2θ2α
−
|x′i − x′j |2

2θ2β
)

+ ω2exp(−
|pi − pj |2

2θ2γ
)}

(6)

We realize the component following some previous
work [64], [65] that solves Equation 5 as densely connected
conditional random field with a recurrent neural network. The
neural network is implemented with and enjoys efficiency from
1 × 1 convolutional layers. Since the restoration component
makes use of global context to refine results, it is more difficult
to change the prediction by adversarial noises of some limited

perturbation strength. In order to influence the prediction
results of pixels at certain specific locations, intricate changes
involving a larger range of feature vectors may be required,
which in turn results in larger pixel value perturbations.

C. Training Scheme

The following explains how we train the entire framework in
an end-to-end scheme. In the beginning, the FCN-based back-
bone of ROSA framework is initialized as some pre-trained
visual saliency model while the parameters of context-aware
restoration component are set up according to [65]. Then the
parameters of the backbone network and the restoration com-
ponent are fine-tuned together. As the segment-wise shielding
component contains no learnable parameters, gradients are
not passed backward through that component. To maintain
generalization ability against different kinds of adversarial
perturbation, our training set does not include adversarial
samples but only natural images. These training samples are
fed into the segment-wise shielding component. As shown in
Figure 2, a pixel-wise cross-entropy loss function is computed
between the ground truth saliency map and the output of the
context-aware restoration component. SGD algorithm is used
to train the proposed method. The learning rate of the context-
aware restoration component is set as 10−10 while that of other
parts is selected as 10−13. The momentum and weight decay
are set as 0.9 and 0.0005 respectively. For each backbone FCN
in this paper, fine-tuning with our proposed framework takes
no more than 5 epochs. We adopt early-stopping strategy and
terminate the training if the performance on validation set
is not improved after 2 consecutive epochs. If the proposed
method adopts DSS as its backbone, a forward pass on an
image costs about 0.8 seconds.

IV. EXPERIMENT

In this section, we conduct three groups of experiments.
First, we launch adversarial attacks on existing visual saliency
models and investigate how they are affected. Then, we inte-
grate our proposed framework with current models to present
how the proposed framework enhances robustness for those
models. Lastly, we verify the effectiveness of each component
in the ROSA framework.

A. Dataset

In this paper, we conduct experiments on MSRA-B
dataset [66], HKU-IS dataset [18], DUT-OMRON dataset [9]
and ECSSD dataset [67]. MSRA-B dataset contains a train set
of 2500 images, a validation set of 500 images and a test set
of 2000 images. HKU-IS dataset includes 2500 images, 500
images and 1447 images in train set, validation set and test
set respectively. We follow the released data split in MSRA-B
and HKU-IS dataset. For DUT-OMRON dataset, we randomly
separate all the 5168 images into a train set of 2500 images, a
validation set of 500 images and a test set of 2168 images. For
ECSSD dataset, all 1000 images are taken as testing samples.
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TABLE I
Fβ MEASURE AND MAE ON NATURAL AND ADVERSARIAL EXAMPLES

Model Fβ measure MAE
Original Adversarial Original Adversarial

DSS 87.13% 51.08% 0.0491 0.2251
DCL 86.82% 56.84% 0.0583 0.1921

RFCN 87.68% 75.39% 0.0544 0.0976
Amulet 84.94% 75.63% 0.0511 0.0906

UCF 81.64% 75.03% 0.0734 0.1107
LEGS 76.39% 75.43% 0.1192 0.1231
MC 75.31% 74.65% 0.0982 0.0999

MDF 82.05% 80.99% 0.0946 0.0999

B. Evaluation

We select Mean Absolute Error (MAE), precision, recall, Fβ
measure and PR curves as evaluation metrics. MAE measures
pixel-level difference between the saliency map S and ground
truth G as Equation 7:

MAE =
1

W ×H

W∑
i=1

H∑
j=1

|Si,j −Gi,j | (7)

where W and H denote the width and height of the saliency
map respectively. To compute Fβ measure, we binarize each
saliency map with an image-dependent threshold proposed
by [63]. The threshold T is calculated as Equation 8:

T =
2

W ×H

W∑
i=1

H∑
j=1

Si,j (8)

where W and H denote width and height of the saliency map
S. Pixels with saliency value larger than T form the predicted
salient region. Precision is the ratio of ground truth salient
pixels in the predicted salient area while recall is the ratio of
predicted salient pixels in the ground truth salient area. Fβ
measure is defined as Equation 9 [63]:

Fβ =
(1 + β2)× Precision×Recall

β × Precision+Recall
(9)

where β2 is set as 0.3 to emphasize the precision. To draw
PR curves, a list of equally spaced thresholds are sampled.
For each threshold value, each predicted saliency map in the
benchmark is quantized into a binary mask. Precision and
recall are calculated with each binary mask and its ground
truth annotation. The precision and the recall corresponding
to each threshold are computed by respectively taking average
of precision and recall for all binary masks. Then we obtain
a list of (precision, recall) pairs and plot it as a PR curve.

C. Effectiveness of Adversarial Attack

We demonstrate the performance of eight state-of-the-art
visual saliency models: DSS [6], DCL [34], RFCN [35],
Amulet [28], UCF [29], MC [22], LEGS [21] and MDF [18]
on natural images and adversarial samples which are syn-
thesized with a pre-trained DSS model. For efficiency, the
above neural models are trained on the train set of MSRA-
B and tested on the test set of HKU-IS. The upper bound of
L∞ norm ε is chosen as 20. Qualitative results can be found
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Fig. 3. Effectiveness of Adversarial Attack on PR curves. As shown in the
above figures, the PR curve of DSS on adversarial samples drops the most
seriously. The PR curves of DCL, RFCN, Amulet and UCF also degrade to
some extent, which suggests that adversarial samples yielded by some FCN
network are transferable to attack other FCN variants. For MC, LEGS and
MDF, their PR curves tested on natural images and adversarial samples are
relatively close to each other, which indicates that the sparse labeling based
methods are insensitive to adversarial noises.
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Fig. 4. Effectiveness of Adversarial Attack on Precision, Recall and Fβ

measure. N -adv denote the result of neural network N tested on adversarial
samples. As shown in the above bar diagrams, the precision, recall and Fβ

of DSS-adv and DCL-adv decline by a wide margin, in comparison to DSS
and DCL respectively. For RFCN, Amulet and UCF, their precision, recall
and Fβ tested on adversarial samples also decrease to some degree. For
sparse labeling methods (MC, LEGS and MDF), their performances against
adversarial attacks is almost unchanged.

in Figure 5 where each sample consists of two rows. The
upper are natural image and its predicted saliency maps while
the lower are adversarial samples and their corresponding
results. The second column from the left are the ground truth
saliency maps denoted as GT. DSS, DCL, RFCN, Amulet and
UCF. Predicted saliency maps on adversarial samples change
significantly, compared with that on natural images. For MC,
LEGS and MDF, predictions on adversarial samples and that
on original images are visually approximate.

As shown in Table I, Fβ measure of DSS and DCL drop
30%-36% when exposed to the adversarial samples. The
adversarial attack reduces Fβ measure of RFCN, Amulet and
UCF by 6%-12% while it only lowers Fβ of MC, LEGS, MDF
by 0.7%-1.1%. As shown in Table I, MAE of DSS and DCL
are increased by 0.176 and 0.1338 on the adversarial samples
while that of RFCN, Amulet and UCF are raised by around
0.04. MAE of MC, LEGS, MDF change less than 0.01. These
results indicate that DSS suffers most from the adversarial
attack for the adversarial samples are synthesized using a
DSS model. DCL, RFCN, Amulet and UCF are affected to
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different extent, which may depend on the similarity between
their architectures and the pre-trained model used to launch
attacks.

Figure 3 demonstrates the comparison of PR curves w.r.t
these above-mentioned salient object detection models tested
on natural images and adversarial samples. N -adv denotes
some neural network N tested on adversarial samples. The
results tested on adversarial samples are plotted using blue
solid curves while those tested on original images are draw
with orange dashed curves. As shown in Figure 3, the PR
curves of DSS and DCL are significantly higher than DSS-adv
and DCL-adv. It indicates that DSS and DCL suffer the most
from adversarial samples. Because the adversarial samples are
synthesized using exactly the same DSS model. DCL also
severely affected by the adversarial attacks, possibly because
it has similar network structure with DSS. The PR curves
of RFCN-adv, Amulet-adv and UCF-adv also decline by a
considerable margin respectively, in comparison to RFCN,
Amulet and UCF. That is to say, adversarial samples generated
by some FCN based model are transferable to degrade other
FCN based methods to different extent. Even attackers are
unaware of the target neural network, they still have chances
to launch successful attacks using some arbitrary FCN model.
It reveals that existing visual saliency models based on dense
labeling are threatened by adversarial attacks. For MC, LEGS
and MDF, their PR curves on natural images and adversarial
samples almost completely overlap. It suggests that sparse la-
beling methods are quite robust against existing gradient-based
attacks, since gradients propagated from different segments to
the same image position very possibly conflict with each other.

Figure 4 are the bar diagrams of existing visual saliency
methods tested on natural images and adversarial samples.
P, R, F denote precision, recall and Fβ measure respectively
in the color of blue, green and yellow. The results shown in
Figure 4 draws similar conclusions with Figure 3. Precision,
recall and Fβ of DSS and DCL decrease the most seriously
against adversarial attacks. For RFCN, Amulet and UCF, their
precision, recall and Fβ are also harmed by adversarial sam-
ples to some degree. Segment based models such MC, LEGS
and MDF are more robust and present negligible degeneration.

D. Robustness of the Robust Salient Object Detection Frame-
work

To demonstrate the robustness of ROSA, we present exten-
sive experiments on four datasets (HKU-IS, ECSSD, DUT-
OMRON and MSRA-B), with three state-of-the-art saliency
models (DSS, DCL and RFCN) as baselines. All models in
the section are trained on a dataset that includes training
sets of HKU-IS, DUT-OMRON and MSRAB. Adversarial
samples are synthesized with a DSS model pre-trained on
the above-mentioned dataset. The L∞ norm upper bound ε
of the adversarial noise is chosen as 25. We also compare
our proposed method with serveral existing defending algo-
rithms, which are developed for robust image classification
and can be transferred to other tasks. Smooth denotes a spatial
smooth filter in [68]. JPEG [69], [54] denotes applying JPEG
compression on input images before feeding them into target

networks. The quality of the compressed image is set to
75 according to [54]. Quant [70] denotes bit reduction that
quantizes 8-bit RGB images into pixel values with less bits.
We reduce images to 3 bits following [54]. TVM [54] denotes
total variation minimization that aims at reducing difference
between adjacent pixels. TVM is implemented using [71].
Table II, Table III and Table IV are the numeric results with
a baseline model as DSS, DCL and RFCN respectively. D-
adv denotes experiments on the adversarial samples of dataset
D. N+M denotes the neural network N equipped with the
defense method M .

As Table II shows, DSS+ours outperforms DSS* by 71.9%-
86.2% w.r.t Fβ measure on adversarial samples. DSS* displays
seriously degraded Fβ lower than 1.0% because the adversarial
samples are synthesized with the same DSS model. For fair
comparison, we also attack DSS+ours with samples produced
by its own DSS backbone, which is denoted as DSS+ours*.
DSS+ours* still significantly surpasses DSS* by 71.86%-
86.05% Fβ . The difference of the performance between
DSS+ours* and DSS+ours is quite small and less than 0.78%
Fβ . Note that on natural images DSS+ours* and DSS+ours
have exactly the same numerical results, since their difference
lies in using DSS models of different weights to synthesize
adversarial samples. For simplicity, the cell corresponding to
DSS+ours tested on original images leave a blank. Compared
with existing defense baselines, DSS+ours exceeds the second
best DSS+TVM by 6.08% Fβ and 0.0337 MAE on the adver-
sarial samples of HKU-IS dataset. On ECSSD-adv dataset, our
proposed method outperforms TVM by 2.92% Fβ and 0.0327
MAE. DSS+ours surpasses the second best DSS+TVM by
6.05% Fβ and 0.0206 MAE on DUT-OMRON-adv dataset. On
the adversarial samples of MSRA-B, the proposed framework
also obtains higher Fβ and smaller MAE than other defense
methods. As for natural images, the performances of different
models are close to each other, because of no threats caused
by adversarial noises. Existing defense approaches act as small
variations on input images and result in slight degeneration on
performance. In most cases, the proposed framework achieves
the best Fβ measure and MAE on clean input images, which
suggests that our method improve the backbone model on both
adversarial samples and natural images.

In the case of DCL shown in Table III, our proposed
methods presents the highest Fβ and the smallest MAE on
both original images and adversarial samples of all four
benchmarks. For example, DCL+ours outperforms DCL+TVM
by 3.35% Fβ and DCL+Quant by 0.0112 MAE on HKU-
IS-adv. Fβ and MAE of DCL+ours are superior to those of
DCL by 1.65% and 0.0033 on HKU-IS dataset. On MSRA-
B-adv data, our proposed defense framework surpasses the
second best TVM by 2.24% and Smooth by 0.013. On the
natural images of MSRA-B, DCL+ours also obtains better
Fβ and MAE than the second best DCL+Smooth and DCL
by 1.33% and 0.0042 respectively. In the case of RFCN
shown in Table IV, the proposed defense framework achieves
the best Fβ and MAE on the adversarial samples of all
four benchmarks. For example, RFCN+ours outperforms the
second best RFCN+TVM by 4.09% Fβ and RFCN+Quant by
0.0318 MAE on ECSSD-adv dataset. RFCN+ours surpasses
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Input Images Ground Truth DSS [6] DCL [34] RFCN [35] Amulet [28] UCF [29] MC [22] LEGS [21] MDF [18]

Fig. 5. Effectiveness of Adversarial Attack. The leftmost column are input images in which the upper one is a natural image and the lower one is the
corresponding adversarial samples. The second column from the left are ground truth saliency maps in which the lower position leave vacant because natural
images and their adversarial samples share the same ground truth. As shown in the above examples, saliency maps predicted by FCN based salient object
detection models including DSS, DCL, RFCN, Amulet, UCF are deteriorated by input images with adversarial perturbations. Segment based models such as
MC, LEGS and MDF produce more consistent results between natural images and adversarial samples.

Original Images Adversarial Samples DSS [6] DSS+ours DCL [34] DCL+ours RFCN [35] RFCN+ours Ground Truth

Fig. 6. Robustness of ROSA. The leftmost column are original natural images. The second column from the left are the corresponding adversarial samples.
The rightmost column are ground truth. N+ours denotes some neural model N incorporated with our proposed method ROSA. All salient object detection
models in the above are tested on adversarial samples. As shown in the above examples, our proposed framework enhances the prediction accuracy of three
backbone network DSS, DCL and RFCN.

TABLE II
ROBUSTNESS OF ROSA WITH DSS

Dataset Metric DSS* DSS+ours* DSS+ours DSS+Smooth DSS+JPEG DSS+Quant DSS+TVM

HKU-IS-adv Fβ 0.74% 83.18% 83.52% 54.93% 12.61% 31.80% 77.44%
MAE 0.7495 0.0654 0.0644 0.1831 0.4638 0.3224 0.0981

HKU-IS Fβ 87.50% 88.48% 85.92% 87.28% 87.07% 84.39%
MAE 0.0436 0.0341 0.0528 0.0446 0.0479 0.0670

ECSSD-adv Fβ 0.90% 81.48% 82.26% 55.09% 12.91% 34.84% 79.34%
MAE 0.7763 0.0940 0.0915 0.2202 0.4960 0.3428 0.1242

ECSSD Fβ 87.69% 87.33% 86.56% 87.59% 87.23% 85.62%
MAE 0.0608 0.0475 0.0712 0.0618 0.0689 0.0891

DUT-OMRON-adv Fβ 0.41% 72.27% 72.31% 35.41% 22.62% 26.83% 66.26%
MAE 0.8038 0.0687 0.0690 0.2265 0.3409 0.2885 0.0896

DUT-OMRON Fβ 76.20% 79.63% 74.96% 76.19% 75.32% 73.70%
MAE 0.0547 0.0469 0.0591 0.0547 0.0581 0.0675

MSRA-B-adv Fβ 0.51% 86.56% 86.71% 49.79% 35.48% 46.35% 84.11%
MAE 0.8021 0.0549 0.0548 0.2460 0.3376 0.2608 0.0812

MSRA-B Fβ 89.59% 89.76% 89.11% 89.58% 89.06% 88.63%
MAE 0.0440 0.0366 0.0484 0.0440 0.0489 0.0567
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TABLE III
ROBUSTNESS OF ROSA WITH DCL

Dataset Metric DCL DCL+ours DCL+Smooth DCL+JPEG DCL+Quant DCL+TVM

HKU-IS-adv Fβ 77.84% 84.38% 79.89% 79.36% 79.53% 81.03%
MAE 0.0866 0.0695 0.0843 0.0810 0.0807 0.0911

HKU-IS Fβ 85.22% 86.87% 84.67% 85.08% 84.72% 83.59%
MAE 0.0540 0.0507 0.0671 0.0550 0.0579 0.0797

ECSSD-adv Fβ 79.22% 83.76% 80.50% 80.85% 80.58% 82.28%
MAE 0.1070 0.0960 0.1081 0.1008 0.1047 0.1229

ECSSD Fβ 85.82% 86.25% 85.02% 85.63% 85.41% 84.82%
MAE 0.0698 0.0677 0.0867 0.0712 0.0783 0.1093

DUT-OMRON-adv Fβ 60.46% 69.68% 60.34% 64.46% 62.54% 67.95%
MAE 0.1091 0.0794 0.1092 0.0934 0.0995 0.0912

DUT-OMRON Fβ 70.30% 72.23% 67.92% 70.30% 69.10% 70.66%
MAE 0.0723 0.0683 0.0891 0.0723 0.0769 0.0834

MSRA-B-adv Fβ 79.87% 87.82% 83.62% 83.53% 82.68% 85.58%
MAE 0.0960 0.0645 0.0775 0.0783 0.0819 0.0837

MSRA-B Fβ 87.80% 89.29% 87.96% 87.76% 87.02% 87.19%
MAE 0.0563 0.0521 0.0595 0.0563 0.0609 0.0743

TABLE IV
ROBUSTNESS OF ROSA WITH RFCN

Dataset Metric RFCN RFCN+ours RFCN+Smooth RFCN+JPEG RFCN+Quant RFCN+TVM

HKU-IS-adv Fβ 76.58% 85.76% 76.38% 78.36% 79.83% 78.72%
MAE 0.0985 0.0599 0.1036 0.0916 0.0862 0.1068

HKU-IS Fβ 86.94% 87.18% 85.12% 86.24% 85.65% 82.69%
MAE 0.0533 0.0535 0.0668 0.0563 0.0612 0.0893

ECSSD-adv Fβ 77.24% 84.89% 78.27% 79.69% 80.61% 80.80%
MAE 0.1290 0.0836 0.1319 0.1190 0.1154 0.1382

ECSSD Fβ 87.22% 85.76% 85.73% 86.77% 86.04% 84.05%
MAE 0.0735 0.0802 0.0911 0.0770 0.0869 0.1207

DUT-OMRON-adv Fβ 56.09% 72.57% 60.60% 63.79% 62.30% 66.21%
MAE 0.1257 0.0691 0.1132 0.1002 0.1048 0.1029

DUT-OMRON Fβ 72.18% 74.37% 71.28% 72.15% 70.02% 70.14%
MAE 0.0728 0.0638 0.0786 0.0728 0.0802 0.0918

MSRA-B-adv Fβ 76.32% 89.68% 79.96% 83.46% 83.36% 85.14%
MAE 0.1210 0.0507 0.1053 0.0852 0.0848 0.0912

MSRA-B Fβ 89.45% 90.53% 88.43% 89.45% 88.25% 87.47%
MAE 0.0518 0.0469 0.0605 0.0519 0.0604 0.0769
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Fig. 7. Quantitative Analysis on the robustness of ROSA in terms of PR Curve. It shows the PR curves of existing defense methods and our proposed framework
with DSS, DCL and RFCN respectively. Solid curves denote our proposed method while dashed curves denote other defense algorithms. DSS+ROSA* denotes
DSS+ROSA tested on the adversarial samples synthesized by the DSS backbone of DSS+ROSA itself. As shown in the above figures, our proposed method
achieves higher PR curves than other defense baselines with DSS, DCL and RFCN.

the second best RFCN+TVM by 4.54% and RFCN+Quant by
0.0341 MAE on MSRA-B-adv dataset. As for natural images,
our proposed method RFCN+ours achieves competitive or

better results than RFCN.

Figure 7 demonstrates the PR curves of existing defense
baselines and the proposed method with three backbone net-
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TABLE V
ABLATION STUDY OF ROSA

Model Fβ measure MAE
Original Adversarial Original Adversarial

DSS+SWS 82.89% 79.09% 0.0660 0.0802
DSS+CAR 90.96% 53.86% 0.0428 0.2169
DSS+ours 85.78% 82.18% 0.0541 0.0683

DCL+SWS 78.19% 74.20% 0.0852 0.1015
DCL+CAR 88.36% 60.17% 0.0500 0.1754
DCL+ours 84.86% 81.46% 0.0579 0.0708

RFCN+SWS 77.07% 74.45% 0.0916 0.1004
RFCN+CAR 88.80% 77.98% 0.0549 0.0904
RFCN+ours 86.05% 83.83% 0.0603 0.0688
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Fig. 8. Ablation Study of ROSA. The above compares the entire proposed
framework with its separated components, segment-wise shielding component
denoted as SWS, and context-aware restoration component denoted as CAR.
The upper row are PR curves with DSS, DCL and RFCN while the lower
one are bar diagrams of precision, recall and Fβ . As shown in the above
figures, the performance of the entire proposed framework is superior to those
of its internal components. It suggests that the internal components in our
proposed method acts as different roles to complement and enhance each
other significantly.

works, DSS, DCL and RFCN respectively. Solid curves denote
the proposed defense framework while dashed ones denote ex-
isting defense algorithms. Note that in the leftmost sub-figure
of Figure 7, DSS+ROSA* denotes attacking DSS+ROSA via
adversarial samples that are generated using the backbone
of DSS+ROSA itself. As shown in Figure 7, the proposed
defense framework displays better PR curves than the second
best TVM with DSS as backbone. On the case of DCL and
RFCN, the PR curves of our proposed method are also higher
than the second best Quant by a considerable margin. The
existing defense algorithms perform significantly worse with
DSS than DCL and RFCN, since the adversarial samples
are synthesized using a DSS model. In short, our proposed
framework not only significantly enhances the robustness of
backbone against adversarial attacks but also demonstrates
comparable or better performance on natural images. Figure 6
presents some qualitative comparisons on the robustness of
ROSA.

E. Ablation Study

This section verifies the effectiveness of each part in the
proposed ROSA framework. We integrate each component of
ROSA with DSS, DCL and RFCN respectively. For simplicity,

the above models are trained on MSRA-B train set and tested
on HKU-IS test set. SWS denotes Segment-Wise Shield-
ing component and CAR denotes Context-Aware Restoration
component. To validate the effect of CAR/SWS, we com-
pare *+SWS/*+CAR with *+ROSA. According to Table 3,
even though *+CAR exceed *+ROSA by 5.22%, 3.5% and
2.75% Fβ on natural images, *+ROSA outperforms *+CAR
by 28.32%, 21.29% and 5.85% against adversarial attacks,
which indicates the effectiveness of SWS. MAE results in
Table 3 also draw a similar conclusion. Even though MAE
of *+CAR are 0.0113, 0.0079 and 0.0054 less than that of
*+ROSA on natural images, *+ROSA lowers MAE by 0.1486,
0.1046 and 0.0216 on adversarial samples by a larger margin.
As for components *+SWS, *+ROSA surpasses *+SWS by
2.89%, 6.67%, 8.98% Fβ on original samples and 3.09%,
7.26%, 9.38% Fβ on adversarial samples. Besides, *+ROSA
reduces MAE by 0.0119, 0.0273, 0.0313 on natural images and
0.0119, 0.0307, 0.0316 on adversarial samples in comparison
to *+SWS, which authenticates the effectiveness of CAR.
We claim that SWS and CAR are two strongly coupled
components. For example, DCL obtains 56.84% Fβ against
adversarial samples as shown in Table I while DCL+CAR
achieves 60.17% Fβ . CAR improves DCL by 3.33% Fβ .
However, DCL+ours (SWS+CAR) outperforms DCL+SWS
by 7.26% Fβ more than 3.33%. That is to say, with SWS
component, the effectiveness of CAR is more significant. The
cases of DSS and RFCN draw the same conclusion. Thus SWS
and CAR are not separated processing but two complementary
steps of one core idea, adaptively predicting saliency for inputs
with the new introduced noise to resist adversarial attacks.
In short, CAR component can refine saliency maps predicted
by models with SWS component. These two components
are complementary and contribute to the robustness of our
proposed method.

Figure 8 compares the entire proposed framework with
its internal components with DSS, DCL and RFCN, on PR
curves and bar diagrams of precision-recall-Fβ . The upper
row are PR curves while the lower one are bar diagrams.
Among these PR curves, the blue solid ones denote the
entire proposed method while the orange/yellow dashed ones
denote the internal components SWS and CAR. In the bar
diagrams, P, R and F denote precision, recall and Fβ in the
color of blue, green and yellow respectively. In Figure 8,
the entire proposed framework displays higher PR curves
than its internal components with three different backbone
networks. Besides, the precision, recall and Fβ of the entire
proposed method also surpass those of *+SWS and *+CAR.
In detail, *+CAR perform the worst with DSS and DCL, while
*+SWS is close to *+CAR with RFCN. It indicates that CAR
component almost cannot resist adversarial attacks without
SWS component. Note that *+ROSA achieves the best and
outperform *+SWS with different backbones. It suggests that
CAR component can further improve *+SWS by a significant
margin.

F. Investigation of Attack Strength
In this section, we investigate how a hyper-parameter, the

upper bound of L∞ norm (denoted as ε), affects the strength
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Image ε = 10 ε = 20 ε = 30

Ground Truth DSS DSS+ours DSS DSS+ours DSS DSS+ours DSS DSS+ours

Fig. 9. Qualitative comparison among adversarial attacks of different strengths. ε denotes the L∞ norm upper bound of adversarial perturbations. As shown
in the above, larger ε achieves stronger attack and results in worse performance of a pre-trained DSS model. But the curve-like patterns of adversarial noises
are more easily observed. No matter what ε is set in the range of [0, 30], the proposed method denoted as DSS+ours presents stable and fine saliency maps.
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Fig. 10. Investigation of Attack Strength. Epsilon denotes the L∞ norm upper
bound of adversarial perturbations. Fmeasure denotes the evaluation metric,
Fβ -measure.

of the proposed adversarial attack. We also study how our
proposed defense method performs against adversarial attacks
of different strengths. For efficiency, 500 images are randomly
selected from the test set of MSRA-B dataset. These 500
images are named MSRA-B500. A list of ε is sampled in
the range of [0, 30]. For each ε, a set of adversarial samples
is synthesized for the whole MSRA-B500. These adversarial
samples are computed using some pre-trained DSS model as
target network. Each set of adversarial samples is tested by an-
other trained DSS model, and our proposed method with DSS
respectively. Fβ-measure and MAE are calculated for each set
of adversarial samples. We plot these results as Fmeasure-
Epsilon curves and MAE-Epsilon curves in Figure 10. As
Figure 10 shows, the blue curve denotes the performance
of DSS while the red one represents the proposed method
(denoted as DSS+ROSA). As ε increases, the Fβ of DSS drops
dramatically. It suggests that the strength of an adversarial
attack grows with the increase of its L∞ norm upper bound.
Notice that as ε rises, the performance of our proposed method
only degrades slightly and then becomes stable. It indicates
that the proposed defense framework is robust to adversar-
ial samples of different strengths. Figure 9 demonstrates a
qualitative comparison among adversarial attacks of different
strengths. Setting ε as 30 achieves the strongest attack and
DSS incorrectly predicts the reverse of the ground truth as
salient regions. However, the adversarial noise is perceptible

and curve-like patterns can be observed in the top right of the
adversarial sample. For ε = 20, the adversarial perturbations
are hard to spot and the DSS model is still seriously affected.
Thus we suggest that choosing ε around 20 helps launch a
strong and quasi-imperceptible adversarial attack on salient
object detection models.

V. CONCLUSION

In this paper we for the first time achieve successful attacks
on state-of-the-art visual saliency methods. We experimentally
confirm that existing FCN-based models are sensitive to ad-
versarial perturbation. In addition, this paper proposes a novel
salient object detection framework that first brings some new
generic noise to input images, and then adaptively detects
salient objects for the inputs with the new noise. The proposed
framework is instantiated by an arbitrary FCN based backbone
network, a segment-wise shielding component and a context-
aware restoration component. Experimental results suggest
that these two components are strongly coupled and signifi-
cantly complement each other. Besides, extensive comparisons
show that the entire framework can effectively strengthen the
robustness of FCN-based saliency models, superior to existing
defense baselines. We believe that developing an accurate,
fast and robust model will be a new trend in salient object
detection.
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