
EagleEye: Fast Sub-net Evaluation for Efficient
Neural Network Pruning

Bailin Li1, Bowen Wu2, Jiang Su1, Guangrun Wang2, and Liang Lin1,2

1 Dark Matter AI Inc.
2 Sun Yat-sen University

bl-zorro@163.com, {wubw6,wanggrun}@mail2.sysu.edu.cn, sujiang@dm-ai.cn,
linliang@ieee.org

Abstract. Finding out the computational redundant part of a trained
Deep Neural Network (DNN) is the key question that pruning algorithms
target on. Many algorithms try to predict model performance of the
pruned sub-nets by introducing various evaluation methods. But they
are either inaccurate or very complicated for general application. In this
work, we present a pruning method called EagleEye, in which a simple
yet efficient evaluation component based on adaptive batch normaliza-
tion is applied to unveil a strong correlation between different pruned
DNN structures and their final settled accuracy. This strong correlation
allows us to fast spot the pruned candidates with highest potential ac-
curacy without actually fine-tuning them. This module is also general to
plug-in and improve some existing pruning algorithms. EagleEye achieves
better pruning performance than all of the studied pruning algorithms
in our experiments. Concretely, to prune MobileNet V1 and ResNet-50,
EagleEye outperforms all compared methods by up to 3.8%. Even in
the more challenging experiments of pruning the compact model of Mo-
bileNet V1, EagleEye achieves the highest accuracy of 70.9% with an
overall 50% operations (FLOPs) pruned. All accuracy results are Top-1
ImageNet classification accuracy. Source code and models are accessible
to open-source community.3

Keywords: Model Compression; Neural Network Pruning;

1 Introduction

Deep Neural Network (DNN) pruning aims to reduce computational redundancy
from a full model with an allowed accuracy range. Pruned models usually result
in a smaller energy or hardware resource budget and, therefore, are especially
meaningful to the deployment to power-efficient front-end systems. However,
how to trim off the parts of a network that make little contribution to the model
accuracy is no trivial question.

3 https://github.com/anonymous47823493/EagleEye

ar
X

iv
:2

00
7.

02
49

1v
2 

 [
cs

.C
V

] 
 5

 A
ug

 2
02

0



2 Li et al.

DNN pruning can be considered as a searching problem. The searching space
consists of all legitimate pruned networks, which are referred as sub-nets or prun-
ing candidates. In such space, how to obtain the sub-net with highest accuracy
with reasonably small searching efforts is the core of a pruning task.


Full-size Network Pruned Network

Adaptive BN

Sensitivity Analysis

Meta Network
Short-term Fine-tuning

Evaluation Process



Pruning
Fine-tuning
(Optional)

Fig. 1. A generalized pipeline for pruning tasks. The evaluation process unveils the
potential of different pruning strategies and picks the one that most likely to deliver
high accuracy after convergence.

Particularly, an evaluation process can be commonly found in existing prun-
ing pipelines. Such process aims to unveil the potential of sub-nets so that best
pruning candidate can be selected to deliver the final pruning strategy. A visual
illustration of this generalization is shown in Figure 1. More details about the
existing evaluation methods will be discussed throughout this work. An advan-
tage of using an evaluation module is fast decision-making because training all
sub-nets, in a large searching space, to convergence for comparison can be very
time-consuming and hence impractical.

However, we found that the evaluation methods in existing works are sub-
optimal. Concretely, they are either inaccurate or complicated.

By saying inaccurate, it means the winner sub-nets from the evaluation pro-
cess do not necessarily deliver high accuracy when they converge [13,7,19]. This
will be quantitatively proved in Section 4.1 as a correlation problem measured
by several commonly used correlation coefficients. To our knowledge, we are the
first to introduce correlation-based analysis for sub-net selection in pruning task.
Moreover, we demonstrate that the reason such evaluation is inaccurate is the
use of sub-optimal statistical values for Batch Normalization (BN) layers [10].
In this work, we use a so-called adaptive BN technique to fix the issue and
effectively reach a higher correlation for our proposed evaluation process.

By saying complicated, it points to the fact that the evaluation process in
some works rely on tricky or computationally intensive components such as a
reinforcement learning agent [7], auxiliary network training [22], knowledge
distillation [8], and so on. These methods require careful hyper-parameter tuning
or extra training efforts on the auxiliary models. These requirements make it
potentially difficult to repeat the results and these pruning methods can be
time-consuming due to their high algorithmic complexity.



EagleEye 3

Above-mentioned issues in current works motivate us to propose a better
pruning algorithm that equips with a faster and more accurate evaluation pro-
cess, which eventually helps to provide the state-of-the-art pruning performance.
The main novelty of the proposed EagleEye pruning algorithm is described as
below:

– We point out the reason that a so-called vanilla evaluation step (explained
in Section 3.1) widely found in many existing pruning methods leads to poor
pruning results. To quantitatively demonstrate the issue, we are the first to
introduce a correlation analysis to the domain of pruning algorithm.

– We adopt the technique of adaptive batch normalization for pruning pur-
poses in this work to address the issue in the vanilla evaluation step. It is
one of the modules in our proposed pruning algorithm called EagleEye. Our
proposed algorithm can effectively estimate the converged accuracy for any
pruned model in the time of only a few iterations of inference. It is also gen-
eral enough to plug-in and improve some existing methods for performance
improvement.

– Our experiments show that although EagleEye is simple, it achieves the
state-of-the-art pruning performance in comparisons with many more com-
plex approaches. In the ResNet-50 experiments, EagleEye delivers 1.3% to
3.8% higher accuracy than compared algorithms. Even in the challenging
task of pruning the compact model of MobileNet V1, EagleEye achieves the
highest accuracy of 70.9% with an overall 50% operations (FLOPs) pruned.
The results here are ImageNet top-1 classification accuracy.

2 Related work

Pruning was mainly handled by hand-crafted heuristics in early time [13]. So
a pruned candidate network is obtained by human expertise and evaluated by
training it to the converged accuracy, which can be very time consuming con-
sidering the large number of plausible sub-nets. In later chapters, we will show
that the pruning candidate selection is problematic and selected pruned net-
works cannot necessarily deliver the highest accuracy after fine-tuning. Greedy
strategy were introduced to save manual efforts [26] in more recent time. But
it is easy for such strategy to fall into the local optimal caused by the greedy
nature. For example, NetAdapt [26] supposes the layer lt with the least accuracy
drop, noted as dt, is greedily pruned at step t. However, there may exist a better
pruning strategy where d′t > dt, but d′t + d′t+1 < dt + dt+1. Our method searches
the pruning ratios for all layers together in one single step and therefore avoids
this issue.

Some other works induce sparsity to weights in training phase for pruning
purposes. For example, [25] introduces group-LASSO to introduce sparsity of
the kernels and [21] regularizes the parameter in batch normalization layer.
[23] ranks the importance of filters based on Taylor expansion and trimmed off
the low-ranked ones. The selection standards proposed in these methods are



4 Li et al.

orthogonal to our proposed algorithm. More recently, versatile techniques were
proposed to achieve automated and efficient pruning strategies such as reinforce-
ment learning [7], generative adversarial learning mechanism [17] and so on. But
the introduced hyper-parameters add difficulty to repeat the experiments and
the trail-and-error to get the auxiliary models work well can be time consuming.

The technique of adjusting BN was used to serve for non-pruning purposes
in existing works. [14] adapts the BN statistics for target domain in domain
adaptation tasks. The common point with our work is that we both notice the
batch normalization requires an adjustment to adapt models in a new setting
where either model or domain changes. But this useful technique has not been
particularly used for model pruning purposes.

3 Methodology

Training Pruning Evaluation Fine-tuning

Full 
Model

Trained 
Model

Pruning 
Candidates

Winner 
Candidate

Delivered 
Pruned Model

Fig. 2. A typical pipeline for neural network training and pruning

A typical neural network training and pruning pipeline is generalized and
visualized in Figure 2. Pruning is normally applied to a trained full-size network
for redundancy removal purposes. An fine-tuning process is then followed up
to gain accuracy back from losing parameters in the trimmed filters. In this
work, we focus on structured filter pruning approaches, which can be generally
formulated as

(r1, r2, ..., rL)∗ = arg min
r1,r2,...,rL

L(A(r1, r2, ..., rL;w)), s.t. C < constraints, (1)

where L is the loss function and A is the neural network model. rl is the pruning
ratio applied to the lth layer. Given some constraints C such as targeted amount
of parameters, operations, or execution latency, a combination of pruning ratios
(r1, r2, ..., rL), which is referred as pruning strategy, is applied to the full-size
model. All possible combinations of the pruning ratios form a searching space. To
obtain a compact model with the highest accuracy, one should search through the
search space by applying different pruning strategies to the model, fine-tuning
each of the pruned model to converged and pick the best one. We consider the
pruning task as finding the optimal pruning strategy, denoted as (r1, r2, ..., rL)∗,
that results in the highest converged accuracy of the pruned model.



EagleEye 5

Apart from handcraft designing, different searching methods have been ap-
plied in previous work to find the optimal pruning strategy, such as greedy algo-
rithm [26,28], RL [7], and evlolutionary algorithm [20]. All of the these methods
are guided by the evaluation results of the pruning strategies.

3.1 Motivation

In many published approaches [7,13,19] in this domain, pruning candidates di-
rectly compare with each other in terms of evaluation accuracy. The sub-nets
with higher evaluation accuracy are selected and expected to also deliver high ac-
curacy after fine-tuning. However, such intention can not be necessarily achieved
as we notice the sub-nets perform poorly if directly used to do inference. The in-
ference results normally fall into a very low-range accuracy, which is illustrated
in Figure 3 left. An early attempt is to randomly generate pruning rates for
MobileNet V1 and apply L1-norm based pruning [13] for 50 times. The dark
red bars form the histogram of accuracy collected from directly doing inference
with the pruned candidates in the same way that [7,13,19] do before fine-tuning.
Because our pruning rates are randomly generated in this early attempt, so the
accuracy is very low and only for observation. The gray bars in Figure 4 shows
the situation after fine-tuning these 50 pruned networks. We notice a huge dif-
ference in accuracy distribution between these two results. Therefore, there are
two questions came up to our mind given above observation. The first question
is why removal to filters, especially considered as unimportant filters, can cause
such noticeable accuracy degradation although the pruning rates are random?
The natural question to ask next is how strongly the low-range accuracy is pos-
itively correlated to the final converged accuracy. These two questions triggered
our investigation into this commonly used evaluation process, which is called
vanilla evaluation in this work.

Fig. 3. Left:Histogram for accuracy collected from directly pruning MobileNet V1 and
fine-tuning 15 epoches. Right:Evolution of the weight distribution of a pruned Mo-
bileNetV1 [9] during fine-tuning on ImageNet [3]. Where X axis presents the magnitude
of the L1-norm of kernel, Y axis presents the quantity, Z axis presents the fine-tuning
epochs.



6 Li et al.

Some initial investigations are done to tentatively address the above two
questions. Figure 3 right shows that it might not be the weights that mess up
the accuracy at the evaluation stage as only a gentle shift in weight distribu-
tion is observed during fine-tuning, but the delivered inference accuracy is very
different. On the other side, Figure 4 left shows that the low-range accuracy
indeed presents poor correlation with the fine-tuned accuracy, which means that
it can be misleading to use evaluated accuracy to guide the pruning candidates
selection.

Interestingly, we found that it is the batch normalization layer that largely
affects the evaluation. Without fine-tuning, pruning candidates have parameters
that are a subset of those in the full-size model. So the layer-wise feature map
data are also affected by the changed model dimensions. However, vanilla eval-
uation still uses Batch Normalization (BN) inherited from the full-size model.
The outdated statistical values of BN layers eventually drag down the evalu-
ation accuracy to a surprisingly low range and, more importantly, break the
correlation between evaluation accuracy and the final converged accuracy of the
pruning candidates in the strategy searching space. A brief training, also called
fine-tuning, all pruning candidates and then compare them is a more accurate
way to carry out the evaluation [20, 15]. However, it is very time-consuming to do
the training-based evaluation for even single-epoch fine-tuning due to the large
scale of the searching space. We give quantitative analysis later in this section
to demonstrate this point.

Firstly, to quantitatively demonstrate the idea of vanilla evaluation and the
problems that come with it, we symbolize the original BN [10] as below:

y = γ
x− µ√
σ2 + ε

+ β, (2)

Where β and γ are trainable scale and bias terms. ε is a term with small value
to avoid zero division. For a mini-batch with size N , the statistical values of µ
and σ2 are calculated as below:

µB = E[xB] =
1

N

N∑
i=1

xi, σ2
B = V ar[xB] =

1

N − 1

N∑
i=1

(xi − µB)2. (3)

During training, µ and σ2 are calculated with the moving mean and variance:

µt = mµt−1 + (1−m)µB, σ2
t = mσ2

t−1 + (1−m)σ2
B, (4)

where m is the momentum coefficient and subscript t refers to the number of
training iterations. In a typical training pipeline, if the total number of training
iteration is T , µT and σ2

T are used in testing phase. These two items are called
global BN statistics, where ”global” refers to the full-size model.

3.2 Adaptive Batch Normalization

As briefly mentioned before, vanilla evaluation used in [7,13,19] apply global BN
statistics to pruned networks to fast evaluate their accuracy potential, which we



EagleEye 7

think leads to the low-range accuracy results and unfair candidate selection. If
the global BN statistics are out-dated to the sub-nets, we should re-calculate µT

and σ2
T with adaptive values by conducting a few iterations of inference on part of

the training set, which essentially adapts the BN statistical values to the pruned
network connections. Concretely, we freeze all the network parameters while
resetting the moving average statistics. Then, we update the moving statistics by
a few iterations of forward-propagation, using Equation 4, but without backward

propagation. We note the adaptive BN statistics as µ̂T and σ̂2
T .

Fig. 4. Correlation between fine-tuning accuracy and inference accuracy gained from
vanilla evaluation (left), adaptive-BN-based evaluation (right) based on MobileNet V1
experiments on ImageNet Top-1 classification results.

Figure 4 right illustrates that applying adaptive BN delivers evaluation accu-
racy that has a stronger correlation, compared to the vanilla evaluation Figure 4
left.

As another evidence, we compare the distance of BN statistical values be-
tween true statistics. We consider µ and σ2 sampled from the validation data as
the true statistics, noted as µval and σ2

val , because they are the real statistical
values in the testing phase. Specially, we are not obtaining insights from the val-
idation data, which we think is unfair, but simply showing that our evaluation
results are closer to the ground truth compared to the vanilla method. Con-
cretely, we expect µ̂T and σ̂2

T to be as close as possible to the true BN statistics
values,µval and σ2

val, so they could deliver close computational results. So we
visualize the distance of BN statistical values gained from different evaluation
methods (see Figure 5). Each pixel in the heatmaps represents a distance for a
type of BN statistics, either µval or σ2

val, between post-evaluation results and the
true statistics sampled via one filter in MobileNet V1 [9]. The visual observation
shows that adaptive BN provides closer statistical values to the true values while
global BN is way further. A possible explanation is that the global BN statistics
are out-dated and not adapted to the pruned network connections. So they mess
up the inference accuracy during evaluation for the pruned networks.

Noticeably, fine-tuning also relieves such problem of mismatched BN statis-
tics because the training process itself re-calculates the BN statistical values in
the forward pass and hence fixes the mismatch. However, BN statistics are not
trainable values but sampling parameters only calculated in inference time. Our



8 Li et al.

Fig. 5. Visualization of distances of BN statistics in terms of the moving mean and
variance. Each pixel refers to the distance of one BN statistics of a channel in Mo-
bileNetV1. (a) ‖µT − µval‖2, distance of moving mean between global BN and the
true values. (b) distance of moving mean between adaptive-BN and the true values
‖µ̂T − µval‖2. (c)

∥∥σ2
T − σ2

val

∥∥
2
, distance of moving variance between global BN and

the true values. (d) distance of moving variance between adaptive-BN and the true
values

∥∥σ2
T − σ2

val

∥∥
2

adaptive BN targets on this issue by conducting re-sampling in exactly the in-
ference step, which achieves the same goal but with way less computational cost
compared to fine-tuning. This is the main reason that we claim the application
of adaptive BN in pruning evaluation is more efficient than the fine-tuning-based
solution.

3.3 Correlation Measurement

As mentioned before, a good evaluation process in the pruning pipeline should
present a strong positive correlation between the evaluated pruning candidates
and their corresponding converged accuracy. Here, we compare two different
evaluation methods, adaptive-BN-based and vanilla evaluation, and study their
correlation with the fine-tuned accuracy. So we symbolize a vector of accuracy
for all pruning candidates in the searching space (Figure 6) separately using the
above two evaluation methods as X1 and X2 correspondingly while fine-tuned
accuracy is noted as Y . We firstly use Pearson Correlation Coefficient [24](PCC)
ρX,Y , which is used to measure the linear correlation between two variables X
and Y , to measure the correlation between ρX1,Y and ρX2,Y .

Since we particularly care about high-accuracy sub-nets in the ordered accu-
racy vectors, Spearman Correlation Coefficient (SCC) [2] φX,Y and Kendall rank
Correlation Coefficient (KRCC) [11] τX,Y are adopted to measure the monotonic
correlation. We compare the correlation between (X1, Y ) and (X2, Y ) in above
three metrics with different pruning rates. All cases present a stronger correla-
tion for the adaptive-BN-based evaluation than the vanilla strategy. See richer
details about quantitative analysis in Section 4.1.

3.4 EagleEye pruning algorithm

Based on the discussion about the accurate evaluation process in pruning, we
now present the overall workow of EagleEye in Figure 6. Our pruning pipeline



EagleEye 9

[0.1, 0.5, ..., 0.5]

[0.5, 0.2, ..., 0.1]

[0.3, 0.2, ..., 0.7]

Pruning Strategy
Generation

𝜔𝑇,𝜇𝑇 , 𝜎𝑇
2

𝜔𝑇, ො𝜇𝑇 , ො𝜎𝑇
2𝜔𝑇,𝜇𝑇 , 𝜎𝑇

2

Adaptive BN

Adaptive BN

Adaptive BN

3%

14%

10%

Finetuning

70.7%

𝜔𝑇+Δ𝑇, ො𝜇𝑇+Δ𝑇 , ො𝜎𝑇+Δ𝑇
2

Trained
Model

Delivered
Pruned Model

… … …

Winner Candidates
Selection

Sub-nets From
Searching Space

Filter
Pruning

Strategy Generation Filter Pruning Adaptive-BN-based Candidate Evaluation ……

Fig. 6. Workflow of the EagleEye Pruning Algorithm

contains three parts, pruning strategy generation, filter pruning, and adaptive-
BN-based evaluation.

Strategy generation outputs pruning strategies in the form of layer-wise
pruning rate vectors like (r1, r2, ..., rL) for a L-layer model. The generation pro-
cess follows pre-defined constraints such as inference latency, a global reduction
of operations (FLOPs) or parameters and so on. Concretely, it randomly samples
L real numbers from a given range [0, R] to form a pruning strategy, where rl de-
notes the pruning ratio for the lth layer. R is the largest pruning ratio applied to
a layer. This is essentially a Monte Carlo sampling process with a uniform distri-
bution for all legitimate layer-wise pruning rates, i.e. removed number of filters
over the number of total filters. Noticeably, other strategy generation methods
can be used here, such as the evolutionary algorithm, reinforcement learning etc.,
we found that a simple random sampling is good enough for the entire pipeline
to quickly yield pruning candidates with state-of-the-art accuracy. A possible
reason for this can be that the adjustment to the BN statistics leads to a much
more accurate prediction to the sub-nets’ potential, so the efforts of generating
candidates are allowed to be massively simplified. The low computation cost
of this simple component also adds the advantage of fast speed to the entire
algorithm.

Filter pruning process prunes the full-size trained model according to the
generated pruning strategy from the previous module. Similar to a normal filter
pruning method, the filters are firstly ranked according to their L1-norm and
the rl of the least important filters are trimmed off permanently. The sampled
pruning candidates from the searching space are ready to be delivered to the
next evaluation stage after this process.

The adaptive-BN-based candidate evaluation module provides a BN
statistics adaptation and fast evaluation to the pruned candidates handed over
from the previous module. Given a pruned network, it freezes all learnable pa-
rameters and traverses through a small amount of data in the training set to
calculate the adaptive BN statistics µ̂ and σ̂2. In practice, we sampled 1/30 of
the total training set for 100 iterations in our ImageNet experiments, which takes



10 Li et al.

only 10-ish seconds in a single Nvidia 2080 Ti GPU. Next, this module evaluates
the performance of the candidate networks on a small part of training set data,
called sub-validation set, and picks the top ones in the accuracy ranking as win-
ner candidates. The correlation analysis presented in Section 4.1 guarantees the
effectiveness of this process. After a fine-tuning process, the winner candidates
are finally delivered as outputs.

4 Experiments

4.1 Quantitative analysis of correlation

We use three commonly used correlation coefficient(ρ,σ and τ) to quantitatively
measure the relation between X1, X2 and Y , which are defined in Section 3.3.

Fig. 7. Vanilla vs. adaptive-BN evaluation: Correlation between evaluation and fine-
tuning accuracy with different pruning ratios (MobileNet V1 [9] on ImageNet [3] clas-
sification Top-1 results)

Firstly, as mentioned in Section 3.1 the poor correlation, presented by Fig-
ure 4 sub-figure, is basically 10 times smaller than adaptive-BN-based results
shown in Figure 4 right sub-figure. This matches with the visual observation
that the adaptive-BN-based samples are more trendy while the vanilla strategy
tends to give randomly distributed samples on the figure. This means the vanilla
evaluation hardly present accurate prediction to the pruned networks about their
fine-tuned accuracy.

Based on the above initial exploration, we extend the quantitative study to
a larger scale applying three correlation coefficients to different pruning ratios
as shown in Table 1. Firstly, the adaptive-BN-based evaluation delivers stronger
correlation measured in all three coefficients compared to the vanilla evaluation.
In average, ρ is 0.67 higher, φ is 0.79 higher and τ is 0.46 higher. Noticeably, the
correlation high in φ and τ means that the winner pruning candidates selected



EagleEye 11

Table 1. Correlation analysis quantified by Pearson Correlation Coefficient ρX,Y ,
Spearman Correlation Coefficient φX,Y , and Kendall rank Correlation Coefficient τX,Y .

FLOPs constraints ρX1,Y ρX2,Y φX1,Y φX2,Y τX1,Y τX2,Y

Not Fixed 0.793 0.079 0.850 0.025 0.679 0.063

75% FLOPs 0.819 -0.038 0.829 -0.030 0.656 -0.003

62.5% FLOPs 0.683 0.250 0.644 0.395 0.458 0.267

50% FLOPs 0.813 0.105 0.803 0.127 0.639 0.122

from the adaptive-based evaluation module are more likely to rank high in the
fine-tuned accuracy ranking as φ emphasizes the monotonic correlation.

Especially, the third to fifth rows of Table 1 shows the correlation metrics
with different pruning rates (for instance, 75% FLOPs also means 25% pruning
rate to operations). The corresponding results are also visualized in Figure 7. The
second row in Table 1 means the pruning rate follows a layer-wise Monte Carlo
sampling with a uniform distribution among the legitimate pruning rate options.
All the above tables and figures prove that the adaptive-BN-based evaluation
shows stronger correlation, and hence a more robust prediction, between the
evaluated and fine-tuned accuracy for the pruning candidates.

4.2 Generality of the adaptive-BN-based evaluation method

The proposed adaptive-BN-based evaluation method is general enough to plug-
in and improves some existing methods. As an example, we apply it to AMC [7],
which is an automatic method based on Reinforcement Learning mechanism.

AMC [7] trains an RL-agent to decide the pruning ratio for each layer. At
each training step, the agent tries applying different pruning ratios (pruning
strategy) to the full-size model as an action. Then it directly evaluates the accu-
racy without fine-tuning, which is noted as vanilla evaluation in our paper, and
takes this validation accuracy as the reward. As the RL-agent is trained with the
reward based on the vanilla evaluation, which is proved to have a poor correlation
to the converged accuracy of pruned networks. So we replace the vanilla evalua-
tion process with our proposed adaptive-BN-based evaluation. Concretely, after
pruning out filters at each step, we freeze all learnable parameters and do infer-
ence on the training set to fix the BN statistics and evaluate the accuracy of the
model on the sub-validation set. We feed this accuracy as a reward to train the
RL-agent in place of the accuracy of vanilla evaluation. The experiment about
MobileNetV1 [9] on ImageNet [3] classification accuracy is improved from 70.5%
(reported in AMC [7]) to 70.7%. It shows that the RL-agent can find a better
pruning strategy with the help of our adaptive-BN-based evaluation module.

Another example is the short-term fine-tune block in [26], which also can be
handily replaced by our adaptiveBN-based module for a faster pruning strategy
selection. On the other side, our pipeline can also be upgraded by existing meth-
ods such as the evolutionary algorithm used in [20] to improve the basic Monte
Carlo sampling strategy. The above experiments and discussion demonstrate the



12 Li et al.

generality of our adaptive-BN-based evaluation module, but can not be analyzed
in more detail due to the limited length of this paper.

4.3 Efficiency of our proposed method

Table 2. Comparison of computation costs of various pruning methods in the task
where all pruning methods are executed to find the best pruning strategy from 1000
potential strategies (candidates).

Method Evaluation Method Candidate Selection GPU Hours

ThiNet [22] finetuning 1000×10 finetune epochs ∼ 8000

NetAdapt [26] finetuning 104 training iterations 864

Filter Pruning [13] vanilla 1000×25 finetune epochs ∼ 20000

AMC [26] vanilla Training an RL agent -

Meta-Pruning [20] PruningNet Training an auxiliary network -

EagleEye adaptive-BN <1000×100 inference iterations 25

Our proposed pruning evaluation based on adaptive BN turn the prediction
of sub-net accuracy into a very fast and reliable process, so EagleEye is much
less time-consuming to complete the entire pruning pipeline than other heavy
evaluation based algorithms. In this part, we compare the execution cost for
various state-of-the-art algorithms to demonstrate the efficiency of our method.

Table 2 compares the computational costs of picking the best pruning strat-
egy among 1000 potential pruning candidates. As ThiNet [22] and Filter Prun-
ing [13] require manually assigning layer-wise pruning ratio, The final GPU hours
are the estimation of completing the pruning pipeline for 1000 random strategies.
In practice, the real computation cost highly depends on the expert’s heuristic
practice of trial-and-error. The computation time for AMC [7] and Meta-pruning
can be long because training either an RL network or an auxiliary network it-
self is time-consuming and tricky. Among all compared methods, EagleEye is
the most efficient method as each evaluation takes no more than 100 iterations,
which takes 10 to 20 seconds in a single Nvidia 2080 Ti GPU. So the total can-
didate selection is simply an evaluation comparison process, which also can be
done in negligible time.

4.4 Effectiveness of our proposed method

To demonstrate the effectiveness of EagleEye, we compare it with several state-
of-the-art pruning methods on MobileNetV1 and ResNet-50 [4] models tested on
the small dataset of CIFAR-10 [12] and the large dataset of ImageNet.

ResNet Table 3 left shows EagleEye outperforms all compared methods in
terms of Top-1 accuracy on CIFAR-10 dataset. To further prove the robustness
of our method, we compare the top-1 accuracy of ResNet-50 on ImageNet under



EagleEye 13

Table 3. Pruning results of ResNet-56 (left) and MobileNetV1 (right) on CIFAR-10

Method FLOPs Top1-Acc

ResNet-56 125.49M 93.26%
FP [13] 90.90M 93.06%
RFP [1] 90.70M 93.12%

NISP [29] 81.00M 93.01%
GAL [18] 78.30M 92.98%

HRank [15] 88.72M 93.52%
EagleEye 62.23M 94.66%

Method FLOPs Top1-Acc

0.75 × MobileNetV1
26.5M

88.07%
FP(our-implement) [13] 91.58 %

EagleEye 91.89%

0.5 × MobileNetV1
12.1M

87.51%
FP(our-implement) [13] 90.4%

EagleEye 91.44%

0.25 × MobileNetV1
3.3M

84.59%
FP(our-implement) [13] 85.81%

EagleEye 88.01%

different FLOPs constraints. For each FLOPs constraint (3G, 2G, and 1G),
1000 pruning strategies are generated. Then the adaptive-BN-based evaluation
method is applied to each candidate. We just fine-tune the top-2 candidates and
return the best as delivered pruned model. It is shown that EagleEye achieves
the best results among the compared approaches listed in Table 4.

ThiNet [22] prunes the channels uniformly for each layer other than finding
an optimal pruning strategy, which hurts the performance significantly. Meta-
Pruning [20] trains an auxiliary network called “PruningNet” to predict the
weights of the pruned model. But the adopted vanilla evaluation may mislead the
searching of the pruning strategies. As shown in Table 4, our proposed algorithm
outperform all compared methods given different pruned network targets.

MobileNet We conduct experiments of the compact model of MobileNetV1
and compare the pruning results with Filter Pruning [13] and the directly-scaled
models. Please refer to supplementary material for more details about FP im-
plementation and training methods to get the accuracy for the directly-scaled
models. Table 3 right shows that EagleEye gets the best results in all cases.

Pruning MobileNetV1 for ImageNet is more challenging as it is already a very
compact model. We compare the top-1 ImageNet classification accuracy under
the same FLOPs constraint (about 280M FLOPs) and the results are shown in
Table 5. 1500 pruning strategies are generated with this FLOPs constraint. Then
adaptive-BN-based evaluation is applied to each candidate. After fine-tuning the
top-2 candidates, the pruning candidate that returns the highest accuracy is
selected as the final output.

AMC [7] trains their pruning strategy decision agent based on the pruned
model without fine-tuning, which may lead to a problematic selection on the
candidates. NetAdapt [26] searches for the pruning strategy based on a greedy
algorithm, which may drop into a local optimum as analysed in Section 2. It is
shown that EagleEye achieves the best performance among all studied methods
again in this task (see Table 5).



14 Li et al.

Table 4. Comparisions of ResNet-50 and other pruning methods on ImageNet

FLOPs after pruning Method FLOPs Top1-Acc Top5-Acc

3G

ThiNet-70 [20] 2.9G 75.8% 90.67%
AutoSlim [28] 3.0G 76.0% -

Meta-Pruning [20] 3.0G 76.2% -
EagleEye 3.0G 77.1% 93.37%

2G

0.75 × ResNet-50 [4] 2.3G 74.8% -
Thinet-50 [22] 2.1G 74.7% 90.02%
AutoSlim [28] 2.0G 75.6% -

CP [8] 2.0G 73.3% 90.8%
FPGM [6] 2.31G 75.59% 92.63%

SFP [5] 2.32G 74.61% 92.06%
GBN [27] 1.79G 75.18% 92.41%
GDP [16] 2.24G 72.61% 91.05%
DCP [30] 1.77G 74.95% 92.32%

Meta-Pruning [20] 2.0G 75.4% -
EagleEye 2.0G 76.4% 92.89%

1G

0.5 × ResNet-50 [4] 1.1G 72.0% -
ThiNet-30 [22] 1.2G 72.1% 88.30%
AutoSlim [28] 1.0G 74.0% -

Meta-Pruning [20] 1.0G 73.4% -
EagleEye 1.0G 74.2% 91.77%

Table 5. Comparisions of MobileNetV1 and other pruning methods on ImageNet

Method FLOPs Top1-Acc Top5-Acc

0.75 × MobileNetV1 [9] 325M 68.4% -

AMC [7] 285M 70.5% -

NetAdapt [26] 284M 69.1% -

Meta-Pruning [20] 281M 70.6% -

EagleEye 284M 70.9% 89.62%

5 Discussion and Conclusions

We presented EagleEye pruning algorithm, in which a fast and accurate evalu-
ation process based on adaptive batch normalization is proposed. Our experi-
ments show the efficiency and effectiveness of our proposed method by delivering
higher accuracy than the studied methods in the pruning experiments on Im-
ageNet dataset. An interesting work is to further explore the generality of the
adaptive-BN-based module by integrating it into many other existing methods
and observe the potential improvement. Another experiment that is worth a try
is to replace the random generation of pruning strategy with more advanced
methods such as evolutionary algorithms and so on.



EagleEye 15

Acknowledgements

Jiang Su is the corresponding author of this work. This work was supported in
part by the National Natural Science Foundation of China (NSFC) under Grant
No.U1811463.

References

1. Ayinde, B.O., Zurada, J.M.: Building efficient convnets using redundant feature
pruning. ArXiv abs/1802.07653 (2018)

2. Cohen, T.S., Geiger, M., Köhler, J., Welling, M.: Spherical cnns. In: ICLR (2018)
3. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: Imagenet: A large-

scale hierarchical image database. In: 2009 IEEE conference on computer vision
and pattern recognition. pp. 248–255. Ieee (2009)

4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition. In:
Proceedings of the IEEE conference on computer vision and pattern recognition.
pp. 770–778 (2016)

5. He, Y., Kang, G., Dong, X., Fu, Y., Yang, Y.: Soft filter pruning for accelerating
deep convolutional neural networks. arXiv preprint arXiv:1808.06866 (2018)

6. He, Y., Liu, P., Wang, Z., Yang, Y.: Pruning filter via geometric median for deep
convolutional neural networks acceleration. arXiv preprint arXiv:1811.00250 (2018)

7. He, Y., Lin, J., Liu, Z., Wang, H., Li, L.J., Han, S.: Amc: Automl for model
compression and acceleration on mobile devices. In: Proceedings of the European
Conference on Computer Vision (ECCV). pp. 784–800 (2018)

8. He, Y., Zhang, X., Sun, J.: Channel pruning for accelerating very deep neural net-
works. In: Proceedings of the IEEE International Conference on Computer Vision.
pp. 1389–1397 (2017)

9. Howard, A.G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W., Weyand, T., An-
dreetto, M., Adam, H.: Mobilenets: Efficient convolutional neural networks for
mobile vision applications. arXiv preprint arXiv:1704.04861 (2017)

10. Ioffe, S., Szegedy, C.: Batch normalization: Accelerating deep network training by
reducing internal covariate shift. arXiv preprint arXiv:1502.03167 (2015)

11. Kendall, M.G.: A new measure of rank correlation (1938)
12. Krizhevsky, A.: Learning multiple layers of features from tiny images (2009)
13. Li, H., Kadav, A., Durdanovic, I., Samet, H., Graf, H.P.: Pruning filters for efficient

convnets. arXiv preprint arXiv:1608.08710 (2016)
14. Li, Y., Wang, N., Shi, J., Liu, J., Hou, X.: Revisiting batch normalization for

practical domain adaptation. arXiv preprint arXiv:1603.04779 (2016)
15. Lin, M., Ji, R., Wang, Y., Zhang, Y., Zhang, B., Tian, Y., Shao, L.: Hrank: Filter

pruning using high-rank feature map. ArXiv abs/2002.10179 (2020)
16. Lin, S., Ji, R., Li, Y., Wu, Y., Huang, F., Zhang, B.: Accelerating convolutional

networks via global & dynamic filter pruning. In: IJCAI. pp. 2425–2432 (2018)
17. Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.:

Towards optimal structured cnn pruning via generative adversarial learning. In:
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition.
pp. 2790–2799 (2019)

18. Lin, S., Ji, R., Yan, C., Zhang, B., Cao, L., Ye, Q., Huang, F., Doermann, D.S.:
Towards optimal structured cnn pruning via generative adversarial learning. 2019
IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR) pp.
2785–2794 (2019)



16 Li et al.

19. Liu, N., Ma, X., Xu, Z., Wang, Y., Tang, J., Ye, J.: Autocompress: An automatic
dnn structured pruning framework for ultra-high compression rates

20. Liu, Z., Mu, H., Zhang, X., Guo, Z., Yang, X., Cheng, K.T., Sun, J.: Metapruning:
Meta learning for automatic neural network channel pruning. 2019 IEEE/CVF
International Conference on Computer Vision (ICCV) pp. 3295–3304 (2019)

21. Liu, Z., Li, J., Shen, Z., Huang, G., Yan, S., Zhang, C.: Learning efficient convolu-
tional networks through network slimming. In: Proceedings of the IEEE Interna-
tional Conference on Computer Vision. pp. 2736–2744 (2017)

22. Luo, J.H., Wu, J., Lin, W.: Thinet: A filter level pruning method for deep neural
network compression. In: Proceedings of the IEEE international conference on
computer vision. pp. 5058–5066 (2017)

23. Molchanov, P., Mallya, A., Tyree, S., Frosio, I., Kautz, J.: Importance estimation
for neural network pruning. In: Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition (2019)

24. Soper, H., Young, A., Cave, B., Lee, A., Pearson, K.: On the distribution of the
correlation coefficient in small samples. appendix ii to the papers of” student” and
ra fisher. Biometrika 11(4), 328–413 (1917)

25. Wen, W., Wu, C., Wang, Y., Chen, Y., Li, H.: Learning structured sparsity in
deep neural networks. In: Advances in neural information processing systems. pp.
2074–2082 (2016)

26. Yang, T.J., Howard, A., Chen, B., Zhang, X., Go, A., Sandler, M., Sze, V., Adam,
H.: Netadapt: Platform-aware neural network adaptation for mobile applications.
In: Proceedings of the European Conference on Computer Vision (ECCV). pp.
285–300 (2018)

27. You, Z., Yan, K., Ye, J., Ma, M., Wang, P.: Gate decorator: Global filter pruning
method for accelerating deep convolutional neural networks. In: Advances in Neural
Information Processing Systems (NeurIPS) (2019)

28. Yu, J., Huang, T.: Network slimming by slimmable networks: Towards one-shot
architecture search for channel numbers. arXiv preprint arXiv:1903.11728 (2019)

29. Yu, R., Li, A., Chen, C.F., Lai, J.H., Morariu, V.I., Han, X., Gao, M., Lin, C.Y.,
Davis, L.S.: Nisp: Pruning networks using neuron importance score propagation.
2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition pp.
9194–9203 (2017)

30. Zhuang, Z., Tan, M., Zhuang, B., Liu, J., Guo, Y., Wu, Q., Huang, J., Zhu, J.:
Discrimination-aware channel pruning for deep neural networks. In: Advances in
Neural Information Processing Systems. pp. 875–886 (2018)


	EagleEye: Fast Sub-net Evaluation for Efficient Neural Network Pruning

