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Abstract

Referring expression comprehension aims to locate the
object instance described by a natural language referring
expression in an image. This task is compositional and in-
herently requires visual reasoning on top of the relation-
ships among the objects in the image. Meanwhile, the vi-
sual reasoning process is guided by the linguistic structure
of the referring expression. However, existing approaches
treat the objects in isolation or only explore the first-order
relationships between objects without being aligned with
the potential complexity of the expression. Thus it is hard
for them to adapt to the grounding of complex referring
expressions. In this paper, we explore the problem of re-
ferring expression comprehension from the perspective of
language-driven visual reasoning, and propose a dynamic
graph attention network to perform multi-step reasoning by
modeling both the relationships among the objects in the
image and the linguistic structure of the expression. In par-
ticular, we construct a graph for the image with the nodes
and edges corresponding to the objects and their relation-
ships respectively, propose a differential analyzer to predict
a language-guided visual reasoning process, and perform
stepwise reasoning on top of the graph to update the com-
pound object representation at every node. Experimental
results demonstrate that the proposed method can not only
significantly surpass all existing state-of-the-art algorithms
across three common benchmark datasets, but also gener-
ate interpretable visual evidences for stepwisely locating
the objects referred to in complex language descriptions.

1. Introduction
A referring expression is a natural language description

of a particular object in an image. Referring expression
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Figure 1. Visual reasoning by Dynamic Graph Attention Network
for identifying compound objects. Given an expression and im-
age, the static attention module constructs the multi-modal relation
graph; the linguistic structure analyzer prescribes a visual reason-
ing process based on the expression; the dynamic graph attention
module performs visual reasoning on top of the graph by following
the prescribed visual reasoning process to identify the compound
objects step by step.

comprehension thus requires locating the object instance in
the image according to a given referring expression. It is
one of the core tasks in the field of artificial intelligence to
realize human-computer communication.

The core of referring expression comprehension lies in
joint understanding of high-level semantics of co-occurring
language and visual contents, which inherently involves
reasoning. For example, the grounding of the referring ex-
pression “the umbrella held by the person in the pink hat”
requires three-step reasoning (shown in Figure 1), first lo-
cating the pink hat in the image under the guidance of the
phrase “the pink hat”, next identifying the person who is
“in the pink hat”, and finally locating the umbrella which
is “held by” “the person in the pink hat”. However, almost
all the existing approaches for referring expression compre-
hension do not introduce reasoning or only support single-
step reasoning. Meanwhile, the models trained with those
approaches have poor interpretability. Among them, the
most classic work [13, 16, 21, 25] encodes an expression
with an LSTM model [5], extracts features of visual ob-
jects in the image using CNNs [24, 20], and adopts match-
ing loss functions to learn a common feature space for the
expression and the visual objects. There also exists work
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[30, 19, ?, 27], which involves extra pairwise context fea-
tures or multi-order context features to improve the under-
standing of the image. However, they generally treat the
learning process as a black box without explicit reasoning,
and the learned monolithic features do not have adequate
competitiveness when complex referring expressions are
given. Recently, single-step reasoning [7, 29] has been pro-
posed by decomposing the expression into different compo-
nents and matching each component with a corresponding
visual region via modular networks. The method in [32] is
the only one that exploits multi-step reasoning for referring
expression comprehension. Its stepwise reasoning is imple-
mented using an LSTM model, which recurrently generates
attended visual features while feeding the combination of
word embedding and the attended visual features back to
the LSTM. However, its stepwise reasoning does not con-
sider the linguistic structure of the expression, and it does
not explore the relationships among objects in the image.

To overcome the aforementioned difficulties, we propose
a Dynamic Graph Attention Network (DGA) to achieve a
high-level understanding of the expression and the image,
and enable the multi-step reasoning of the interactions be-
tween the expression and the image. The core ideas behind
the proposed DGA come from three aspects, which include
expression decomposition based on linguistic structure, ob-
ject relationships modeling, and multi-step reasoning for
identifying compound objects from relations. First, parsing
the language structure of the expression is critical because
it directly provides the visual reasoning steps for finding
the referent. However, it is hard to accurately obtain the
linguistic structure of a referring expression as such expres-
sions are usually complex and flexible. Therefore, we resort
to a differential analyzer module to predict constituent ex-
pressions of the input expression step by step to capture the
linguistic structure, and the input expression is represented
as a sequence of constituent expressions. Second, it is nec-
essary to take into consideration the relationships among
the objects in the image because unambiguous referring ex-
pressions normally not only describe the attributes of the
referent itself, but also its relationships to other objects in
the image [30, 7, 27]. Therefore, the proposed DGA con-
structs a directed graph over the objects in the image. The
nodes and edges of the graph correspond to the objects and
relationships among the objects respectively. Last but not
the least, the DGA performs reasoning over the graph un-
der the guidance of the constituent expressions in a step-
wise manner to capture higher-order relationships among
the objects and update the compound objects corresponding
to each node through graph propagation.

In summary, this paper has the following contributions:

• It is the first piece of work that explores the problem of
referring expression comprehension from the perspec-
tive of language-driven visual reasoning in real-world

images and expressions. A differential analyzer is pro-
posed to predict a multi-step language-guided visual
reasoning process.
• A dynamic graph attention network is proposed to per-

form multi-step visual reasoning on top of a multi-
modal relation graph and identify compound objects
by following the predicted reasoning process, which is
specified as a sequence of constituent expressions.
• Experimental results show that the proposed method

can not only significantly surpass all existing state-
of-the-art algorithms, but also generate visualizable
and interpretable results, showing visual evidences for
stepwise locating the objects referred to in complex
language descriptions.

2. Related Work
2.1. Referring Expression Comprehension

Referring expression comprehension is to locate the ob-
ject in an image given an input expression. To solve this
language-vision multi-modal challenge, it is necessary to
learn the correlations between those two modals. Some
previous work [16, 21, 25] independently encodes the in-
puts in the two modals and learns a common feature space
for them. To learn the common feature space, they propose
different matching loss functions to optimize, e.g., softmax
loss [16, 21] and triplet loss [25]. Another work [18, 30, 19]
learns to maximize the likelihood of the expression given
the referent and the image, and the work inputs the fusion
of visual object feature, visual context feature (e.g., entire
image CNN feature [18], the visual difference between the
objects belonging to the same category in the image [30]
and context region CNN features [19]), object location fea-
ture and the word embedding to an LSTM to parameterize
the distribution. Different from the previous work, recent
work [32, 4] adopts co-attention mechanisms to build up
the interactions between the expression and the objects in
the image.

Those approaches ignore the relationships among ob-
jects in the image and the linguistic structure in the expres-
sion, which is the key to referring expression comprehen-
sion. For an image, they represent the image as a set of in-
dependent visual objects [16, 21, 25, 13, 18] or compound
objects only including direct relationship [19, 30]. For an
expression, they encode the expression sequentially and ig-
nore the dependencies in the expression. In order to im-
prove the comprehension, some work [7, 29] designs fixed
templates to softly decompose the expression into different
semantic components via self-attention, and they compute
the language-vision matching scores for each pair of the
component and visual region. However, current work is not
applicable for expressions that do not conform to the fixed
templates. In addition, they ignore the relationships among



Figure 2. The overall architecture of the Dynamic Graph Attention Network (DGA) for referring expression comprehension. First, the
DGA builds a graph over the objects in the image, where the nodes and edges correspond to the objects and relationships respectively, and
then fuses the language representation of the expression into the graph; Second, the analyzer learns the language guidance for reasoning
by exploring the linguistic structure of the expression. Next, the DGA performs step-wise dynamic reasoning on top of the graph under
the guidance of the predicted visual reasoning process which is a sequence of constituent expressions. At each step, the DGA highlights
the nodes and edges in the graph by attending the constituent expression over the nodes and edges, and identifies the compound objects for
the highlighted nodes by considering their relationships with the compound objects connected by the highlighted edges. Finally, the DGA
computes the matching scores between the compound objects and the referring expression. Better view in color, and the different colors
represent different steps.

the visual objects. Recently, [14] explores the visual rea-
soning for referring expression comprehension in synthetic
domain. Different with them, we focus on real-world im-
ages and expressions, but do not resort to the guidance of
language parsing (language programs[14]) ground-truth.

To overcome the limitations above, we propose a method
to learn to encode the dependencies in the expression and
image, and build the interactions between them. We take
the linguistic structure into consideration to understand the
expression and construct a graph over the visual objects to
model the image. And then, their interactions are built up
by attention mechanisms.

2.2. Interpretable Reasoning

Visual reasoning has drawn much attention because it is
essential in the development of Artificial Intelligence. For
fulfilling the task of the visual reasoning, the models need to
learn reasoning abilities and improve their interpretabilities
for the decision rules. There are some existing methods for
achieving those requirements. For one-step relational rea-
soning, the relation networks [22] model pairwise relation-
ships between objects directly. For single-step or multi-step
reasoning, some work [28, 26, 15, 8] explains the reasoning
steps by generating updated attention distribution on the im-
age for each step using the attention mechanisms. The other
work [1, 9, 6, 3] decomposes the reasoning procedure into
a sequence of sub-tasks and learns different modular net-
works to deal with each sub-task.

There are also some methods on referring expression
comprehension which attempt to introduce interpretable
reasoning. The modular networks are used to improve the
interpretabilities of models on referring expression compre-

hension [7, 29]. [7] decomposes the expression into subject-
relationship-object triplets and aligns the textual representa-
tions with image regions using localization module or rela-
tionship module; however, referring expressions have much
richer forms than this fixed subject-relationship-object tem-
plate. MattNet [29] decomposes the expressions into three
phrases which are corresponding to the subject, location and
relationship modules respectively; however, it cannot pro-
cess multi-step reasoning. The other work [32] enables rea-
soning as a step-wise attention process following the step-
wise representation of the expression; however, it treats the
expression as the sequence of words, which ignores the lin-
guistic structure of the expression. Different from existing
work on referring expression comprehension, we adopt a
differential analyzer module to dynamically decompose the
expression into its constituent expressions step by step to
maintain its linguistic structure and to implement multi-step
and dynamic reasoning.

3. Dynamic Graph Attention Network
We introduce a type of network, Dynamic Graph Atten-

tion Network (DGA), to address interpretability and multi-
step reasoning in referring expression comprehension. Our
method performs reasoning by identifying a sequence of
compound objects corresponding to partial referring ex-
pressions. Our model consists of four main modules: (1)
A language-driven differential analyzer (shown inside the
green-dotted box in Figure 2), that predicts a visual rea-
soning process for a referring expression and decomposes
the expression into a sequence of constituent expressions,
each of which is specified as a soft distribution over the
words in the expression. (2) A static graph attention mod-



ule (shown inside the blue-dotted box in Figure 2), that con-
structs a directed graph over the visual objects in the image
and further builds a multi-modal graph under the guidance
of the expression. (3) A dynamic graph attention module
(shown inside the orange-dotted box in Figure 2), which en-
ables reasoning on top of the multi-modal graph and identi-
fies compound objects corresponding to constituent expres-
sions. During each reasoning step, the current constituent
expression attends the nodes and edges in the graph, and up-
dates the expression-related features of visual objects. (4)
A matching module, which computes the matching score
between an expression and every compound object.

The overall framework of the proposed DGA is illus-
trated in Figure 2. In the rest of this section, we elaborate
all the modules in this network.

3.1. Language-Guided Visual Reasoning Process

Referring expressions are complex, and include rich de-
pendencies and nested linguistic structures, which further
guide the visual reasoning process. In theory, natural lan-
guage parsers can parse grammatical relations among the
words in an expression, but existing language parsers are
not practical for referring expression comprehension due to
highly unrestricted language [29]. Each complex expres-
sion is defined by its constituent expressions and the rules
used to combine them. We model an expression as a se-
quence of constituent expressions, and each constituent ex-
pression is specified as a soft distribution over the words in
the expression.

Given an expression Q = {ql}Ll=1 with L words, a
DGA network predicts the constituent expression (i.e., a tu-
ple consisting of soft distribution over the words R(t) =

{r(t)l }Ll=1 and Q) corresponding to the compound object
at each reasoning step t. The DGA’s computational pro-
cess for the distribution is similar to the control unit in
[8]. The DGA first learns an embedding for the words,
F = {f l}Ll=1, and then encodes the sequence of word
embeddings into a vector sequence H = {hl}Ll=1 using
a bi-directional LSTM [2], where hl is the concatenation
of the output from the forward and backward LSTMs at the
l-th word. Meanwhile, the overall expression is represented
with a feature vector q, which is the concatenation of the
last hidden states of both the forward and backward LSTMs.
Next, the DGA runs recurrently for T time steps, where T
is the number of reasoning steps. During each time step t,
the DGA transforms the feature vector q into a time-step
dependent vector q(t) through a learned linear transform,
and concatenates the vector q(t) with the output from the
previous time step y(t−1) to form a new vector u(t),

q(t) =W (t)q + b(t),

u(t) = [q(t);y(t−1)];
(1)

where W (t) and b(t) are trainable parameters at time step
t; y(t−1) is the output at the previous time step t − 1; u(t)

includes the information at previous time steps and the over-
all information of the expression, and the trainable parame-
ters y(0) is randomly initialized at the beginning of training.
Then, the DAG computes the similarity between u(t) and
the encoded wordsH to predict the relevance of each word
in visual reasoning during the current time step. The soft
distribution over the words at time step t, R(t) = {r(t)l }Ll=1,
is calculated as follows:

s(t) = relu(W uu
(t) + bu),

a
(t)
l =W s2[tanh(W s0s

(t) +W s1hl)],

r
(t)
l =

exp(a(t)l )∑L
l=1 exp(a(t)l )

,

(2)

whereW u, bu,W s0,W s1 andW s2 are trainable parame-
ters, and they are shared across different time steps. Finally,
the output y(t) at time step t is defined as follows:

y(t) =

L∑
l=1

r
(t)
l hl. (3)

y(t) is part of the input at the next time step t+ 1.
Once we have run this language-guided visual reasoning

process for T steps, the sequence of soft distribution over
the words, {R(t)}Tt=1, can be obtained. The soft constituent
expression (R(t), Q) provides guidance to identify the com-
pound object for time step t.

3.2. Static Graph Attention

The DGA first constructs a directed graph GI over the
visual objects in the image. The nodes of the graph cor-
respond to the visual objects, and the edges correspond to
the relationships between objects. Next, the DGA attends
the words in the expression over the nodes and edges of the
graph GI , which builds the connection between the expres-
sion and the image, and then sets up a multi-modal graph
GM . GI models the dependencies among objects in the im-
age while GM enhances GI by representing the interaction
between the expression and the image.

3.2.1 Graph construction
Given an image I with K object proposals O = {ok}Kk=1

(bounding boxes), the DGA builds a directed graph GI =
(V,E,XI), where V = {vk}Kk=1 is the set of nodes and
vk corresponds to object ok; E = {eij}Ki,j=1 is the set of
edges and eij corresponds to the relationship between oi
and oj ; XI = {xIk}Kk=1 is a set of features, and xIk is
the concatenation of ok’s visual feature xok and ok’s spatial
feature pk (xIk = [xok;pk]). In particular, xok is extracted
from a pretrained CNN model [24, 20], and spatial feature
pk is defined as pk = W p[x0k, x1k, wk, hk, wkhk], where



(x0k, x1k) are the normalized coordinates of the center of
object ok, wk and hk are the normalized width and height,
andW p is a trainable parameter.

Similar to [27], we explore the relationship between each
pair of object proposals according to their size and loca-
tions. For any pair of objects oi and oj , edge eij is defined
as follows. We compute the relative distance dij , relative
angle θij ∈ [0, 360) (i.e., the angle between the horizontal
axis and vector (x0i − x0j , x1i − x1j)), and Intersection
over Union mij between them. If oi includes oj , eij = 1,
which means “inside”; if oi is covered by oj , eij = 2, which
means “cover”; if none of the above two cases is true and
mij is larger than 0.5, eij = 3, which means “overlap”; oth-
erwise, when the ratio between dij and the diagonal length
of the image is larger than 0.5, eij = 0, which means “no re-
lationship”; In the reset of the cases, eij = 4 + b θij+22.5

45 c.
eij = [4, 5, ...11] means “right”, “top right”, “top”, “top
left”, “left”, “bottom left”, “bottom”, and “bottom right”,
respectively. In summary, eij = 0 means no edge between
nodes vi and vj , and the range of eij is from 1 to Ne = 11.

3.2.2 Static Attention
The multi-modal graph GM is defined as GM =
(V,E,XM ), where V and E are as same as the nodes and
edges of graph GI respectively, while the features of nodes,
XM , are computed under the guidance of the expression.
Here, we use the word embedding F = {f l}Ll=1 mentioned
in Section 3.1 to represent the expression.

Words in a referring expression can usually be classified
into two types (i.e., entity and relation). We compute the
weight of each type, zl = [z0l, z1l], for the l-th word repre-
sented as ql as follows,

z0l = sigmoid(W z1(W z0f l + bz0) + bz1),

z1l = 1− z0l,
(4)

whereW z0,W z1, bz0 and bz1 are trainable parameters; z0l
and z1l are the entity weight and relation weight of word ql
respectively.

Next, we represent the interactions between graph
GIand the expression by attending the expression over the
nodes and edges of the graph. On the basis of the word em-
bedding, F = {f l}Ll=1, and the entity weights of words,
{z0l}Ll=1, the weighted normalized attention distribution
over the nodes of graph GI is defined as follows.

ak,l =W α2[tanh(W α1x
I
k +W α0f l)],

αk,l = z0l
exp(ak,l)∑K
k=1 exp(ak,l)

,
(5)

whereW α0,W α1 andW α2 are trainable parameters. αk,l
is the weighted normalized attention, indicating the prob-
ability of the l-th word in the expression referring to node

vk. Thus, the language representation ck at node vk is com-
puted by aggregating all attention weighted word feature
vectors,

ck =

L∑
l=1

αk,lf l. (6)

Likewise, we compute a normalized distribution of
words over the edges of graph GI . Each edge has its own
relation type (i.e., 1, ..., 11 as described in Section 3.2.1),
and the weights for edges are formulated as the weights for
edges’ types.

βl = z1lsoftmax(W β1σ(W β0f l + bβ0) + bβ1), (7)

where W β0, W β1, bβ0 and bβ1 are trainable parameters;
σ is the activation function; the softmax function is defined
over the Ne = 11 types; βn,l is the n-th element of βl,
which is the weighted probability of the l-th word referring
to edge type n ∈ 1, 2, ..., Ne.

Then, we compute the features for the nodes in graph
GM ,XM . The feature at node vk, xMk , is a combination of
the node feature xIk of graph GI and the language represen-
tation ck,

xMk =Wm[xIk; ck] + bm, (8)

where theWm and bm are trainable parameters.

3.3. Dynamic Graph Attention

The DGA performs multi-step reasoning on top of the
multi-modal graph GM under the guidance of the predicted
visual reasoning process {R(t)}Tt=1 generated from the re-
ferring expression (Section 3.1). The DGA’s actual reason-
ing steps takes into account the relationships among the ob-
jects in the image as well as the dependencies in the ex-
pression. Such reasoning steps start from the initial fea-
tures XM at the nodes V of graph GM , and these initial
features represent individual objects corresponding to the
nodes. During the actual reasoning process, the DGA grad-
ually updates the representations of compound objects ac-
cording to the soft distributions ({R(t)}Tt=1), the structure
of graphGM , individual visual objects as well as compound
objects in previous time steps.

At each time-step t, the DGA maintains a set of memo-
ries,M (t) = {m(t)

k }Kk=1, to save individual objects (t = 1)
or compound objects (t > 1) identified in time step t, and
m

(t)
k represents the individual object or compound object

corresponding to node vk; meanwhile, it maintains two sets
of gates, P (t) = {p(t)k }Kk=1 and {ν(t)n }Ne

n=1, to save the
weights of nodes and the weights of edges at the current
and all previous time steps. Specifically, p(t)k represents the
weight of node vk and ν(t)n represents the weight of edge
type n. Reasoning at time step t is guided by the constituent
expression (R(t) = {r(t)l }Ll=1, Q = {ql}Ll=1). By attend-
ing the constituent expression over the nodes and edges of



graph GM , we can obtain the normalized weights of nodes
and edges for time step t. We compute such weights in
two steps. First, we compute the γ(t)k,l , that represents the

probability of the l-word referring to node vk, and δ(t)n,l, that
represents the probability of the l-th word referring to edge
type n, as weighted the distribution over words, R(t), over
the static attention weight, αk,l and βn,l, introduced in Sec-
tion 3.2.2,

γ
(t)
k,l = r

(t)
l αk,l, δ

(t)
n,l = r

(t)
l βn,l. (9)

Second, we compute λ(t)k (or µ(t)
n ) that represents the weight

of node vk (or the edge type n) being mentioned in time
step t as the summation of weights representing individual
words in the constituent expression referring to node vk (or
edge type n),

λ
(t)
k =

L∑
l=1

γ
(t)
k,l , µ

(t)
n =

L∑
l=1

δ
(t)
n,l. (10)

Next, we update the gates for every node, vk, and the gates
for every type of edge, n,

p
(t)
k = λ

(t)
k + p

(t−1)
k , ν(t)n = µ(t)

n + ν(t−1)
n . (11)

Then, we obtain the object feature corresponding to node
vk for time step t,m(t)

k . When t = 1,m(t)
k is set to the fea-

ture at node vk in the multi-modal graph GM , xMk . Other-
wise, we identify the compound object,mk, corresponding
to node vk by considering the nodes connected to vk as well
as compound objects identified in previous time steps,

←−m(t)
k =

∑
ej,k>0

ν(t)ej,k(
←−
Wm

(t−1)
j p

(t−1)
j +

←−
b ej,k),

m̃
(t)
k = W̃m

(t−1)
k + b̃,

m
(t)
k =

λ
(t)
k (Ŵ (←−m(t)

k + m̃
(t)
k ) + b̂) + p

(t−1)
k m

(t−1)
k

p
(t)
k

,

(12)
where

←−
W , {

←−
b n}Ne

n=1, W̃ , b̃, Ŵ and b̂ are trainable pa-
rameters, and they are shared across all time steps. ←−m(t)

k is
encoded feature from relationships, m̃(t)

k is its updated ver-
sion, and m(t)

k combines the features from both the current
time step and the previous time steps. When p(t)k is equal to
zero,m(t)

k is set tom(t−1)
k .

Finally, we use the compound object corresponding to
node vk at the time step T to represent object proposal ok.

3.4. Matching

The matching score between proposal ok and the input
expression is defined as follow,

scorek = L2Norm(W c0m
(T )
k )� L2Norm(W c1q), (13)

whereW c0 andW c1 are trainable parameters; q is the fea-
ture of the entire expression, which is defined in Section 3.1.

We adopt the triplet loss with online hard negative min-
ing [23] to train the DGA network. The triplet loss is de-
fined as

loss = max(scoreneg +4− scoregt, 0), (14)

where scoreneg and scoregt are the matching scores of the
negative proposal and the ground-truth proposal respec-
tively; 4 is the margin. During the inference stage, the
proposal with highest matching score is chosen as the pre-
diction.

4. Experiments
4.1. Datasets

We have conducted experiments on the following three
common benchmark datasets for referring expression com-
prehension, which were collected from the MSCOCO [12]
dataset.
RefCOCO [30] contains 142,210 referring expressions for
50,000 objects in 19,994 images, which were collected from
an interactive game interface [10]. It is split into train, val-
idation, testA and testB, which has 120,624, 10,834, 5,657
and 5,095 expression-referent pairs, respectively. testA in-
cludes images of multiple people while testB includes im-
ages with multiple other objects.
RefCOCO+ [30] has 141,564 expressions for 49,856 ob-
jects in 19,992 images collected from an interactive game
interface. RefCOCO+ does not contain descriptions of ab-
solute location in the expressions. It is split into train, val-
idation, testA and testB, which has 120,191, 10,758, 5,726
and 4,889 expression-referent pairs, respectively.
RefCOCOg [18] includes 95,010 long referring expres-
sions for 49,822 objects in 25,799 images collected in a
non-interactive setting. RefCOCOg [19] has 80,512, 4,896
and 9,602 expression-referent pairs for training, validation
and testing, respectively.

4.2. Evaluation and Implementation

We evaluate the proposed DGA on both ground-truth ob-
jects and detected objects. Accuracy is used as the evalua-
tion metric. A prediction is considered correct if the top pre-
dicted object is the ground-truth object when ground-truth
objects are used, or if the Intersection over Union between
the top predicted object and the ground-truth object is larger
than 0.5 when detected objects are used.

We follow the similar produce of [27] to extract the vi-
sual object features of images. Specifically, each object is
represented as 2,048-dimensional feature extracted from the
pool5 layer of the ResNet-101 based Faster R-CNN model
[20]. Since some previous methods use VGG-16 [24] as
the feature extractor, for the sake of fairness, we also report



RefCOCO RefCOCO+ RefCOCOg
feature val testA testB val testA testB val test

MMI [18] vgg16 - 63.15 64.21 - 48.73 42.13 - -
Neg Bag [19] vgg16 76.90 75.60 78.00 - - - - 68.40
CG [16] vgg16 - 74.04 73.43 - 60.26 55.03 - -
Attr [13] vgg16 - 78.85 78.07 - 61.47 57.22 - -
CMN [7] vgg16 - 75.94 79.57 - 59.29 59.34 - -
Speaker [30] vgg16 76.18 74.39 77.30 58.94 61.29 56.24 - -
Spearker+Listener+Reinforcer[31] vgg16 78.36 77.97 79.86 61.33 63.10 58.19 71.32 71.72
Speaker+Listener+Reinforcer [31] vgg16 79.56 78.95 80.22 62.26 64.60 59.62 71.65 71.92
AccumulateAttn [4] vgg16 81.27 81.17 80.01 65.56 68.76 60.63 - -
ParallelAttn [32] vgg16 81.67 80.81 81.32 64.18 66.31 61.46 - -
MAttNet [29] vgg16 80.94 79.99 82.30 63.07 65.04 61.77 73.04 72.79
Ours DGA vgg16 83.73 83.56 82.51 68.99 72.72 62.98 75.76 75.79
MAttNet [29] resnet101 85.65 85.26 84.57 71.01 75.13 66.17 78.10 78.12
Ours DGA resnet101 86.34 86.64 84.79 73.56 78.31 68.15 80.21 80.26

Table 1. Comparison with state-of-the-art methods on RefCOCO, RefCOCO+ and RefCOCOg when ground-truth bounding boxes are
used. The best performing method is marked in bold.

the results using VGG-16 as backbone. During training, the
mini-batch size is set to 64 and we adopt Adam optimizer
[11] to update the network parameters. The learning rate is
initially set to 0.0005. Margin is set to 0.1 in all our experi-
ments.

4.3. Comparison with the State of the Art

We conduct experimental comparison between our pro-
posed DGA and existing state-of-the-art approaches.
Ground-truth objects Table 1 shows quantitative evalua-
tion results on ground-truth objects. Our proposed DGA
consistently outperforms existing methods across all the
datasets. When the VGG-16 features are used, the DGA
improves the average accuracy over the validation and test-
ing sets achieved by the best performing existing approach
by 2.00%, 3.25% and 2.86% respectively on the RefCOCO,
RefCOCO+ and RefCOCOg datasets. Once we switch to
use the ResNet-101 based Faster R-CNN as the backbone,
the average accuracy across all the splits is further increased
by approximately 4.03%. These results demonstrate that
the linguistic structure of the referring expression and the
relationships among the visual objects in the image are con-
ducive to referring expression comprehension.
Detected objects We have also evaluated the performance
of the DGA on automatically detected objects in the three
datasets. The detected objects are obtained using Faster R-
CNN [20] pretrained on MSCOCO’s training images with
the images in the validation and testing sets of RefCOCO,
RefCOCO+ and RefCOCOg excluded. Since most previ-
ous methods report their results using VGG-16 features, for
fair comparison, we also adopt VGG-16 features here. The
results are shown in Table 2. The performance drops af-
ter we switch from ground-truth objects to detected objects,
which is due to detection errors. Nevertheless, the proposed
DGA still outperforms all the existing state-of-the-art mod-
els, which demonstrates the robustness of the DGA with

RefCOCO RefCOCO+ RefCOCOg
testA testB testA testB test

MMI [18] 64.90 54.51 54.03 42.81 -
Neg Bag [19] 58.60 56.40 - - 49.50
CG [16] 67.94 55.18 57.05 43.33 -
Attr [13] 72.08 57.29 57.97 46.20 -
CMN [7] 71.03 65.77 54.32 47.76 -
Speaker [30] 67.64 55.16 55.81 43.43 -
S+L+R [31] 72.94 62.98 58.68 47.68 59.63
S+L+R [31] 72.88 63.43 60.43 48.74 59.21
ParallelAttn [32] 75.31 65.52 61.34 50.86 -
Ours DGA 78.42 65.53 69.07 51.99 63.28

Table 2. Comparison with the state-of-the-art methods on Ref-
COCO, RefCOCO+ and RefCOCOg when detected objects are
used. The best performing method is marked in bold.

respect to object detection results.

4.4. Qualitative Evaluation

In order to better explore the reasoning processes learned
by the DGA, we study the visualizations of sample re-
sults along with their attention distributions produced by the
DGA during its iterative computation. At each time step, we
visualize the soft distribution over the words to reveal the
attended language information during reasoning, and show
the attention distribution over graph nodes to indicate the re-
lated objects. If a compound object occurs during this time
step, we also visualize the relationship distribution by high-
lighting the other objects that interact with the object that is
transformed into the compound object. Moreover, the final
matching scores are also provided.

The qualitative evaluation results shown in Figure 3
demonstrates that the proposed DGA can generate visual-
izable and interpretable evidences for the decision rules. In
Figure 3(a), the expression is parsed into a tree structure,
which indicates that the referent “a lady” is “wearing a pur-
ple shirt” and meanwhile it is “with a birthday cake”. Dur-



(a) a lady wearing a purple shirt with a birthday cake
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Figure 3. Qualitative results showing the iteratively reasoning processes predicted by the DGA, including the word attention weights, node
attention maps, relationship attention maps and final matching scores.

ing the first two time steps, the DGA pays more attention
to the “birthday cake” and the “purple shirt” respectively.
At the third step, it focuses on the compound object “a lady
wearing a purple shirt with a birthday cake” by involving
the two related objects (i.e. “birthday cake” and “purple
shirt”). In Figure 3(b), the visual reasoning process forms a
chain structure and the DGA gradually identifies the com-
pound objects. At first time step, the DGA attends the “gray
shirt”. Next, it focuses on the compound object “the man
wearing gray shirt” by connecting “the man” with the “gray
shirt”. Then, it shifts focus to the compound object “the ele-
phant behind the man wearing a gray shirt” by relating “the
elephant” to the compound object “the man wearing gray
shirt” in the last step. The final compound object achieves
the highest matching score with the referring expression.

4.5. Ablation Study

To demonstrate the effectiveness of the linguistic struc-
ture of expressions and multi-step reasoning on top of the
relationships among objects in referring expression com-
prehension, we train four additional models for comparison.
The results are shown in Table 3. The static DGA performs
matching between the initial features of nodes in the multi-
modal graph with the given referring expression. The per-
formance of the static DGA is worse than the dynamic DGA
because the static DGA ignores the relationships among ob-
jects and it does not perform reasoning. The DGA with lan-
guage parser [17] groups the words in the expression into
multiple parts, and treats these parts as the constituent ex-
pressions to guide reasoning. In comparison to the DGA(3)
(a DGA with three time steps), the performance drop of the
DGA with language parser demonstrates the crucial role of

RefCOCO RefCOCO+ RefCOCOg
val testA testB val testA testB val test

static DGA 82.10 82.13 82.08 70.56 74.71 65.31 74.45 76.52
DGA* 83.73 84.69 83.69 71.32 74.83 65.43 75.98 76.33
DGA(2) 84.84 85.50 83.69 72.88 76.58 66.62 78.64 79.09
DGA(4) 86.11 86.72 85.65 73.34 77.10 66.95 79.17 79.90
DGA(3) 86.34 86.64 84.79 73.56 78.31 68.15 80.21 80.26

Table 3. Ablation study on RefCOCO, RefCOCO+ and Ref-
COCOg. The number following “DGA” indicates the number of
reasoning steps used in the model. DGA* means DGA with lan-
guage parser.

the proposed analyzer for obtaining the linguistic structure.
Next, we explore the number of reasoning steps used in the
DGA. The DGA(2) with two steps performs worse than the
DGA(3) with three steps and DGA(4) with four steps be-
cause DGA(2) only considers direct relationships between
objects. The reason why the performance of DGA(3) is bet-
ter than that of DGA(4) might be that three steps of reason-
ing are adequate for the datasets used, and any extra steps
introduce noise.

5. Conclusion

In this paper, we have presented Dynamic Graph Atten-
tion Networks (DGA) to address referring expression com-
prehension. A DGA network performs multi-step reasoning
on top of the relationships among the objects in an image.
This process is guided by the learned linguistic structure of
the accompanying referring expression. Experimental re-
sults on common benchmark datasets demonstrate that the
DGA can not only outperform all existing state-of-the-art
methods, but also generate visualizable and interpretable re-
sults for the decision rules.
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