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Abstract— For obstacles moving with high speeds, existing
motion planning methods can rarely guarantee collision avoid-
ance. This paper proposes a viable two-period velocity obstacle
algorithm where one period predicts potential collisions within
a limited time horizon, and the second period foresees collisions
beyond that horizon. The second period is activated only when
the obstacle’s moving speed is larger than the maximum speed
of the robot. The applicability of the new algorithm and the
related computation issues are discussed. Both computer simu-
lations and laboratory experiments illustrated the effectiveness
of the proposed obstacle avoidance algorithm.

I. INTRODUCTION

As the development of robotics, flexible mobile robots

are more and more frequently engaged in tasks in complex

environments, such as searching in a hazardous and hostile

environments, filming movies, broadcasting sport games, and

transportation in a plant accompanying labours and other

vehicles. Motion planning techniques ensure a robot safe

navigation from a position to its goal without colliding

with any obstacles or any other robots in a workspace.

To avoid static obstacles in a known environment, off-line

path planning algorithms could be useful. However, for

dynamic obstacles, real-time collision avoidance algorithms

are desired.

This paper studies the problem of avoiding obstacles

whose speeds are higher than the maximum speed of the

robot. For examples, a ground robot searching in a post-

disaster area should avoid lethal attacks from uncontrollable

moving objects such as falling rocks; an intelligent football

game shooting robot needs to avoid a ball flying towards it so

as to avoid potential damages; a transportation robot should

avoid reckless human beings who are unaware of the robot,

and so on. This paper accomplishes this task by setting the

robot’s velocity out of the set where potential collisions with

the obstacle may occur in a limited time horizon and where

collisions can occur beyond that time horizon.

A. Related work

There are two major classes of algorithm for real-time

avoidance of moving obstacles. The first class of approaches

are based on the relative distances between the robot and

the obstacles. The representative one is the artificial potential

field method [1], [2] which can generate increasing repulsive
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forces that push the robot moving away from the obstacle as

the obstacle approaches. However, the repulsive forces would

usually render the robot being “chased” after by the obstacle

until collision occurs if the obstacle’s speed is higher than the

robot’s. The model predictive control (MPC) also has a long

history of being used for collision avoidance [3]. However,

it suffers the same problem as the artificial potential field

method since it usually uses the relative distance based

potential field functions as penalty functions.

The second class of approaches aim to plan the robot’s

moving velocities in each step. The well-known algorithm is

the velocity obstacle (VO) algorithm [4] which first finds the

set of relative velocities leading to collision, and then guides

the robot’s velocity leaving that set. There are subsequent

modifications for the basic VO method, resulting in new

algorithms such as reciprocal velocity obstacle (RVO) [5],

optimal reciprocal collision avoidance (ORCA) [6], extended

velocity obstacle (EVO) [7], etc. The RVO and ORCA algo-

rithms narrowed down the set of infeasible relative velocities

in VO by introducing a fixed time horizon when predicting

potential collisions, and thus they can provide more space for

a robot to choose collision avoiding velocities. In addition,

these two algorithms let each robot take half the responsibili-

ty of avoiding collisions with each other, and thus are suitable

for cooperative robots. The ORCA algorithm [6] also solves

the problem of motion oscillations in RVO as the number of

robots grows. The EVO algorithm [7] is built on the ORCA

algorithm, and it lets the robots communicate with each other

their preferred velocities so that potential collisions along

their desired paths can be avoided. Some other variants of the

VO based algorithms also take the robots’ physical models

into computation, for example, the second-order motion

equations [8], general linear system models [9], [10], and

non-holonomic models [11], [12]. These extensions released

the requirement of instantaneous velocity changes for the

robots in the early VO algorithm. Due to the distributed

nature and the efficiency for real-time computation, these

velocity based collision avoidance algorithms have been used

in physical systems such as quadrotors via on-board relative

velocity sensing [13], [14].

B. Contribution and paper organization

Previous velocity obstacle based methods focused on

avoiding collisions among multiple cooperative robots, while

few has studied how to avoid noncooperative obstacles which

are moving with relatively high speeds. The variants of VO

based method, such as RVO, ORCA and EVO, could fail

the task because they are shortsighted by predicting potential

collisions only within a limited time horizon. On the other
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(b) Velocity obstacle V Oτ
A|O (the

grey region) for robot A with re-
spect to obstacle O within time τ .

Fig. 1. Configurations of a robot A and a dynamic obstacle O.

hand, prolonging the prediction time horizon would reduce

the set of feasible solutions which makes the algorithm too

conservative. The extreme case is the original VO algorithm

[4] where an infinite prediction time horizon is presumed for

the robots so that all future paths of an obstacle are treated

as infeasible paths for the robot. Apparently, the original VO

algorithm is insensitive to the obstacles’ velocities.

In this paper, the proposed new algorithm has two new

features:

1) The robot predicts potential collisions not only within

a fixed time horizon, but also collisions beyond that

time horizon. So, the robot can react to the obstacle

much earlier.

2) The set of infeasible relative velocities between the

robot and the obstacle is extended from that in the RVO

or ORCA algorithm when the obstacle’s velocity is

large enough, and will reduce to that in RVO or ORCA

otherwise. Hence, the new algorithm is activated only

when encountering obstacles moving with a relatively

high speed.

The remainder of this paper is organized as follows.

Section II states the problem concerned in this paper. The

new algorithm is presented in section III. In section IV,

both numerical simulations and experiments are carried out.

Section V concludes the work of this paper and provides

future investigations.

II. PROBLEM STATEMENT

Consider a scenario where a robot A encounters an ob-

stacle O moving with velocity vO as shown in Fig.1(a)

where the origin of the coordinate is the center of the

robot. The robot and the obstacle are represented as discs

centered at pA and pO with radii rA and rO, respectively.

Assuming the obstacle’s velocity keeps constant in a future

time horizon τ > 0, then the set of relative velocities between

the obstacle O and robot A which will lead to collision within

τ is named the velocity obstacle [4], [6]. The mathematical

representation is

V Oτ
A|O(pO|A) := {v : v ∈ D(pO|A/t, r/t), ∀t ∈ (0, τ ]}

(1)
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Fig. 2. There is no obstacle
avoiding velocity for robot A if
D(−vO, vmax

A ) ⊂ V Oτ
A|O .
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Fig. 3. Velocity obstacle V OA|O
(the grey region) for robot A with
respect to obstacle O.

where pO|A = pO − pA, r = rA + rO, and

D(pO|A/t, r/t) := {v : ‖v − pO|A/t‖ ≤ r/t} is a disc

centered at pO|A/t with radius r/t. Fig.1(b) shows the

velocity obstacle of the configuration in Fig.1(a) by the grey

region.

Robot A would control its velocity to leave the velocity

obstacle if its current velocity with respect to the obstacle’s

is already in it (i.e., if vA − vO ∈ V Oτ
A|O). However, if the

obstacle’s velocity vO is such that the set D(−vO, v
max
A )

is entirely contained in the velocity obstacle V Oτ
A|O, it will

be impossible for the robot to avoid the moving obstacle

within time τ . Note that this situation can happen only if

‖vO‖ > vmax
A as illustrated in Fig.2. This implies that,

for a dynamic obstacle moving with speed ‖vO‖ > vmax
A ,

there exist motion configurations where the robot A cannot

avoid collision with it within any time horizon τ > 0. Fig.3

illustrates such a configuration where the set

V OA|O(pO|A) := {v : v ∈ D(pO|A/t, r/t), ∀t > 0} (2)

is the velocity obstacle in which the robot will collide with

the obstacle in some time beyond the horizon τ > 0.

This infeasible configuration didn’t rise in reciprocal colli-

sion avoidance scenarios among multiple cooperative robots

since all robots were assumed to have the same maximum

velocity [5], [6]. This paper is dedicated to fixing this

problem by proposing an obstacle avoidance algorithm that

can handle high-speed obstacles (in the sense that ‖vO‖ >
vmax
A ). In the sequel section, we will first analyse how the

infeasible configurations was caused, and then we present the

algorithm based on the idea of building velocity obstacles.

III. AVOIDING HIGH-SPEED OBSTACLES

For simplicity of analysis, the obstacle’s velocity is as-

sumed to be constant, and can be measured precisely by the

robot. The method proposed in this paper can be adapted so

as to avoid dynamic obstacles with predictable velocities.

A. Methodology

Suppose the robot and the obstacle are in a motion

configuration such that D(−vO, v
max
A ) � V Oτ

A|O(pO|A).
Denote by vA|O := vA − vO their current relative velocity.

Let vnew
A be the robot’s new velocity which can ensure

the robot be collision free with the obstacle O within a
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future time horizon τ . Denote vnew
A|O = vnew

A − vO, and let

pnew
O|A = pO + vO · τ − pnew

A be the new relative position

after time τ . It is clear that

pnew
O|A = pO|A − vnew

A|O · τ. (3)

If the new relative velocity vnew
A|O and the resulted new

relative position pnew
O|A satisfy vnew

A|O ∈ V OA|O(pnew
O|A) and

D(−vO, v
max
A ) ⊂ V OA|O(pnew

O|A), then the robot cannot

avoid the obstacle any longer no matter how the robot

changes its velocity. All such new relative velocities are

captured by the following set

MVOτ
A|O(pO|A)

= {v : D(−vO, v
max
A ) ⊂ V OA|O(pO|A − v · τ)}. (4)

This is the set of relative velocities which can definitely

lead to collision beyond time horizon τ . The letter M
here represents “maximum” since the set exists only when

vmax
A < ‖vO‖ as discussed in the previous section. Recall

that V Oτ
A|O(pO|A) contains the set of relative velocities

leading to collision within time τ . So, the robot can avoid

collision with a high-speed obstacle if at each execution time,

the robot computes MVOτ
A|O(pO|A) and V Oτ

A|O(pO|A) and

then selects a new velocity such that vnew
A|O does not lie in

either of the two sets.

Generally, the robot would have a predefined desired

velocity vpref
A . So, vnew

A|O is chosen as close to the preferred

relative velocity vpref
A|O := vpref

A − vO as possible, i.e.

vnew
A|O = argmin

v∈D(−vO,vmax
A ),v/∈V Oτ

A|O∪MVOτ
A|O

∥∥∥v − vpref
A|O

∥∥∥ .
(5)

As a last step, the new velocity of robot A is set as

vnew
A = vnew

A|O + vO. (6)

Since this method builds velocity obstacles both in time

horizon τ and foresees velocity obstacles at any time beyond

τ , we call it a two-period velocity obstacle algorithm.

This new algorithm can be easily extended to scenarios of

avoiding multiple high-speed obstacles by constructing the

infeasible set V Oτ
A|Oi

(pOi|A)∪MVOτ
A|Oi

(pOi|A) for each

obstacle Oi, i = 1, 2, . . ., and then setting the robot’s new

velocity outside their union. In the following, we will discuss

the feasibility issues of the new algorithm and the compu-

tation of these infeasible sets. Discussions will be made for

avoiding one obstacle only for clarity of presentation.

B. Feasibility of the algorithm

It is clear that the new approach is applicable only when

D(−vO, v
max
A ) � V Oτ

A|O(pO|A) ∪MVOτ
A|O(pO|A) at the

initial time.

• The part D(−vO, v
max
A ) � V Oτ

A|O(pO|A) is a prereq-

uisite for obstacle avoidance within time horizon τ . If

this part fails, the robot will collide with the obstacle

within τ and so there is no need to compute the set

MVOτ
A|O any more.

• If the above is satisfied, the feasibility condition

D(−vO, v
max
A ) � V Oτ

A|O(pO|A)∪MVOτ
A|O(pO|A) is

Ov
max
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Fig. 4. The derivation of the set MVOτ
A|O(pO|A).

guaranteed when the radius of the disc D(−vO, v
max
A )

is larger than that of the disc D(pO|A/τ, r/τ), i.e.,

vmax
A > r/τ . The implication is that the robot can at

least brush pass the obstacle within time τ by moving

with speed vmax
A in the direction vertical to vO.

C. Computation issues

In order to use the above method, one needs to get the set

V Oτ
A|O defined in (1), MVOτ

A|O defined in (4), and their

union V Oτ
A|O∪MVOτ

A|O. While the computation of V Oτ
A|O

is well studied in existing literature [5], [6], we only present

the computation issues of the latter two sets.

1) Computation of MVOτ
A|O: Based on the definition in

(4), the set MVOτ
A|O can be constructed as follows.

a) Find the set of points, pnew
O|A/τ , each of whose associ-

ated velocity obstacle V OA|O(pnew
O|A) contains the disc

D(−vO, v
max
A ) and has its left boundary tangent to the

disc. This set is the dotted half line lr in Fig.4(a) where

the segment 0−Pr has length r/τ and is perpendicular

to lr.

b) Similarly, get another set of points, pnew
O|A/τ (repre-

sented by the dotted half line ll in Fig.4(b)), each of

whose associated velocity obstacle contains the same

disc D(−vO, v
max
A ) and has its right boundary tangent

to the disc.
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c) The two half lines lr and ll together with the two

segments 0 − Pr and 0 − Pl encompass the largest

set of points, pnew
O|A/τ , which can generate a velocity

obstacle V OA|O(pnew
O|A) that contains D(−vO, v

max
A ).

This region is denoted by MPOτ
A|O(vO) and is rep-

resented by the shadowed area in Fig.4(c).

d) Get MVOτ
A|O(pO|A) using the following expression

vnew
A|O =

1

τ
(pO|A−pnew

O|A), ∀pnew
O|A/τ ∈MPOτ

A|O(vO).

(7)

The set MVOτ
A|O(pO|A) is shown in Fig. 4(d).

As seen from Fig. 4(d), the set MVOτ
A|O(pO|A) in a two

dimensional Euclidean space is a quadrilateral with the line

of symmetry passing P′c and pO|A/τ . Its vertices P′c, P′r,

and P′l can be derived by first finding the coordinates of

the vertices Pc, Pr, and Pl in Fig. 4(c) and then using the

transformation in (7). Pc is proportional to the vector −vO,

while Pr, and Pl can be derived by rotating and scaling

−vO. They are given by

Pc = − r

vmax
A τ

vO, (8)

Pr =

[
vmax
A m
−m vmax

A

] −vO

‖vO‖2 ·
r

τ
, (9)

Pl =

[
vmax
A −m
m vmax

A

] −vO

‖vO‖2 ·
r

τ
, (10)

where m =
√‖vO‖2 − (vmax

A )2.

2) Computation of V Oτ
A|O ∪ MVOτ

A|O: As seen from

Fig. 4(c) - 4(d), the vertex 0 of MPOτ
A|O is transformed to

the point pO|A/τ in MVOτ
A|O according to (7). Hence, the

two sets, MVOτ
A|O(pO|A) and V Oτ

A|O(pO|A), always have

a nontrivial intersection as shown in Fig. 5. In fact, each set

has both sides tangent to the boundary of D(pO|A/τ, r/τ).
It follows that the union V Oτ

A|O ∪MVOτ
A|O

i) is equal to V Oτ
A|O if the point P′c locates in V Oτ

A|O.

(Rigorously speaking, P′c will never locate in the

disc D(pO|A/τ, r/τ) which is a subset of V Oτ
A|O if

‖vO‖ > vmax
A since ‖P′c−pO|A/τ‖ = ‖ r

vmax
A τ vO‖ >

r/τ .)

ii) is surrounded by the linear boundaries of

MVOτ
A|O(pO|A) and V Oτ

A|O(pO|A) if P′c locates in

V OA|O(−pO|A).
iii) is surrounded by the linear boundaries of

MVOτ
A|O(pO|A) and V Oτ

A|O(pO|A) as well as

arcs from the disc D(pO|A/τ, r/τ), otherwise.

The first two cases are easy to handle when solving the

optimization problem in (5). However, the infeasible set in

case iii) are complicated due to the existence of the nonlinear

arcs. For ease and efficiency of optimization, one can replace

these arcs with the extensions of the linear boundaries of

MVOτ
A|O(pO|A) and V Oτ

A|O(pO|A). Details are omitted in

this paper.

max
Av

xv

0

Ov

yv

'
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'
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'
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'
ll
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Fig. 5. Infeasible set V Oτ
A|O ∪MVOτ

A|O for choosing vnew
A|O.

IV. SIMULATIONS AND EXPERIMENTS

In this section, we conduct both computer simulations

and laboratory experiments to show the effectiveness of the

proposed algorithm.

A. Simulation results

1) Avoiding one fast obstacle: In this subsection, simula-

tions are conducted for a scenario where the robot A stays

statically at the origin and tries to avoid an obstacle O which

moves towards the robot with a constant direction and speed

(vO = [−4;−4] m/s) larger than the maximum speed of the

robot (vmax
A = 1m/s). The initial position of the obstacle is

(13, 13). The radii of the robot and the obstacle are rA = 1m

and rO = 2m, respectively. The preferred velocity of the

robot is given by vpref
A = (pd

A − pnow
A )/τ , where pd

A is

the target position and pnow
A is the real-time position of the

robot. The prediction time horizon τ = 2s and the execution

time interval is 0.1s.

For the purpose of comparison, the ORCA algorithm in

[6] is applied first. Then the new two-period VO algorithm

is applied. Simulation results applying these two algorithms

are shown in Fig. 6 and Fig. 7, respectively where snapshots

for the motion configurations in both the position space and

the velocity space are presented. Using the ORCA algorithm,

the robot tried to avoid the obstacle by moving in the same

direction with the obstacle as shown in Fig. 6. In Fig. 6(d),

we see that the robot’s velocity reached its maximum by

time 1.3s, and all of its possible velocities with respect

to the obstacle’s were contained in the velocity obstacle,

i.e., D(−vO, v
max
A ) ⊂ V Oτ

A|O. Afterward, the robot kept

moving with the maximum speed in the same direction of

the obstacle, and it eventually failed avoiding the obstacle as

shown in Fig. 6(e).

Using the two-period VO algorithm instead, the robot

succeeded in avoiding the obstacle as shown in snapshots in

Fig. 7(a), 7(c) & 7(e). In Fig. 7(c), we see that the robot tried

to avoid collision by giving way to the obstacle rather than

escaping in the obstacle’s direction. This was achieved due to

the introduction of the set MVOτ
A|O which made moving in

the same direction of the obstacle infeasible so that the robot
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Fig. 6. Snapshots of robot A trying to avoid the obstacle O by
implementing the ORCA algorithm. In each position space, the large
circle represents the obstacle, the small circle is the robot, and the arrows
indicate the directions and sizes of the obstacles’ velocities. In each velocity
space, the black circle encloses D(−vO, vmax

A ), the red circle encloses
D(pO|A/τ, r/τ), and the dotted lines are the linear boundaries of V Oτ

A|O .

had to move sideward. This simulation example illustrates

that the new algorithm can avoid a high-speed obstacle that

cannot be avoided by the existing VO method.

2) Feasibility of the two-period VO algorithm: In the

above example, one sees that vmax
A = 1 m/s < r/τ = (1 +

2)/2 m/s. According to the feasibility discussions in Section

III-B, there are initial position configurations for the robot

and the obstacle such that the new algorithm is incapable of

avoiding the obstacle. The next simulation example shows

such a scenario where the values of the parameters are the

same with those in the first example except that the initial

position of the obstacle is changed to [10; 10] as shown in

Fig. 8(a). This configuration makes the set D(−vO, v
max
A )

contained in V Oτ
A|O(pO|A)∪MVOτ

A|O(pO|A) at the initial

time as shown in Fig. 8(b). As expected, the robot cannot

avoid the obstacle as presented in Fig. 8(c).

3) Avoiding multiple fast obstacles: This subsection

presents a scenario where the robot A tried to transfer from
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Fig. 7. Snapshots of robot A avoiding the obstacle O by implementing
the two-period VO algorithm. The solid straight lines in each velocity space
are the linear boundaries of MVOτ

A|O , and the other graphics represent

the same items with those in Fig. 6.

the initial position (0, 0) to the goal position (0, 7) while

avoiding three dynamic obstacles, all of which were moving

with speeds larger than the maximum speed of the robot

(vmax
A = 2 m/s). The initial configurations are drawn in Fig.

9(a), in which the velocity vectors of the three obstacles are

[0;−8], [2.6;−4], and [−4;−4], respectively. Fig. 9(b) shows

that the ORCA algorithm cannot generate collision-free

guidance for the robot. On the other hand, using the proposed

two-period algorithm, the robot succeeded in avoiding the

three obstacles and arrived at its goal position as presented

in Fig. 10.

B. Experiment

The experiment was accomplished in the laboratory for

a robot to avoid two moving obstacles by using the two-

period VO algorithm. The obstacles are dummy toy cars

manipulated remotely by lab members. The robot is an

omni-directional four-wheeled vehicle with maximum speed

0.7 m/s. The robot’s velocity is estimated by measurements

from the encoders connected to the wheels. A 2-dimentional
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Fig. 8. Robot A failed avoiding the obstacle O when applying the two-
period VO algorithm due to the violation of the feasibility condition at the
initial time.

x (m)
-10 -5 0 5 10 15

y 
(m

)

-5

0

5

10

15

20

A

O
1

O
2

O
3t=0s

Goal

(a) Initial positions of three obsta-
cles and one robot.
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(b) Robot A collided with obstacle
O1 after 2.5s.

Fig. 9. A scenario where the robot failed avoiding the obstacles by using
the ORCA algorithm. (The red line in (b) is the trajectory of robot A.)

Hokuyo’s UTM-30LX scanning laser rangefinder is mounted

on the top front of the vehicle to detect the dynamic obstacles

at a rate of 20Hz. The computation unit of the robot is a

laptop mounted on the vehicle with Ubuntu operation system.

The results of the experiment are shown in Fig. 11 where

the process of successful avoidance of the two obstacles

by the robot were demonstrated in the four snapshots. The

velocities of the robot and the obstacles estimated from

measurements of on-board sensors are drawn in Fig. 12

which shows that the obstacles’ moving speeds are much

larger than the robot’s maximum speed. Note that the clock

time is shifted so as to start from zero. Obstacle O1 was

detected first, and O2 appeared in the view range of the

radar after time 1.5s. The robot’s speed fluctuations between

time 1.0s and 4.0s indicate the action of obstacle avoidance,

while the speed changes between 6.0s to 7.0s indicate that the

robot was moving back to its original position. The abrupt of

x (m)
-10 -5 0 5 10 15

y 
(m

)

-5

0

5

10

15

20

A

O
1

O
2

O
3

t=2s

Goal

(a) Robot A avoided O1 after 2s.

x (m)
-10 -5 0 5 10 15

y 
(m

)

-5

0

5

10

15

20

A

O
1

O
2

O
3

t=3s

Goal

(b) Robot A avoided O2 after 3s.
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(c) Robot A avoided O3 after 4s.
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(d) Robot A arrived at its goal posi-
tion after 9s.

Fig. 10. Starting from the initial configuration in Fig. 9(a), robot A avoided
three obstacles and reached its goal by using the two-period VO algorithm.

obstacle O2’s velocity at time interval 4.5s to 5.3s occurred

due to view interruption of the radar by obstacle O1 since

O1 was staying in front of O2 (see Fig. 11(c)).

V. CONCLUSIONS

This paper presents a motion planning algorithm for a

robot to avoid high-speed obstacles. A new velocity obstacle

is constructed in each step, which can predict collisions

beyond the time horizon of the existing VO based method.

Since this new velocity obstacle is activated only when the

obstacle’s speed is larger than the maximum speed of the

robot, the new algorithm is computationally acceptable, more

sensitive to the obstacles’ velocities compared to the original

version in [4], and more powerful in handling dynamic

obstacles than the refined versions of the VO methods such

as ORCA in [6]. In the future, one may extend this method

to avoid obstacles whose velocities are dynamically varying

but predictable using estimators. One another future work is

to take the dynamical model of the robot and those of the

obstacles into account so as to provide more accurate motion

planning and control for the robot. The idea of combining

the two-period VO method with model predictive control as

in [15] may provide a promising solution.
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(a) Initial positions of the robot and
two obstacles.

(b) The robot started to avoid the
obstacles.

(c) The robot avoided one obstacle. (d) The robot avoided the two ob-
stacles and started to move back to
its initial position.

Fig. 11. Snapshots of a robot avoiding two obstacles by implementing the two-period VO algorithm.
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