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ABSTRACT
Human activity understanding with 3D/depth sensors has
received increasing attention in multimedia processing and
interactions. This work targets on developing a novel deep
model for automatic activity recognition from RGB-D videos.
We represent each human activity as an ensemble of cubic-
like video segments, and learn to discover the temporal struc-
tures for a category of activities, i.e. how the activities to
be decomposed in terms of classification. Our model can
be regarded as a structured deep architecture, as it extends
the convolutional neural networks (CNNs) by incorporat-
ing structure alternatives. Specifically, we build the net-
work consisting of 3D convolutions and max-pooling op-
erators over the video segments, and introduce the latent
variables in each convolutional layer manipulating the ac-
tivation of neurons. Our model thus advances existing ap-
proaches in two aspects: (i) it acts directly on the raw inputs
(grayscale-depth data) to conduct recognition instead of re-
lying on hand-crafted features, and (ii) the model structure
can be dynamically adjusted accounting for the temporal
variations of human activities, i.e. the network configura-
tion is allowed to be partially activated during inference.
For model training, we propose an EM-type optimization
method that iteratively (i) discovers the latent structure
by determining the decomposed actions for each training
example, and (ii) learns the network parameters by using
the back-propagation algorithm. Our approach is validated
in challenging scenarios, and outperforms state-of-the-art
methods. A large human activity database of RGB-D videos
is presented in addition.
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1. INTRODUCTION
In the research of multimedia, there is a particular in-

terest in the last decades on developing intelligent systems
of human activity understanding with different application
backgrounds, e.g. intelligent surveillance, robotics and video
content search. Recently developed 3D/depth sensors have
opened up new opportunities with enormous commercial val-
ues, which provide more rich information compared with the
traditional cameras (e.g., three-dimensional structure infor-
mation of scenes and subjects/objects). Building upon these
technologies, human poses can be easily access to, and mod-
eling complicated human activities becomes facilitated.

This paper focuses on recognizing complex human activ-
ities from RGB-D videos that are captured by a Microsoft
Kinect camera. There exist two main difficulties despite the
additionally provided depth information:

• Representing complex human appearance and motion
information. Due to diverse poses/views of individ-
uals, it is usually hard to retrieve accurate body in-
formation with motions. The depth maps are often
unavoidably contaminated [20], and may become un-
stable due to sensor noises or self-occlusions of bodies.

• Capturing large temporal variations of human activi-
ties. An activity can be considered as a sequence of ac-
tions occurred over time [3]. For instance, the activity
of “microwaving food” can be decomposed into several
actions such as picking up food , walking and operating
microwave. The variance of a category of human activ-
ities can be hence very large, as it is uncertain how the
activities to be decomposed in the temporal domain.
Figure 1 shows two activities belonging to the same
category, where the temporal lengths of decomposed
actions are variant by different subjects.

Most of previous methods recognize 3D human activities
by training discriminative or generative classifiers based on
carefully designed features [36, 20, 35, 30]. These approaches



Figure 1: Two activities of the same category. We
consider one activity as a sequence of actions oc-
curred over time, and temporal compositions of ac-
tions are diverse by different subjects.

often require sufficient domain knowledge and heavy burden
of feature engineering, which could limit their applications.
Some compositional methods [33, 3] attempt to model ac-
tivities by representing videos as sequences of fixed length
temporal segments. However, they may have problems on
handling complex activities composed by actions of diverse
temporal durations, e.g., the example in Figure 1.

In this work, we develop an expressive configurable hu-
man activity model to address the above mentioned issues,
absorbing the powers of two promising techniques of broad
interests: deep learning [13, 7, 11, 8, 34, 18, 32] and recon-
figurable part-based models [41, 1, 22, 16]. We represent
one human activity as a sequence of separated actions, each
of which is associated with a cubic-like video segment of
unfixed length, as Figure 2 illustrates, and learn to discover
the temporal structures for a category of human activities in
terms of classification. In brief, our model is built upon the
deep convolutional neural networks (CNNs) [13, 8], and we
allow the network to be reconfigured to capture the vary-
ing temporal compositions of activities. We thus regard
our model as a deep structured model, as it incorporates
structure alternatives into a deep architecture. We consider
following advantages of the deep structured model for 3D
human activity recognition.

First, the deep architecture enables us to act directly on
grayscale-depth data rather than relying on hand-crafted
features. We build the layered network stacked up by con-
volutional layers, max-pooling operators and full connection
layers, where the raw segmented videos are treated as in-
puts. We firstly apply the 3D convolutional kernel [8] over
the bottom to extract features from both spatial and tempo-
ral domains, thereby encoding the motion information over
adjacent frames. The 2D convolutions are then deployed
upon to abstract the higher-level information. The convo-
lutional layers for the segmented videos are computed inde-
pendently to each other, in order to generate features for
actions within the video segments. Afterwards, the convo-
lution results coming from different segments are merged
together into two full connection layers, giving rise to the
activity classification.

Second, the structure of our model can be flexibly adjusted
during inference, which is a key to improve the capability of

modeling complex patterns [41, 22, 14]. Specifically, in each
convolutional layer, we impose the latent variables to ma-
nipulate the activation of neurons, so that the network can
be partially enabled to explicitly handle large temporal vari-
ations of activities. For example, some of the neurons can be
turned-off to adapt the different temporal durations of sepa-
rated actions. During the inference for activity recognition,
we aggregate the responses in each layer of network while
searching for the optimal network configuration. It is worth
mentioning that we can conduct the inference in a paral-
lel manner using GPU (Graphic Processing Unit) program-
ming, in order to counterbalance the extra computational
demand.

Training the structured deep model is another innovation
of this work, as it is required to simultaneously optimize
parameters and latent structure in the deep architecture.
Thus we propose an EM-type optimization method, namely
Latent Structural Back Propagation (LSBP), which iterates
with two steps: (i) Fixing the current model parameters,
it performs activity classification while discovering the tem-
poral composition (i.e. determining the separated actions)
for each training example. (ii) Fixing the decompositions of
input videos, it learns the parameters in each layer of the
network using the back-propagation algorithm.

Moreover, collecting RGB-D data is relatively expensive
in practice, while the amount of training data plays a critical
role in deep feature learning [11]. Thus we propose to pre-
train the network on the common RGB video data, taking
advantage of existing databases of human activities. The
trained parameters are then transferred into our model as
the initializations.

The key contribution of this work is a novel deep struc-
tured model. To the best of our knowledge, it is original
in literature to make the deep architecture reconfigurable to
adaptively account for data variations. We demonstrate su-
perior performances over state-of-the-art approaches in sev-
eral challenging scenarios. In addition, we construct a new
database of RGB-D data, which includes 1180 human activ-
ities of 20 categories.

This paper is organized as follows. Section 2 presents a
review of related work. Then we present our deep structured
model in Section 3, followed by a description of model learn-
ing algorithm in Section 4. Section 5 discusses the inference
procedure. The experimental results and comparisons are
exhibited in Section 6. Section 7 concludes this paper.

2. RELATED WORK
A batch of works on human action/activity understanding

mainly focused on developing robust and descriptive fea-
tures [35, 6, 20, 19, 40, 37, 24]. Xia and Aggarwal [35]
extracted spatio-temporal interest points from depth videos
(DSTIP) and developed a depth cuboid similarity feature
(DCSF) to model human activities. Oreifej and Liu [20]
proposed to capture spatio-temporal changes of activities by
using a histogram of oriented 4D surface normals (HON4D).
Most of these methods, however, overlooked detailed spatio-
temporal structure information, and limited in periodic ac-
tivities.

Several compositional approaches were studied for com-
plex scenarios and achieved substantial progresses[33, 29,
39, 21, 23, 30, 4, 15], and they decomposed an activity
into deformable parts and enriched the models with contex-
tual information. For instance, Wang et al. [33] recognized
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Figure 2: The architecture of our deep structured model. The network is stacked up by convolutional layers,
max-pooling operators and full connection layers, where the raw segmented videos are treated as the input.
A clique is defined as a subpart of the network stacked up for several layers, extracting features for one
segmented video. Moreover, the architecture can be partially enabled to explicitly handle different temporal
compositions of the activities.

human activities in common videos by training the hidden
conditional random fields in a max-margin framework. For
activity recognition in RGB-D data, Packer et al. [21] em-
ployed the latent structural SVM to train the model with
part-based pose trajectories and object manipulations. An
ensemble model of actionlets were studied in [30] to rep-
resent 3D human activities with a new feature called local
occupancy pattern (LOP). To handle more complicated ac-
tivities with large temporal variations, some powerful mod-
els [26, 31, 2] further discovered temporal structures of ac-
tivities by localizing sequential actions. For example, Wang
and Wu [31] proposed to solve the temporal alignment of
actions by maximum margin temporal warping. Tang et
al. [26] captured the latent temporal structures of 2D activ-
ities based on the variable-duration hidden Markov model.
Koppula and Saxena [10] applied the Conditional Random
Fields to model the sub-activities and affordances of the ob-
jects for 3D activity recognition.

Recently, the reconfigurable models were developed in the
form of And-Or graphs [41, 22, 14, 28, 32], and yielded com-
petitive performance in several challenging scenarios. The
key idea of these approaches was to discover different ways
of compositions by making the models reconfigured during
learning and inference. Zhu and Mumford [41] first explored
the And-Or graph models for image parsing. Pei et al. [22]
then introduced the models for video event understanding,
but their approach required elaborate annotations. Liang et
al. [14] proposed to automatically train the reconfigurable
action model by a non-convex formulation. However, the
above mentioned models were built on hand-crafted features.

On the other hand, the past few years have seen a resur-
gence of research in the design of deep neural networks, and
impressive progresses were made on learning image features
from raw data [7, 27, 12, 11, 17, 5]. To address human action
recognition from videos, Ji et al. [8] developed a novel deep
architecture of convolutional networks, where they extracted
features from both spatial and temporal dimensions. Amer

and Todorovic [1] applied Sum Product Networks (SPNs) to
model human activities based on variable primitive actions.
Our deep structured model can be viewed as an extension of
these existing architectures, in which we make the network
reconfigurable during learning and inference.

3. STRUCTURED DEEP MODEL
In this section, we firstly introduce the structure of our

deep structured model, and then explain how it can handle
large intra-class variance with the latent structure.

3.1 Spatio-temporal CNNs
Our deep model is presented as a spatio-temporal convo-

lutional neural network, as shown in Figure 2. To model
the complex human activities, it comprises of M network
cliques, which jointly conduct the final output. We define
a clique as a subpart of the network stacked up for sev-
eral layers. In particular, each clique extracts features from
one decomposed video segment associated to one separated
sub-action from the complete activity, and an illustration
is highlighted in Figure 2. Specifically, for each clique, two
3D convolutional layers are first built upon the raw input
(i.e. grayscale and depth data), which consists with at most
m video frames, and then followed by one 2D convolutional
layer. Note that a max-pooling operator is applied on each
3D convolutional layer making our model robust to local
body deformations and surrounding noises. Afterwards, the
convolution results generated by different cliques are merged
and concatenated into a long feature vector, upon which we
build two full connection layers to associate with the activity
labels. In the following, we introduce the detailed definitions
for these components of our model.

3D Convolutional Layer. The 3D convolutional kernels
in one clique are computed independently to those from dif-
ferent cliques. For example, the kernels belonging to the
first clique will only be applied to perform convolutions on



Figure 3: Illustration of the 3D convolution across
both spatial and temporal domains. In this example,
the temporal dimension of the 3D kernel is 3. That
is to say, each feature map is obtained by performing
3D convolutions across 3 adjacent frames.

the first temporal segment of the activity. Motivated by [8],
we perform the 3D convolutions spanning over both spatial
and temporal dimensions of the input videos, and our model
thereby captures both appearance and motion information
for the observations. Suppose the width and the height of
each frame are w and h, and the size of the 3D convolu-
tional kernel is w′×h′×m′, where w′, h′, m′ represents the
width, height and temporal length, respectively. As Figure 3
illustrates, we can obtain a feature map via performing 3D
convolutions across the sth to the (s + m′ − 1)th frames.
The response for the position (x, y) in the feature map can
be represented as,

vxys = tanh(b+

w′−1∑
i=0

h′−1∑
j=0

m′−1∑
k=0

ωijk · p(x+i)(y+j)(s+k)), (1)

where p(x+i)(y+j)(s+k) is the input pixel value at position
(x + i, y + j) in the (s + k)th frame, ωijk is the parameter
for the convolutional kernel, and b is the bias for the feature
map. Thus we can obtain m − m′ + 1 feature maps, each
with size of (w − w′ + 1, h − h′ + 1). Note that one convo-
lutional kernel only extracts one kind of feature. Thus we
employ several kernels to generate different kinds of feature
in each convolutional layer. For each model clique, we define
that the number of 3D convolutional kernels in the first and
second layers as c1 and c2.

After the first 3D convolutions, we obtain c1 sets of m −
m′+1 feature maps. For each set of feature maps, we further
perform 3D convolutions on it, and generate another set of
feature maps on a deeper layer. Note that as we employ c2
kernels on the c1 sets of feature maps, we can obtain c1× c2
sets of new feature maps in the next layer.

Max-pooling Operator. In our model, we apply a max-
pooling operator after each 3D convolution result. This
is a procedure widely applied to obtain deformation and
shift invariance [11, 38]. Given a set of feature maps, the
max-pooling operator performs subsampling on them, which
leads to the same number of feature maps with lower spatial
resolution. More specifically, if a 2×2 max-pooling operator
is performed on a a1 × a2 feature map, we collect the max
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Figure 4: Illustration of our deep model incorpo-
rating the latent structure. Different model cliques
are represented by different colors. As the temporal
segmentation for an input video can be variant, dif-
ferent cliques might have different number of input
frames. For the cliques whose input frame number
less than m, part of the neurons in the network are
inactivated, as represented by the dotted blank cir-
cles.

value in each 2×2 non-overlap regions to form a new feature
map with size of a1/2× a2/2.

2D Convolutional Layer. After two layers of 3D convo-
lution followed with max-pooling, each set of feature maps
reduces to relatively a small temporal dimension. We then
further apply 2D convolutional kernels to extract higher-
level complex features from them. The 2D convolution can
be viewed as a special case of 3D convolution by setting the
temporal dimension of the 3D kernel to one, i.e. m′ = 1.
By performing 2D convolution on a set of feature maps, we
can obtain the same number of feature maps in a new set.
Suppose the number of 2D convolutional kernels is c3, by
performing 2D convolutions on c1× c2 sets of feature maps,
we can obtain c1 × c2 × c3 sets of new feature maps.

Full Connection Layer. There are two full connection
layers in our model. We first concatenate different sets of
feature maps from the M model cliques into a long feature
vector. Then each unit of this vector are further connected
with all neurons in the first full connection layer, which are
further fully connected with output neurons. Note that the
number of the output neurons is K, which is the same as
the number of categories of activities K, and each of the
neurons represents the probability of an activity hypothesis.
To normalize the probabilities of the output labels, we apply
the softmax function on them,

σ(zi) =
exp (zi)∑K

k=1 exp (zk)
, (2)

where zi is the ith value computed by multiplying the neuron
values in the second last layer with the weights connected to
the ith output neuron, and σ(zi) is the output probability.

Note that
∑K

i=1 σ(zi) = 1.
Input Data Details. In our experiment, we obtain the gray

and depth image from the raw data, which are taken from
the gray channel and the depth channel of each video frame.
To perform convolutions, we duplicate the channels for the
3D convolutional kernels in the first layer. The convolution



results for these two channels are summed up together, thus
the dimensions of the convolved feature maps remain the
same. Note that our model can be generalized to apply on
multi-channel video frames.

3.2 Reconfigurable Latent Structure
One key contribution of this paper is incorporating latent

structure in deep model. Given different activity videos, the
starting anchor frame and the number of input frames for
each model clique can be variant. To illustrate it, we present
a toy example in Figure 4, in which three model cliques
represented by different colors are presented. Accordingly,
the whole activity is decomposed into three action segments.
The starting frame for each clique is flexible and the video is
not evenly segmented. In this scheme, a clique is trained to
handle the missing data by inactivating parts of the neurons.
In other words, for the clique whose input anchor frame
number is less than m, part of the neurons in the network
are inactivated, as represented by the dotted blank circles
in the first and third model cliques. Given input segments,
classification on activities can be achieved with the deep
model by performing forward propagation.

Formally, given a video sample, we define the index of
starting anchor frames for M cliques as (s1, ..., sM ) and the
corresponding number of input frames are (t1, ..., tM ) where
1 ≤ ti ≤ m. Thus, the latent variables for our model can
be represented as H = (s1, ..., sM , t1, ..., tM ), which infers
the video segments for each model clique. Given the in-
put video X, latent variables H, and model parameters ω
(including different layer parameters and biases), we rep-
resent the classification results obtained by our model as
F (X,ω,H), which is a vector of the probabilities for each
activity. For simplicity, we define the probability for the ith
activity as Fi(X,ω,H).

Note that our model explicitly decomposes the input ac-
tivity into sub-actions by incorporating the latent variables.
But the sub-actions will be not directly co-related with se-
mantic meaning. The different values of M (i.e. the number
of sub-actions for one activity) will affect the final classifica-
tion performance. When there is only one clique, the recon-
figurability would be disregarded, and our model is simpli-
fied as the traditional CNN such as [8], which is compared
in Sect. 6. We can empirically tune M , just like setting the
number of parts for the deformable part-based model in ob-
ject detection. The model with a small M could be less ex-
pressive to handle activity temporal variations, while a large
M could lead to over-fitting for the high model complexity.
In practice, we can roughly estimate M using traditional pa-
rameter tuning methods, e.g., the cross validation. We have
shown the effectiveness of our method by setting M = 4 on
the databases.

4. LEARNING
As our deep model incorporates latent structure, the stan-

dard back propagation algorithm [13] is not applicable to
optimize the model parameters. Thus we propose an EM-
type optimization algorithm, namely Latent Structural Back
Propagation (LSBP), to learn our model. Due to the large
number of our model parameters and the insufficience of
RGB-D data in human activities, we introduce a pre-training
scheme to borrow the data strength from 2D data to opti-
mize our model.

Figure 5: Illustration for the Latent Structural Back
Propagation (LSBP). It is an iterative algorithm
with two steps: (a) Given the current model param-
eters ω, estimate the latent variables H by adjust-
ing the video segmentation; (b) Given the estimated
latent variables H∗ which infers a video segmenta-
tion proposal, perform back propagation to optimize
model parameters ω. Note that the network neurons
can be partially inactivated (as the dotted circles)
according to the input segments.

4.1 Latent Structural Back Propagation
Given a video with different latent variables, the input

segments for each model clique will be different. During
learning, the model parameters ω and the latent variables H
are required to be optimized at the same time. We propose
an EM-type algorithm to iteratively optimize ω andH in two
steps: (i) Given the model parameters ω we can compute the
latent variables H (Figure 5.(a)); (ii) Given the input frames
decided by H, we can perform back propagation to optimize
the model parameters ω (Figure 5.(b)).

Suppose there are a set of N training samples (X1, y1), ...
, (XN , yN ), where X is the video, y ∈ {1, ...,K} represents
the activity classes and K is the number of activity classes.
For simplicity, we also define the set of latent variables for
all samples as H = {H1, ..., HN}. We apply the logistic
regression to define the cost function J(ω,H) in training,
which is defined as,

J(ω,H) = − 1

N
(

N∑
i=1

K∑
k=1

1(yi = k) logFk(Xi, ω,Hi)

+(1− 1(yi = k)) log(1− Fk(Xi, ω,Hi)))

+||ω||2, (3)

where 1(·) ∈ {0, 1} is the indicator function. The first two
terms in Eq.(3) are the opposite of the log-likelihood and
the last one is the regularization term. To minimize the
cost J(ω,H), we optimize parameters ω and H in a 2-steps
iteration as below.

(i) Given the model parameters ω obtained from the last
iteration, we can minimize Eq.(3) by maximizing the proba-
bility Fyi(Xi, ω,Hi) for each sample (Xi, yi), which is achieved
by finding the most appropriate latent variable H,

H∗i = argmaxHiFyi(Xi, ω,Hi). (4)

Recall that we apply softmax operator on the output results
as Eq.(2), thus the maximization of Fyi(Xi, ω,Hi) also de-
presses the probabilities of other labels Fk(Xi, ω,Hi), ∀k 6=
yi. It leads to the increase of the log-likelihood and decrease
the cost J(ω,H).

(ii) Given the latent variables H = {H1, ..., HN} for each



sample, we can obtain the input sample segments for the
deep structured model. After computing the cost J(ω,H)
with the current inputs, we can obtain the gradients of
J(ω,H) with respect to parameters ω. By performing the
back propagation algorithm, we can further decrease the cost
J(ω,H) and optimize the model parameters ω. Note that
during back propagation, we apply stochastic gradient de-
scent to update the parameters, and the update stops when
it runs through all the training samples for one time.

The optimization algorithm iterates between these two
steps until Eq.(3) converges.

4.2 Model Pre-training
To handle the insufficient RGB-D data for training and

to boost the activity recognition results, we apply a pre-
training scheme to initialize our model before optimizing
the parameters with our LSBP algorithm on 3D data.

Given the large sum of 2D activity videos with labels, we
train our deep model in a supervised manner. In this proce-
dure, we first initialize the model parameters randomly, and
each 2D video is evenly segmented to the number as the
number of model cliques. To train on the 2D data, we di-
rectly apply back propagation instead of the proposed LSBP
algorithm. It is mainly because of the following two reasons:
(i) The initial model parameters are unstable, and it is not
reliable to estimate latent variables H with them; (ii) The
training efficiency can be improved without considering the
latent variables.

After training on the 2D data, we apply the parameters of
the convolutional layers to initialize our model. Note that
we have gray and depth channels for each input frame in 3D
data and only one gray channel for the 2D data. We thus
duplicate the dimension of the 3D convolutional kernels in
the first layer and initialize the parameters for the depth
channel by the parameters for the gray channel. For the
full connection layers, we set the parameters to random val-
ues. The reason is that we only need to borrow the feature
learned in the 2D data, because the higher level informa-
tion should be learned directly from the specific 3D activity
dataset.

We summarize the whole learning procedure as Algorithm
1.

Algorithm 1 Learning Framework

Input:
The labelled 2D and 3D activity dataset.

Output:
Model parameters ω.

Initialization:
Pre-train the Spatial-Temporal CNN in the 2D dataset.

Learning on 3D dataset:
repeat

1. Estimate the latent variables H by fixing model pa-
rameters ω.

2. Optimize ω given the input sample segments indi-
cated by H.

until J(ω,H) in Eq.(3) converges.

5. INFERENCE
The inference task is to recognize the category of the activ-

ity given a video X. Formally, we perform the standard pro-
cedure of brute search for the activity label y and the latent

variables H by maximizing the probability of Fi(X,ω,H),

(y∗, H∗) = argmax(y,H)Fy(X,ω,H). (5)

To do this, we search across all the labels y(1 ≤ y ≤ K) and
calculate the maximum probability Fy(X,ω,H) by optimiz-
ingH. Given the domain space ofH = (s1, ..., sM , t1, ..., tM ),
we constrain the input frame number for each model clique
as τ ≤ ti ≤ m, and different video segments should not have
overlaps (i.e., si + ti ≤ si+1). In all our experiments, we
set the constant τ = 5 during training and inference. We
enumerate all the possibilities of H under these constraints,
and calculate the corresponding probabilities Fy(X,ω,H)
via forward propagations. By selecting the highest prob-
ability, we obtain the optimal Fy(X,ω,H∗). Though this
optimization is a procedure of brute search, we can take
advantage of parallel computation with GPU for that the
forward propagations decided by different H are indepen-
dent of each other. In our experiment, parallel computation
via GPU highly accelerates the inference speed.

6. EXPERIMENT
We validate our approach on the CAD-120 activity dataset

[9] and a larger dataset newly created by us, namely Office
Activity (OA) dataset. Comparisons with state-of-arts and
empirical analysis are presented in the experiments as well.

The CAD-120 dataset contains 120 RGB-D activity se-
quences of 10 categories, which is widely used in 3D human
activity recognition. These activities were performed by
four different subjects, and each activity was repeated three
times by the same actor. The challenges on this dataset
lie in the large variance in object appearance, human pose,
and viewpoint. The proposed OA dataset is more compre-
hensive, covering the regular daily activities taken place in
an office, and it is the largest activity dataset of RGB-D
videos, which includes 1180 sequences. Three RGB-D sen-
sors (i.e. Microsoft Kinect cameras) are utilized to capture
data in three different viewpoints, and more than 10 ac-
tors are involved. The activities are captured in two dif-
ferent offices to increase the variability, where each actor
performs the same activity twice for each viewpoint. It is
worth mentioning that this dataset also includes the ac-
tivities performed by two subjects with interactions. In
particular, it is divided into two sub-sets, each of which
contains 10 categories of activities: OA1 (activities by a
single subject) and OA2 (activities by two subjects). The
categories in OA1 are: {answering-phones, arranging-files,
eating, moving-objects, going-to-work, finding-objects, mop-
ping, sleeping, taking-water, wandering}, and in OA2, we
have {asking-and-away, called-away, carrying, chatting, de-
livering, eating-and-chatting, having-guest, showing, seeking-
help, shaking-hands}. The OA database is publicly accessi-
ble1.

Several sampled frames and depth maps from the databases
are exhibited in Figure 6.

Following [9], we apply four-fold cross validation proce-
dure for testing in the CAD-120 dataset. That is, the model
is trained on the activities of three subjects and tested on a
new subject each time. The final outputs are averaged on
the results of all four validations. For the OA dataset, we
apply five-fold cross validation in the similar way.

1http://vision.sysu.edu.cn/projects/3d-activity/
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Figure 6: Activity examples from the testing databases. Several sampled frames and depth maps are pre-
sented. (a) CAD-120, (b) OA1, (c) OA2, respectively, show two activities of the same category selected from
the three databases.

6.1 Implementation
Given the RGB-D videos, we first normalize them into

the same temporal length as preprocessing. For each video,
we extract 120 frames by removing the ones with similar
appearances in gray-scale. Then we further obtain 30 anchor
frames with a step size of 4 in the 120 frames. Suppose we
index the 120 frames from 1 to 120, then the selected frames
are indexed by 1, 5, 9, ..., 120. We apply these 30 anchor
frames as the inputs for our model.

We scale the input frame to w = 80 and h = 60 in our ex-
periments. The number of decomposed video segments (i.e.
actions) is M = 4, and the length of the maximum number
of input frames of each segment is m = 9. Recall that the
actual input frames can be less than m, as we introduce the
latent variables manipulating the temporal decomposition.
The networks in each clique are of the same structures (e.g.
kernels). For each clique, the number of 3D convolutional
kernels in the first layer is c1 = 7, and the size of the kernel
is 9×7×3, where each number represents the width, height
and temporal length. In the second layer, the number of
3D kernels is c2 = 5, and the size is 7 × 7 × 3. We apply
3 × 3 max-pooling operator over the 3D convolutions. In
the 2D convolutional layer, we have c3 = 4 kernels with size
of 6 × 4. Hence we can obtain 700 feature maps with size
1× 1 as the outputs for each network clique, and we merge
the feature maps together into a vector of 700 × 4 = 2800
dimensions. Each unit in this vector is linked to 64 neurons
in the next full connection layer. At last, the 64 neurons are
fully connected to associate with the activity labels.

The experiments are executed on a desktop with an Intel
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Figure 7: The average accuracy on the CAD-120
database.

i7 3.7GHz CPU, 8GB RAM and GTX TITAN GPU. For
model learning, we set the learning rate as 0.002 for apply-
ing the stochastic gradient descent algorithm. The training
times of one fold are 2 hours for CAD-120 (including 120
videos and occupying 0.2GB), 5 hours for OA1 (including
600 videos and occupying 1.0GB), and 5 hours for OA2 (in-
cluding 580 videos and occupying 0.9GB) dataset, respec-
tively. Each iteration of training costs similar time, and the
convergence of our model over iterations is shown in Fig-
ure. 8 and 9. For inference, as we fully take advantage of
parallel computation with GPU, it only takes around 0.4
seconds to complete recognition on a given video.



Xia et al [35]. Ji et al [8]. Ours

arranging-objects 75.0% 68.3% 82.3%
cleaning-objects 68.3% 60.0% 79.7%

having-meal 41.7% 60.0% 71.0%
making-cereal 76.7% 77.6% 91.5%

microwaving-food 36.7% 71.7% 85.3%
picking-objects 75.0% 58.3% 97.2%
stacking-objects 75.0% 48.3% 61.0%

taking-food 83.3% 73.3% 93.5%
taking-medicine 58.3% 76.7% 96.8%

unstacking-objects 33.3% 36.7% 54.0%

Average accuracy 62.3% 63.1% 81.2%

Table 1: Accuracy of all categories on the CAD120
dataset.

Xia et al [35] Ji et al[8] Ours

answering-phones 12.5% 40.0% 35.0%
arranging-files 59.7% 53.3% 84.4%

eating 40.3% 41.7% 65.5%
moving-objects 48.6% 51.7% 61.1%
going-to-work 34.7% 41..7% 92.2%
finding-objects 65.3% 36.7% 53.9%

mopping 63.9% 66.7% 72.2%
sleeping 25.0% 45% 43.9%

taking-water 58.3% 40.0% 51.7%
wandering 56.9% 50.0% 40.6%

Accuracy 46.5% 46.7% 60.1%

Table 2: Quantitative results on the OA1 dataset.
Accuracy per activity category and average accuracy
of all categories are reported.

Xia et al [35] Ji et al[8] Ours
asking-and-away 12.5% 39.6% 25.3%

called-away 45.8% 44.8% 57.5%
carrying 66.7% 56.8% 53.5%
chatting 37.5% 17.2% 25.3%

delivering 20.1% 34.5% 32.8%
eating-and-chatting 50.0% 35.8% 69.5%

having-guest 37.5% 34.1% 43.7%
seeking-help 16.7% 44.8% 59.2%

shaking-hands 41.7% 32..8% 59.8%
showing 37.5% 29.3% 23.0%

Accuracy 36.6% 37.0% 45.0%

Table 3: Quantitative results on the OA2 dataset.
Accuracy per activity category and average accuracy
of all categories are reported.

grayscale depth grayscale + depth
OA1 44.9% 57.2% 60.1%
OA2 41.6% 43.6% 45.0%

Table 4: Channel analysis on the three dataset. Av-
erage accuracy of all categories are reported.

6.2 Results and Comparisons
CAD-120 dataset. On this dataset, we adopt four state-

of-the-art methods for comparison. As shown in Figure 7,
our approach obtains the average accuracy of 81.2%, dis-
tinctly superior than results generated by other four com-
peting methods, such as 59.7% [25], 80.6% [9], 62.3% [35]
and 63.1% [8]. In Table 1, we report the detailed accura-
cies on all the categories, compared with the method based
on hand-crafted feature engineering [35], and the deep ar-
chitecture of convolutional neural networks [8]. Note that
for different methods we train the models using the same
data annotation, which only includes the activity labels on
videos.

OA dataset. In this experiment, we apply our approach on
the two sub-sets, respectively. Our deep structured model
outperforms the state-of-the-art methods on average. On
the OA1 set, our approach outperforms on 5 out of 10 cat-
egories and obtains the highest average accuracy of 60.1%,
as Table. 2 reports. On the OA2 set, the average accuracy
of our method is 45.0% and we have 6 classes of activities
achieve better results than the other two competing meth-
ods, as Table 3 reports. By reviewing the results, we find the
failure cases probably caused by the lack of contextualized
scene understanding. For example, understanding the activ-
ities of taking-water and sleeping actually requires to extra
higher level information. We will consider it in future work.
Moreover, the depth data is very useful. Since the testing
is performed on the new subject, we observe that large ap-
pearance variances existed in grayscale data lead to worse
performance. The depth data has much smaller variance,
and does help to capture the motion information. Table 4
illustrates that depth data can boost the performance a lot,
especially in OA1.

6.3 Empirical Analysis
For further evaluation, we conduct two following empirical

analysis under different settings.
(I) To clarify significance of using the pre-training, we

discard the parameters trained on 2D videos and learn the
model directly on the RGB-D data. Then we compare the
model with the original version by the test error rate, which
is defined as one minus the classification accuracy. This
testing is implemented on the OA1 dataset. In Figure 8,
we visualize the test error rates with the increasing of it-
eration numbers during training. Each test error rate on a
specific iteration number is calculated by applying the cur-
rently trained model. It is shown that the model using the
pre-training converges after 25 iterations, while the other
one without the pre-training requires 140 iterations. More
importantly, the pre-training can effectively reduce the error
rate in the testing, say 8% less than without the pre-training.

(II) We demonstrate the effectiveness of incorporating re-
configurable structure in the deep architecture. That is, we
can fix the latent variables in our model and train it using the
standard back propagation algorithm. In this model without
latent structure, each network clique receivesm input frames
that are evenly segmented from the video. In Figure 9, we
visualize the test error rates with different iterations of the
two models: structured v.s. non-structured, from the same
initialization. We observe that the error rates of the struc-
tured model decrease faster and reach to the lower result,



compared with the non-structured model. This experiment
is executed on the OA1 dataset.

7. CONCLUSIONS
This paper studies a novel deep structured model by incor-

porating model reconfigurability into layered convolutional
neural networks. This model has been shown to handle well
realistic challenges in 3D activity recognition, and it enables
us to perform recognition from raw RGB-D data rather than
relying on hand-crafted features. Moreover, we consider two
aspects in future work. First, we can integrate high level
semantic information into our model to deal with more com-
plicated events with underlying intentions. Second, we plan
to deploy our model into cloud computing platforms so that
thin clients can expediently access the ability of 3D human
activity understanding.
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