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Abstract. Accurate polyp segmentation is of great significance for the
diagnosis and treatment of colorectal cancer. However, it has always been
very challenging due to the diverse shape and size of polyp. In recent
years, state-of-the-art methods have achieved significant breakthroughs
in this task with the help of deep convolutional neural networks. How-
ever, few algorithms explicitly consider the impact of the size and shape
of the polyp and the complex spatial context on the segmentation perfor-
mance, which results in the algorithms still being powerless for complex
samples. In fact, segmentation of polyps of different sizes relies on dif-
ferent local and global contextual information for regional contrast rea-
soning. To tackle these issues, we propose an adaptive context selection
based encoder-decoder framework which is composed of Local Context
Attention (LCA) module, Global Context Module (GCM) and Adaptive
Selection Module (ASM). Specifically, LCA modules deliver local context
features from encoder layers to decoder layers, enhancing the attention
to the hard region which is determined by the prediction map of pre-
vious layer. GCM aims to further explore the global context features
and send to the decoder layers. ASM is used for adaptive selection and
aggregation of context features through channel-wise attention. Our pro-
posed approach is evaluated on the EndoScene and Kvasir-SEG Datasets,
and shows outstanding performance compared with other state-of-the-art
methods. The code is available at https://github.com/ReaFly/ACSNet.

1 Introduction

Colorectal cancer is a serious threat to human health, with the third highest
morbidity and mortality among all cancers [15]. As one of the most critical pre-
cursors of this disease, polyp localization and segmentation play a key role in
the early diagnosis and treatment of colorectal cancer. At present, colonoscopy is
the most commonly used means of examination, but this process involves man-
ual and thus expensive labor, not to mention its higher misdiagnosis rate [16].
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Therefore, automatic and accurate polyp segmentation is of great practical sig-
nificance. However, polyp segmentation has always been a challenging task due
to the diversity of polyp in shape and size. Some examples of polyp segmentation
are displayed in Fig. 1.

In recent years, with the prevalence of deep learning technology, a series
of convolutional neural network variants have been applied to polyp segmen-
tation and have made breakthrough progress. Early fully convolutional neural
networks [1,2,9,12] replaced the fully connected layers of the neural network
with convolutional ones. In order to enlarge the receptive field of the neurons,
the neural network gradually reduces the scale of the feature map and finally gen-
erates the prediction with very low resolution, resulting in a rough segmentation
result and prone to inaccurate boundaries. Later, UNet [14] based structure was
proposed, which adopts a stepwise upsample learning to restore the feature map
resolution while maintaining the relatively large receptive field of the neurons.
At the same time, the skip connection is used to enhance the fusion of shallow
and deep features to improve the original FCN, greatly improving the segmen-
tation performance and boundary localization of the specific organs or diseased
regions. SegNet [19] is similar to UNet, but utilizes the max pooling indices to
achieve up-sample operation in the decoder branch. SFANet [3] incorporates a
sharing encoder branch and two decoder branches to detect polyp regions and
boundaries respectively, and includes a new boundary-sensitive loss to mutually
improve both polyp region segmentation and boundary detection. In addition, by
adopting the upward concatenation to fuse multi-level features and embedding
the selective kernel module to learn multi-scale features, the model is further
enhanced and achieves competitive results. However, most of the methods have
not taken proper measures to deal with the shape and size variance of polyps
regions.

In this paper, we propose the Adaptive Context Selection Network (ACSNet).
Inspired by [4], we believe that the global context features are helpful for the seg-
mentation of large polyps, while the local context information is crucial for the
identification of small ones. Therefore, the intent of our designed network is to
adaptively select context information as contrast learning and feature enhance-
ment based on the size of the polyp region to be segmented. Specifically, our
ACSNet is based on the encoder-decoder framework, with Local Context Atten-
tion (LCA) module, Global Context Module (GCM), and Adaptive Selection
Module (ASM). LCAs and GCM are responsible for mining local and global
context features and sending them to the ASM modules in each decoder layer.
Through channel-wise attention, ASM well achieves adaptive feature fusion and
selection. In summary, the contributions of this paper mainly include: (1) Our
designed ACSNet can adaptively attend to different context information to bet-
ter cope with the impact of the diversity of polyp size and shape on segmen-
tation. (2) Our tailored LCA and GCM modules can achieve more consistent
and accurate polyp segmentation through complementary selection of local fea-
tures and cross-layer enhancement of global context. (3) ACSNet achieves new
state-of-the-art results on two widely used public benchmark datasets.
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Fig. 1. Two examples of polyp segmentation

2 Method

The architecture of our ACSNet is shown in Fig. 2, which can be regarded as
an enhanced UNet [14] or Feature Pyramid Network (FPN) [10]. We utilize
ResNet34 [5] as our encoder, which contains five blocks in total. Accordingly,
the decoder branch also has five blocks. Each decoder block is composed of two
Conv-BN-ReLU combinations, and generates one prediction map with different
resolution, which is supervised by the down-sampled ground truth respectively.

The GCM is placed on top of the encoder branch, which captures the global
context information and densely concatenates to the ASM of each layer in the
decoder path. At the same time, each skip-connection between the encoder and
decoder paths of UNet [14] is replaced by the LCA module, which gives each
positional feature column of every decoding layer a local context enhancement of
different receptive field and at the same time delicately leverages the prediction
confidence of the previous layer as a guidance to force the current layer to focus
on harder regions. Finally, we utilize the ASM modules to integrate the features
output from each previous decoder block, the LCA module and the GCM, based
on a channel-wise attention scheme for context selection.

2.1 Local Context Attention Module (LCA)

LCA is designed as a kind of spatial attention scheme, which aims to incorporate
hard sample mining when merging shallow features and pay more attention to the
uncertain and more complex area to achieve layer-wise feature complementation
and prediction refinement. As shown in Fig. 3, the attention map of each LCA
module is determined by the prediction map generated from the upper layer of
the decoder stream. Specifically, the attention map of the ith LCA module is
denoted as Atti ∈ R

1×Hi×Wi , in which Hi, Wi are the height and width of the
attention map respectively. The value of position j ∈ [1, 2, · · · ,Hi×Wi], denoted
as Attji can be calculated as follows:

Attji = 1 −

∣
∣
∣p

j
i+1 − T

∣
∣
∣

max (T, 1 − T )
, (1)

where P j
i+1 ∈ (0, 1) is the jth location value of the prediction map Pi+1 ∈

R
1×Hi×Wi which is generated by the (i + 1)th decoder block. T is the threshold

to determine whether the specific position belongs to foreground or background.
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Fig. 2. Overview of our proposed ACSNet

We calculate the absolute difference between the prediction value and threshold
T, and limit it to the range of 0 to 1 by dividing the maximum difference.
We believe that the closer the predicted value is to the threshold T, the more
uncertain the prediction of the corresponding position is, so it should be given
a larger attention weight in the forwarding layer, and vice versa. Finally, we
multiply the features by the attention values, and then sum with the original
features to get the output of this module. For simplicity, T is set to 0.5 in our
experiments.

2.2 Global Context Module (GCM)

We borrow the idea from pyramid pooling [6,11,20] to design our GCM and
also put it as an independent module for global context inferring on top of the
encoder branch. Meanwhile, GCM forwards the output to each ASM module
to compensate the global context which is gradually diluted during layer-wise
refinement.

As shown in Fig. 4, GCM contains four branches to extract context features
at different scales. Specifically, this module is composed of a global average
pooling branch, two adaptive local average pooling branches, and outputs three
feature maps of spatial size 1 × 1, 3 × 3, 5 × 5, respectively. It also contains
an identity mapping branch with non local operation [18] to capture the long
range dependency while maintaining the original resolution. We introduce a non-
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Fig. 3. Local Context Attention Module (LCA)

local operation based feature representation here to finely capture the global
dependency of each positional feature to enhance the output of the encoder. In
the end, we up-sample the above four feature maps and concatenate them to
obtain the resulted global context feature of this module, which will be densely
fed to each designed ASM module in the decoder stream.

Fig. 4. Global Context Module (GCM)

2.3 Adaptive Selection Module (ASM)

We believe that local context and global context have different reference val-
ues for the segmentation of polyp regions with different appearances, sizes, and
feature contrasts. Therefore, we attach an adaptive context selection module
(ASM) to each block in the decoder stream. Based on the local context features
generated by the LCA, the global context features from the GCM, and the out-
put features of previous decoder block as inputs, it learns to adaptively select
context feature for aggregation in each block.

As shown in Fig. 5, we incorporate a “Squeeze-and-Excitation” block [7] to
adaptively recalibrate channel-wise feature responses for feature selection. Specif-
ically, ASM takes the concatenated feature as input, and employs global average
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pooling to squeeze the feature map to a single vector which is further fed to a
fully connected layer to learn the weight of each channel. After sigmoid opera-
tion, the attention weight is limited to the range of 0 to 1. Through multiplying
the original feature maps with the attention values, some informative context
features can be picked out while those not conducive to improving discrimina-
tion will be suppressed. Noted that we also apply non local operation [18] to the
features output from previous decoder block before concatenation to enhance
the decoder features with long range dependency.

Fig. 5. Adaptive Selection Module (ASM)

3 Experiments

3.1 Datasets

We evaluate our proposed method on two benchmark colonoscopy image
datasets, collected from the examination of colorectal cancer. The first is the
EndoScene Dataset [17], which contains 912 images and each of which has at
least one polyp region. It is divided into the training set, validation set and test
set, with 547, 183, and 182 images respectively. For simplicity, we resize the
images to 384 × 288 uniformly in our experiments. The second is Kvasir-SEG
Dataset [8] containing 1000 images with polyp regions. We randomly use 60%
of the dataset as training set, 20% as validation set, and the remaining 20% as
test set. Since the image resolution of this dataset varies greatly, we refer to the
setting of [8] and set all images to a fixed size of 320 × 320.

3.2 Implementation Details and Evaluation Metrics

In the training stage, we use data augmentation to enlarge the training set,
including random horizontal and vertical flips, rotation, zoom and shift. All the
images are randomly cropped to 224 × 224 as input. We set batch size to 4, and
use SGD optimizer with a momentum of 0.9 and a weight decay of 0.0005 to
optimize the model. A poly learning rate police is adopted to adjust the initial
learning rate, which is lr = init lr × (1 − epoch

nEpoch )power, where init lr = 0.001,
power = 0.9, nEpoch = 150. We utilize the combination of a binary cross
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Fig. 6. Visual comparison of polyp region segmentation from state-of-the-art methods.
The ground truth (GT) is shown in the penultimate column. Our proposed method
consistently produces segmentation results closest to the ground truth. The hard region
mining result is shown in the rightmost column.

entropy loss and a dice loss as the loss function. Our model is implemented
using PyTorch [13] framework.

As in [3], we use eight metrics to evaluate the segmentation performance,
including “Recall”, “Specificity”, “Precision”, “Dice Score”, “Intersection-over-
Union for Polyp (IoUp)”, “IoU for Background (IoUb)”, “Mean IoU (mIoU)”
and “Accuracy”.

Table 1. Comparison with other state-of-the-art methods on the EndoScene dataset

Methods Rec Spec Prec Dice IoUp IoUb mIoU Acc

FCN8s [1] 60.21 98.60 79.59 61.23 48.38 93.45 70.92 93.77

UNet [14] 85.54 98.75 83.56 80.31 70.68 95.90 83.29 96.25

UNet++ [21] 78.90 99.15 86.17 77.38 68.00 95.48 81.74 95.78

SegNet [19] 86.48 99.04 86.54 82.67 74.41 96.33 85.37 96.62

SFANet [3] 85.51 98.94 86.81 82.93 75.00 96.33 85.66 96.61

Ours 87.96 99.16 90.99 86.59 79.73 96.86 88.29 97.11

3.3 Results on the EndoScene Dataset

We compare our ACSNet with FCN8s [1], UNet [14], UNet++ [21], SegNet [19]
and SFANet [3] on the test set. As shown in Table 1, our method achieves the best
performance over all metrics, with Dice of 86.59%, a 3.66% improvement over
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the second best algorithm. Some visualization results are shown in Fig. 6 (Col.1-
8), as can be seen that our algorithm is very robust to some complex situations
such as polyp region sizes and image brightness changes. At the same time, due
to the introduction of the effective context selection module and especially the
hard region mining (abbr.HRM) mechanism, the algorithm is significantly more
accurate for polyp boundary positioning. In the rightmost column of Fig. 6, it
can be observed that the hard regions mined by our method are usually located
in the border area of polyps, which is worthy of attention during prediction
refinement.

3.4 Results on the Kvasir-SEG Dataset

On this dataset, we compare our ACSNet with UNet [14], UNet++ [21], Seg-
Net [19], ResUNet [8] and SFANet [3]. The results are listed in Table 2. Similarly,
our method achieves the best performance and outperforms others by large mar-
gins, further demonstrating the robustness and effectiveness of our method.

Table 2. Comparison with other state-of-the-art methods and Ablation study on the
Kvasir-SEG dataset

Methods Rec Spec Prec Dice IoUp IoUb mIoU Acc

UNet [14] 87.89 97.69 83.89 82.85 73.95 94.73 84.34 95.65

UNet++ [21] 88.67 97.49 83.17 82.80 73.74 94.49 84.11 95.42

ResUNet [8] 81.25 98.31 87.88 81.14 72.23 94.00 83.11 94.90

SFANet [3] 91.99 97.05 82.95 84.68 77.06 94.83 85.94 95.71

SegNet [19] 90.03 98.13 87.51 86.43 79.11 95.90 87.51 96.68

Ours 93.14 98.55 91.59 91.30 85.80 97.00 91.40 97.64

Baseline 89.53 98.63 90.32 88.21 81.59 96.27 88.93 96.99

Baseline+LCAs 91.79 98.39 89.15 89.00 82.47 96.41 89.44 97.15

Baseline+LCAs+GCM 92.18 98.72 90.90 90.28 84.35 96.88 90.62 97.52

3.5 Ablation Study

To validate the effectiveness and necessity of each of the three modules in our
proposed method, we compare ACSNet with its three variants in Table 2. Specif-
ically, the baseline model refers to the original U-shape encoder-decoder frame-
work with skip-connections, and we gradually add LCAs, GCM, and ASMs to
it, denoted as Baseline+LCAs, Baseline+LCAs+GCM and Ours, respectively.
As shown in the table, with the progressive introduction of LCAs, GCM, and
ASMs, our algorithm has witnessed a certain degree of performance improve-
ment, boosting Dice by 0.79%, 1.28%, 1.02% respectively.
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4 Conclusion

In this paper, we believe that an efficient perception of local and global con-
text is essential to improve the performance of polyps region localization and
segmentation. Based on this, we propose an adaptive context selection based
encoder-decoder framework which contains the LCA module for hard region
mining based local context extraction, the GCM module for global feature rep-
resentation and enhancement in each decoder block, and the ASM component
for contextual information aggregation and selection. Extensive experimental
results and ablation studies have demonstrated the effectiveness and superiority
of the proposed method.
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