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Abstract— Dense mapping is always the desire of simulta-
neous localization and mapping (SLAM), especially for the
applications that require fast and dense scene information.
Visual-inertial odometry (VIO) is a light-weight and effective
solution to fast self-localization. However, VIO-based SLAM
systems have difficulty in providing dense mapping results due
to the spatial sparsity and temporal instability of the VIO depth
estimations. Although there have been great efforts on real-time
mapping and depth recovery from sparse measurements, the
existing solutions for VIO-based SLAM still fail to preserve
sufficient geometry details in their results. In this paper, we
propose to embed depth recovery into VIO-based SLAM for
real-time dense mapping. In the proposed method, we present
a subspace-based stabilization scheme to maintain the tempo-
ral consistency and design a hierarchical pipeline for edge-
preserving depth interpolation to reduce the computational
burden. Numerous experiments demonstrate that our method
can achieve an accuracy improvement of up to 49.1 cm
compared to state-of-the-art learning-based methods for depth
recovery and reconstruct sufficient geometric details in dense
mapping when only 0.07% depth samples are available. Since
a simple CPU implementation of our method already runs at
10-20 fps, we believe our method is very favorable for practical
SLAM systems with critical computational requirements.

I. INTRODUCTION

For unmanned intelligent systems such as autonomous
vehicles, simultaneous localization and mapping (SLAM)
is an important tool for perceiving the physical world. To
obtain the physical information of the environment, SLAM
systems have to find ways to obtain its real distances to
the surroundings, i.e., the real depth values. In principle,
the real depth can be either directly obtained by range
sensors [1] or estimated by calibrated cameras. Among these
methods, the monocular visual-inertial system [2], [3] plays
an important role in SLAM systems because of its least
amount of required data and immediate application to mobile
devices [4]. Although visual-inertial odometry (VIO) has
well addressed the problem of self-localization in real-time,
its mapping result is still insufficient for practical use due to
the spatial sparsity and temporal instability of the estimated
depth values. The main reason is that the depth values are
estimated by matching visual feature points (i.e. landmark
points) among sequential frames, which is with inevitable
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Fig. 1. An intuitive illustration of the proposed method.

mismatches due to its strong dependency on the scene
appearance. Therefore, dense 3D mapping of the scene using
a monocular visual-inertial system remains a challenging
problem, especially when there are critical computational and
storage requirements.

Since a sequence of sufficiently dense depth maps can be
fused for reconstructing a large-scale 3D scene [5], the key to
VIO-based dense 3D mapping is the recovery of dense depth
maps from sparse depth values. In the literature, there have
been extensive works on recovering dense depth maps, which
are designed for tackling the input depth values with different
sparsity levels. Considering that the depth maps obtained by
range sensors are with noise and holes [6], plenty of filtering
and inpainting methods [7]–[9] are proposed to reduce the
noise and fill in the holes. These methods can produce high-
quality depth maps by embedding edge-preserving filters into
their formulations. Although these methods can only handle
a small portion of depth missing in real-time, their idea of
preserving the depth boundaries is still critical to high-quality
depth recovery. For stereo matching or VIO, the number
of available depth values becomes much smaller [2], [3]
compared to the resolution of the depth map, which raises
the problem of reconstructing a dense depth map from very
sparse depth values and the corresponding high-resolution
intensity image. Existing solutions to this problem [10]–
[14] are with limitations that hinder their application to
VIO-based SLAM systems. For example, the representation-
based depth reconstruction requires large amount of com-
putations [10], [12] and even carefully designed sampling
strategies [10]. Recent learning-based methods [13], [14]
have demonstrated their capability in recovering dense depth
maps after sufficient training. However, these methods fail to
preserve depth boundaries and require large amount of mem-
ory for storing their parameters. In addition, the important
temporal consistency of sequential depth maps is not taken
into account in these methods.

In this paper, we embed depth recovery into the VIO-
based SLAM system with considerations of the temporal
consistency of sequential frames, the preservation of bound-
aries, and high computational efficiency. As shown in Fig. 1,
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in the proposed method, a temporal stabilization scheme
based on subspace analysis is designed to guarantee the
temporal consistency of landmark points, the edge-preserving
filters are employed to achieve high recovery accuracy, and a
hierarchical processing pipeline is used to reduce the compu-
tational burden. The contributions of our work are twofold.
First, we propose an effective solution to the challenging
problem of depth recovery from extremely sparse depth
samples, which achieves superior recovery quality compared
to the existing solutions in the context of VIO. Second, we
realize real-time dense mapping by embedding our method
into VIO-based SLAM systems, which demonstrates a light-
weight and effective solution to real-time SLAM.

II. PROPOSED METHOD

The embedding of the proposed method into the VIO-
based SLAM is illustrated in Fig. 2, where the red rectangles
indicate the key components of our method. In this section,
we describe these key components in detail.

Fig. 2. An illustration of embedding our method into the VIO-based SLAM.

A. Stabilizing Landmark Points for Temporally Consistency

The primary step of VIO is the extraction of visual features
from the intensity images. Although there have been several
types of visual features (such as the robust ORB [15] feature
and efficient KLT [16] feature) which can be extracted in
real-time and matched with high accuracy, the extracted
feature points are still temporally unstable. The major reason
is the rapid change of the scene appearance, which may
be caused by lighting changes, occlusion, and fast motion.
Even when the feature point is physically stable (e.g., a
fixed point on the ground), its integer coordinates in the
camera coordinate system still reduces its location accuracy,
especially when the distance between the feature point and
the camera is large.

After the matching of feature points between sequential
frames, a set of landmark points that indicate the temporal
correspondences can be obtained. Considering that stable
landmark points indicate the same physical place, we propose
to formulate the feature extraction as a sensing process of
the physical coordinates of landmark points. In this way,
both spatial inaccuracy and temporal instability are regarded
as additive noises, and the real coordinates can be estimated
by reducing such noises. It should be noted that such noises
are difficult to be explicitly modelled due to the diversity of
feature types and scene appearances, which makes the point
stabilization very challenging.

In this work, we propose to utilize subspace analysis for
stabilizing the landmark points. To be more specific, there are
three steps. First, sparse landmark points from feature-based

VIO is represented in the world coordinates. Then, by stack-
ing the coordinates of all landmark points in the same frame
as a column ai, i.e., ai = [x(i)1 ,y(i)1 ,z(i)1 , . . . ,x(i)p ,y(i)p ,z(i)p ]⊤,
where i ∈ [1, . . . ,n] represents the column number, we con-
struct a matrix A = [a1,a2, . . . ,an, ] ∈ R3p×n for p landmark
points that appear in sequential n frames. At last, we perform
the low-rank and sparse decomposition (LRSD) [17] on A,
i.e.,

A = L+S, (1)

where L and S are the low-rank and sparse components
of A. Based on the fact that the world coordinates of a
stable landmark point should be identical during the sensing
process, we impose a rank-1 constraint on L in the decom-
position process. By averaging every row of the matrix L
and reorganizing the column vector into 3D coordinates, we
stabilize the 3D coordinates of each landmark point.

The proposed stabilization process is expected to be effec-
tive. The reasons are twofold. First, the subspace spanned by
the column vector of coordinates is expected to be low-rank
because of the physical identity of the real landmark points.
Therefore, the low-rank structure of L can well capture the
real coordinates. Second, the sparse structure of S can well
capture the temporal disturbances because the rapid scene
changes are expected to be temporally sparse. Generally,
there are usually very few sudden changes in videos. The
final step of averaging the rows of L further reduces the
coordinate inconsistency. The effectiveness of the proposed
subspace-based stabilization scheme will be demonstrated in
Section III-A.
B. Hierarchical Edge-preserving Depth Recovery

With the temporally stable but spatially sparse landmark
points and their depth values, we utilize edge-preserving
filters to recover the dense depth map, which includes the
estimation of missing depth values and the smoothing of
existing depth values. Standard edge-preserving filters [18]–
[20] can be written in a similar form, i.e.,

yi = ∑
j∈Ωi

wi j(I)x j, (2)

where x j is the j-th pixel of the input depth map x, yi is
the i-th pixel of the output depth map y, Ωi represents the
pixels inside the filtering window of pixel i, and I is the
guidance image. In general, the computation of the weights
is of O(HWh2) complexity for recovering a H ×W depth
map using a filtering window of h× h. Iterative filtering is
usually required for higher recovery quality, which makes
the edge-preserving depth recovery very time-consuming.

Inspired by the recent advances of deep convolutional
network [21] and iterative depth recovery [9], we propose a
hierarchical structure for edge-preserving depth interpolation
and refinement. Three types of edge-preserving filters are
utilized, i.e., the joint bilateral filter (JBF) [18], joint trilateral
filter (JTF) [19], and the guided filter (GF) [20]. In particular,
the JBF weight, i.e..

wJBF
i j = exp(−2∥i− j∥2

h2 )exp(− (I(i)− I( j))2

2σ2
c

), (3)
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Fig. 3. The proposed processing pipeline for depth recovery.

is used for depth interpolation, and the JTF weight, i.e.

wJTF
i j = wJBF

i j exp(−
(xi − x j)

2

2σ2
z

), (4)

is used for depth refinement at the smallest two scales. For
largest two scales, the GF is used for fast depth refinement
due to its high efficiency. The proposed processing pipeline
is shown in Fig. 3, where the processing blocks for JBF, JTF,
and GF are marked by different colors and the captions on
the block indicate the size of the filtering window. All the
processing blocks use the downsampled intensity images of
the same resolution as the depth map as the guidance, except
that in the final refinement by GF, only the depth map is used
as the guidance. The pipeline can be roughly divided into 3
stages, which are illustrated from left to right in Fig. 3.

The first stage includes the downsampling of the input
depth map into H/8×W/8 and the processing blocks at this
scale. It can be seen that there are two iterative processing
blocks at this scale. In the first iterative block, both JBF
and JTF are used. The JBF is used for depth interpolation
to estimate the missing depth values according to its sur-
rounding available pixels, after which the JTF is used to
refine the estimated depth values. Such “JBF+JTF” process
is performed for n1 iterations until most pixels are with depth
values. Then, the JTF is applied for n2 times for further depth
refinement.

In the second stage, we individually deal with edge pixels
and other pixels of the depth map because the depth edge
is very sharp while the depth surface is very smooth. A
difference-based scheme is proposed to quickly find out the
pixels around depth boundaries. That is, the low-resolution
depth map is enlarged to the resolution of H/4×W/4 using
the linear and nearest interpolations, respectively, resulting in
two enlarged depth maps D1 and D2. Then, the pixel-wise
depth differences between D1 and D2 are compared with
a threshold. So that the pixels with sufficiently large depth
difference can be found, which are marked as edge pixels.
Using the enlarged depth map D1 as input, we use JBF to
re-estimate the depth values for the edge pixels and JTF for
the refinement of other pixels. This “JBF+JTF” process is
performed for n3 iterations to produce an edge-preserving
depth map at this scale.

The third stage includes the processing at two scales, i.e.,
H/2×W/2 and H ×W . For the depth refinement, we use
GF instead of JTF for a better trade-off between accuracy
and efficiency. Validations for the choice of edge-preserving

filters at different scales will be discussed in Section III-A.
In general, larger parameters of n1, n2, and n3 lead to

higher recovery accuracy, while higher efficiency can be
obtained when they are smaller. One can set these parameters
subject to the processing capability of the used hardware.
In our implementation on a common PC with a CPU of
3.4 GHz, we set σc = 8, σz = 23, h= 7, n1 = 15, n2 = 10, and
n3 = 5 for a processing framerate of 10 fps. Such parameter
setting not only guarantees the convergence of iterative
filtering [9], but also inherits the effective characteristic
of the recursive neural network (RNN) [22]. We perform
more iterations in the smallest scale because this scale is
extremely critical to the overall recovery quality. Note that
the parameters for the small scales do not essentially affect
the efficiency. Therefore, even when the iteration numbers
are not small, the CPU implementation of our method can
still run at real-time.

III. EXPERIMENTAL RESULTS

In this section, we thoroughly assess the proposed method
by experiments. First, we individually evaluate the proposed
landmark point stabilization scheme and the hierarchical
depth recovery architecture. The relationship between the
recovery accuracy and the parameter setup is demonstrated
to support the rationality of our implementation. Second,
we conduct comparisons between the proposed method and
recent solutions to depth recovery and dense mapping.

Three popular quantitative metrics (as described in [13]
and [14]) are used in this section, i.e., the root-mean-square
error (RMSE), mean absolute relative error (REL), and the
inlier ratio (i.e., the percentage of predicted pixels where
the relative error is within a threshold). Both the RMSE and
REL are calculated using real depth values (in meter), which
are the lower the better. The inlier ratio is better when it is
higher.

A. Ablation Study

Our method requires a set of feature points and their
depth values as the input. In our experiments, these points
are obtained by the localization part of the state-of-the-art
VIO-based SLAM system, i.e., the monocular visual-inertial
system (VINS) [3]. In particular, potential feature points are
detected according to the “good feature to track” princi-
ple [23], and the KLT sparse optical flow algorithm [16]
is employed for the tracking of feature points. In general,
100-300 feature points are tracked for a good localization in
VINS. Thus, usually less than 300 feature points with the
estimated depth values are used as the input of our method,
which are extremely sparse compared to the image resolution
and make the dense mapping very challenging.

For the ablation study of the proposed method, we capture
5 RGB-D sequences of resolution 640× 480 with synchro-
nized inertial measurements using the ZR300 visual-inertial
sensor. These sequences are captured at the framerate of
30 fps in common indoor environments where the lighting
is stable. Each sequence is of length abound 60 seconds.
Example frames of the captured sequences are shown in
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(a) Image #1 (b) Depth #1 (c) Image #2 (d) Depth #2
Fig. 4. Examples of our captured images and depth maps.

Fig. 4. The depth maps captured by ZR300 are used as the
ground-truth depth maps.

1) Stabilization of landmark points: Herein, the proposed
method for stabilizing the landmark points takes 10 frames
of feature points as the input. For comparison, we also use
the simple average to stabilize the landmark points. Note that
only the feature points appear in no less than 2 key frames
are selected for stabilization.

Because the accuracy of the coordinates of landmark
points is in proportion to the accuracy of depth recovery, we
directly compare the depth accuracy to assess the stabiliza-
tion methods. The quantitative scores of REL and RMSE
on the captured 5 sequences are shown in Table I. These
results clearly demonstrate the effectiveness of the proposed
subspace-based stabilization method because the proposed
method leads to the highest recovery accuracy for most
sequences. For the sequence where the simple average works
slightly better (e.g., sequence No. 4 where there are less
feature perturbations), the proposed method still achieves a
comparable recovery accuracy (the score differences are no
more than 0.005).

TABLE I
ASSESSMENT ON THE LANDMARK POINT STABILIZATION METHODS

Method No stabilization Simple average Subspace-based

Sequence No. REL RMSE REL RMSE REL RMSE

1 0.187 0.312 0.194 0.325 0.150 0.270
2 0.271 0.456 0.269 0.452 0.230 0.402
3 0.138 0.238 0.136 0.234 0.136 0.234
4 0.119 0.217 0.116 0.214 0.120 0.221
5 0.108 0.214 0.107 0.215 0.092 0.192

Mean 0.165 0.287 0.164 0.288 0.146 0.264

2) The choice of edge-preserving filters: As described in
Section II-B, the proposed hierarchical processing pipeline
for depth recovery can be divided into 3 stages. We would
like to point out that the choices of edge-preserving filters
in the second and the third stages are relatively flexible. In
general, JTF and GF are chosen for higher recovery quality
and higher efficiency, respectively.

The supports of our statement are shown in Table II, where
each row presents a profile for choosing the filters. The
scores are obtained by conducting experiments on sequence
No. 5. The bold fonts indicate the best results. It can be
observed that both REL and RMSE remain similar across the
four profiles. Therefore, we can choose the combination of
filters subject to the computational capability of the utilized
hardware. In the following, we use the profile presented in
the third row for the comparisons with other methods.

B. Quantitative Evaluations of Depth Completion

The problem of depth completion is very important to
autonomous vehicles because sparse depth measurements are

TABLE II
EVALUATION OF DIFFERENT PROFILES OF FILTERS

Scale REL RMSE Time Framerate1/4 1/2 1

JTF JTF JTF 0.093 0.195 256 ms 4 fps
JTF JTF GF 0.093 0.194 158 ms 6 fps
JTF GF GF 0.092 0.192 103 ms 10 fps
GF GF GF 0.093 0.194 66 ms 15 fps

usually provided by practical sensing systems. Researchers
propose the KITTI depth completion dataset [24] to evaluate
the methods for completing LiDAR depth maps that have
thousands of depth measurements in one frame. However,
our method is designed for the depth map with only hundreds
of depth values. To conduct experiments on this dataset, we
generate very sparse depth maps by preserving the depth
values on the selected points. Two schemes of point selection
are tested with our proposed method. The first scheme is
the uniformly random selection of all pixels in the depth
map, which is denoted as “Ours-random”. Each score for
the random selection The second scheme selects the points
with “good features” [23] according to the content of the
input intensity image, which is denoted as “Ours-feature”.

In our experiments, 1000 depth maps with ground truths
are used to calculate the quantitative scores, which are pro-
vided in the “manually selected validation and test data sets”
of the KITTI depth completion dataset. Three methods for re-
covering a dense depth map from very sparse depth measure-
ments are compared, i.e., the method based on residual neural
network [13] (denoted as “Res-NN”), the auto-encoder-based
method [11] (denoted as “Auto-encoder”), and the method
based on deep regression network [14] (denoted as “DRN”).
The quantitative scores are presented in Table III, where there
are three inlier ratios (i.e., δ1, δ2, and δ3) corresponding
to three different thresholds (see [14] for more details).
The bold fonts indicate the best results, and the results of
different methods are listed according to their ranking. It
is demonstrated in these results that the proposed method
using the VIO feature points consistently outperforms other
methods when there are only 200 or 500 available feature
points. Significant performance improvement upon both the
Res-NN and auto-encoder-based method are demonstrated,
even though these two methods use more available depth
samples. The performance gains of our method compared to
the second-best method DRN are 20.6 cm in RMSE and up
to 1.8% in the inlier ratios when only 200 feature points are
available. The accuracy improvement increases to 49.1 cm in
RMSE when 500 feature points are available. The proposed
method performs slightly worse when random feature points
are used, which is expected because random points may not
preserve sufficient structural information.

For further comparisons between our method and DRN,
we change the number of available depth samples from 100
to 2000 and obtain the RMSE and REL curves shown in
Fig. 5. One can see that the proposed method with VIO
landmark points as the input outperforms DRN when the
sample number is greater than 200. Considering that DRN
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TABLE III
COMPARISONS ON THE DEPTH COMPLETION DATASET

Method Samples RMSE REL δ1(%) δ2(%) δ3(%)

Res-NN [13] 225 4.500 0.113 87.4 96.0 98.4
Ours-random 200 4.125 0.088 91.2 97.6 98.3

DRN [14] 200 3.851 0.083 91.9 97.0 98.6
Ours-feature 200 3.645 0.081 93.7 97.8 98.9

Auto-encoder [11] 650 7.140 0.179 70.9 88.8 95.6
DRN [14] 500 3.378 0.073 93.5 97.6 98.9

Ours-random 500 3.142 0.064 94.8 98.3 99.1
Ours-feature 500 2.887 0.062 95.6 98.7 99.2

requires training and large amount of storage, our method is
believed to be more favorable in practice due to its training-
free characteristic and real-time processing capability.
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(b) The REL curve

Fig. 5. The RMSE and REL curves obtained by our method and DRN.

Beside the quantitative scores, we also demonstrate the
visual quality of the depth maps recovered by our method
in Fig. 6. Note that there are only 500 (0.17% of the image
resolution of 1216×240) available depth samples. It can be
seen that there are more recognizable geometric details (such
as the cars and the telegraph pole) in the depth map obtained
by our method.

(a) Input image

(b) Depth map with 500 available depth values

(c) DRN result

(d) Ours result

Fig. 6. A visual comparison between the results of DRN and our method.

C. Embedding Depth Recovery into the VIO-based SLAM

After the thorough assessment of the proposed method
in the key task of depth recovery, we turn to the val-

idation of our method in a practical VIO-based SLAM
system. Our experiments are conducted by embedding our
method into a recently developed visual-inertial SLAM sys-
tem (VI-MEAN) [25]. The aforementioned dataset captured
by ZR300 is used as the test data because synchronized
inertial measurements are available.

1) Quantitative comparisons: First, we compare the qual-
ity of depth maps provided by the proposed method and
the motion stereo used in VI-MEAN. Quantitative results
are presented in Table IV. Less than 200 feature points in
each frame, equivalently no more than 0.07% of the pixel
number 640×480, are used as the input of our method. One
can see that both RMSE and REL scores of our method are
only one third of that of motion stereo, which demonstrates
the overwhelming superiority of our method. Because the
processing framerates of our method and VI-MEAN are
similar, our method is believed to be more suitable for dense
mapping in VIO-based SLAM systems.

TABLE IV
EVALUATIONS ON THE CAPTURED DATASETS

Method VI-MEAN Ours

REL RMSE (m) REL RMSE (m)

1 0.349 0.660 0.150 0.270
2 0.340 0.633 0.230 0.402
3 0.352 0.677 0.136 0.234
4 0.340 0.753 0.120 0.221
5 0.296 0.611 0.092 0.192

Mean 0.335 0.668 0.146 0.264

2) Visual results: Visual comparisons of the recovered
depth maps are demonstrated in Fig. 7. As can be expected,

(a) Intensity image (b) Ground-truth depth map

(c) Our method (d) Motion stereo

Fig. 7. A visual comparison of the results on the captured dataset.

the depth maps provided by our method are closer to the
ground-truth depth maps, while the depth maps obtained by
motion stereo are with severe artifacts. Such artifacts result
in a blurry dense mapping with insufficient geometric details.
As shown in Fig. 8 (a), the boundaries of some large objects
(e.g., the boxes) are blurred in the 3D scene reconstructed
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by motion stereo. In contrast, using the dense depth maps
provided by the proposed method, we reconstruct a 3D scene
with more geometric details shown in Fig. 8 (b). It can
be seen that the reconstructed 3D scene has both sharper
boundaries around the object and more realistic textures on
the object surfaces. Many geometric details that cannot be
seen in the results of VI-MEAN can be found in the results
of our method. The visual comparisons from more camera
angles are shown in the video attachment of this paper.

(a) VI-MEAN

(b) Embedding our method to VI-MEAN

Fig. 8. The comparisons between dense mapping results.

IV. CONCLUSION

In this paper, we present a light-weight and effective
solution to the problem of recovering a dense depth map
from extremely sparse depth samples, which can work even
when there are less than 0.07% available depth samples.
The proposed solution contains a hierarchical processing
pipeline with recursive edge-preserving filters, whose struc-
ture is quite similar to that of the deep neural networks.
The high recovery accuracy and efficiency bring inspirations
to the design of future methods for depth recovery and
image restoration. The proposed landmark point stabiliza-
tion method successfully imposes temporal consistency to
the recovered depth maps, which makes our method more
suitable for dense mapping in SLAM systems. Although a
simple CPU implementation of our method can already run
at real-time, it is still worth pointing out that our method can
be further accelerated by parallel implementation.
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