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Complex Background Subtraction by Pursuing
Dynamic Spatio-Temporal Models

Liang Lin, Yuanlu Xu, Xiaodan Liang, and Jianhuang Lai

Abstract— Although it has been widely discussed in video
surveillance, background subtraction is still an open problem in
the context of complex scenarios, e.g., dynamic backgrounds, illu-
mination variations, and indistinct foreground objects. To address
these challenges, we propose an effective background subtraction
method by learning and maintaining an array of dynamic
texture models within the spatio-temporal representations. At any
location of the scene, we extract a sequence of regular video
bricks, i.e., video volumes spanning over both spatial and
temporal domain. The background modeling is thus posed as
pursuing subspaces within the video bricks while adapting the
scene variations. For each sequence of video bricks, we pursue
the subspace by employing the auto regressive moving average
model that jointly characterizes the appearance consistency and
temporal coherence of the observations. During online processing,
we incrementally update the subspaces to cope with disturbances
from foreground objects and scene changes. In the experiments,
we validate the proposed method in several complex scenarios,
and show superior performances over other state-of-the-art
approaches of background subtraction. The empirical studies of
parameter setting and component analysis are presented as well.

Index Terms— Background modeling, visual surveillance,
spatio-temporal representation.

I. INTRODUCTION

BACKGROUND subtraction (also referred as foreground
extraction) has been extensively studied in decades

[1]–[6], yet it still remains open in real surveillance appli-
cations due to the following challenges:

• Dynamic backgrounds. A scene environment is not
always static but sometimes highly dynamic, e.g., rippling
water, heavy rain and camera jitter.
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Fig. 1. Some challenging scenarios for foreground object extraction are
handled by our approach: (i) a floating bottle with randomly dynamic water
(in the left column), (ii) waving curtains around a person (in the middle
column), and (iii) sudden light changing (in the right column).

• Lighting and illumination variations, particularly with
sudden changes.

• Indistinct foreground objects having similar appearances
with surrounding backgrounds.

In this paper, we address the above mentioned difficulties
by building the background models with the online pursuit of
spatio-temporal models. Some results generated by our system
for the challenging scenarios are exhibited in Fig. 1. Prior to
unfolding the proposed approach, we first review the existing
works in literature.

A. Related Work

Due to their pervasiveness in various applications, there is
no unique categorization on the existing works of background
subtraction. Here we introduce the related methods basically
according to their representations, to distinguish with our
approach.

The pixel-processing approaches modeled observed scenes
as a set of independent pixel processes, and they were widely
applied in video surveillance applications [6], [7] . In these
methods [1], [2], [8], [9], each pixel in the scene can be
described by different parametric distributions (e.g. Gaussian
Mixture Models) to temporally adapt to the environment
changes. The parametric models, however, were not always
compatible with real complex data, as they were defined
based upon some underlying assumptions. To overcome this
problem, some other non-parametric estimations [10]–[13]
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were proposed, and effectively improved the robustness.
For example, Barnich et al. [13] presented a sample-based
classification model that maintained a fixed number of
samples for each pixel and classified a new observation as
background when it matched with a predefined number of
samples. Liao et al. [14] recently employed the kernel density
estimation (KDE) technique to capture pixel-level variations.
Some distinct scene variations, i.e. illumination changes and
shadows, can be explicitly alleviated by introducing the extra
estimations [15]. Guyon et al. [16] proposed to utilize the
low rank matrix decomposition for background modeling,
where the foreground objects constituted the correlated sparse
outliers. Despite acknowledged successes, this category of
approaches may have limitations on complex scenarios, as the
pixel-wise representations overlooked the spatial correlations
between pixels.

The region-based methods built background models by
taking advantages of inter-pixel relations, demonstrating
impressive results on handling dynamic scenes. A batch of
diverse approaches were proposed to model spatial struc-
tures of scenes, such as joint distributions of neighboring
pixels [11], [17], block-wise classifiers [18], structured adja-
cency graphs [19], auto-regression models [20], [21], random
fields [22], and multi-layer models [23] etc. And a number
of fast learning algorithms were discussed to maintain their
models online, accounting for environment variations or any
structural changes. For example, Monnet et al. [20] trained
and updated the region-based model by the generative sub-
space learning. Cheng et al. [19] employed the generalized
1-SVM algorithm for model learning and foreground pre-
diction. In general, methods in this category separated the
spatial and temporal information, and their performances were
somewhat limited in some highly dynamic scenarios, e.g.
heavy rains or sudden illumination changes.

The third category modeled scene backgrounds
by exploiting both spatial and temporal information.
Mahadevan et al. [24] proposed to separate foreground objects
from surroundings by judging the distinguished video patches,
which contained different motions and appearances compared
with the majority of the whole scene. Zhao et al. [25]
addressed the outdoor night background modeling by
performing subspace learning within video patches. Spatio-
temporal representations were also extensively discussed in
other vision tasks such as action recognition [26] and trajectory
parsing [27]. These methods motivated us to build models
upon the spatio-temporal representations, i.e. video bricks.

In addition, several saliency-based approaches provided
alternative ways based on spatio-temporal saliency estima-
tions [24], [28], [29]. The moving objects can be extracted
according to their salient appearances and/or motions against
the scene backgrounds. For example, Wixson et al. [28]
detected the salient objects according to their consistent mov-
ing directions over time. Kim et al. [30] used a discrimi-
nant center-surround hypothesis to extract foreground objects
around their surroundings.

Along with the above mentioned background models,
a number of reliable image features were utilized to better
handle the background noise [31]. Exemplars included the

Local Binary Pattern (LBP) features [32]–[34] and color tex-
ture histograms [35]. The LBP operators described each pixel
by the relative graylevels of its neighboring pixels, and their
effectiveness has been demonstrated in several vision tasks
such as face recognition and object detection [32], [36], [37].
The Center-Symmetric LBP was proposed in [34] to further
improve the computational efficiency. Tan and Triggs [33]
extended LBP to LTP (Local Ternary Pattern) by thresholding
the graylevel differences with a small value, to enhance the
effectiveness on flat image regions.

B. Overview

In this work, we propose to learn and maintain the dynamic
models within spatio-temporal video patches (i.e. video
bricks), accounting for real challenges in surveillance scenar-
ios [7]. The algorithm can process 15 ∼ 20 frames per second
in the resolution 352 × 288 (pixels) on average. We briefly
overview the proposed framework of background modeling
in the following aspects.

1) Spatio-Temporal Representations: We represent the
observed scene by video bricks, i.e. video volumes spanning
over both spatial and temporal domain, in order to jointly
model spatial and temporal information. Specifically, at every
location of the scene, a sequence of video bricks are extracted
as the observations, within which we can learn and update
the background models. Moreover, to compactly encode the
video bricks against illumination variations, we design a brick-
based descriptor, namely Center Symmetric Spatio-Temporal
Local Ternary Pattern (CS-STLTP), which is inspired by the
2D scale invariant local pattern operator proposed in [14]. Its
effectiveness is also validated in the experiments.

2) Pursuing Dynamic Subspaces: We treat each sequence
of video bricks at a certain location as a consecutive signal,
and generate the subspace within these video bricks. The
linear dynamic system (i.e. Auto Regressive Moving Average,
ARMA model [38]) is adopted to characterize the spatio-
temporal statistics of the subspace. Specifically, given the
observed video bricks, we express them by a data matrix,
in which each column contains the feature of a video brick.
The basis vectors (i.e. eigenvectors) of the matrix can be then
estimated analytically, representing the appearance parameters
of the subspace, and the parameters of dynamical variations are
further computed based on the fixed appearance parameters.
It is worth mentioning that our background model jointly
captures the information of appearance and motion as the data
(i.e. features of the video bricks) are extracted over both spatial
and temporal domains.

3) Maintaining Dynamic Subspaces Online: Given the
newly appearing video bricks with our model, moving fore-
ground objects are segmented by estimating the residuals
within the related subspaces of the scene, while the back-
ground models are maintained simultaneously to account for
scene changes. The raising problem is to update parame-
ters of the subspaces incrementally against disturbance from
foreground objects and background noise. The new obser-
vation may include noise pixels (i.e. outliers), resulting in
degeneration of model updating [20], [25]. Furthermore, one
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Fig. 2. An example of computing the CS-STLTP feature. For one pixel in the video brick, we construct four spatio-temporal planes. The center-symmetric
local ternary patterns for each plane is calculated, which compares the intensities in a center-symmetric direction with a contrasting threshold τ . The CS-STLTP
feature is concatenated by the vectors of the four planes.

video brick could be partially occluded by foreground objects
in our representation, i.e. only some of pixels in the brick
are true positives. To overcome this problem, we present a
novel approach to compensate observations (i.e. the observed
video bricks) by generating data from the current models.
Specifically, we replace the pixels labeled as non-background
by the generated pixels to synthesize the new observations.
The algorithm for online model updating includes two steps:
(i) update appearance parameters using the incremental sub-
space learning technique, and (ii) update dynamical variation
parameters by analytically solving the linear reconstruction.
The experiments show that the proposed method effectively
improves the robustness during the online processing.

The remainder of this paper is arranged as follows. We first
present the model representation in Section II, and then discuss
the initial learning, foreground segmentation and online updat-
ing mechanism in Section III, respectively. The experiments
and comparisons are demonstrated in Section IV and finally
comes the conclusion in Section V with a summary.

II. DYNAMIC SPATIO-TEMPORAL MODEL

In this section, we introduce the background of our model,
and then discuss the video brick representation and our model
definition, respectively.

A. Background

In general, a complex surveillance background may include
diverse appearances that sometimes move and change dynami-
cally and randomly over time flying [39]. There is a branch of
works on time-varying texture modeling [40]–[42] in computer
vision. They often treated the scene as a whole, and pursued
a global subspace by utilizing the linear dynamic system
(LDS). These models worked well on some natural scenes
mostly including a few homogeneous textures, as the LDS
characterizes the subspace with a set of linearly combined
components. However, under real surveillance challenges, it
could be intractable to pursue the global subspace. In this
work, we represent the observed scene by an array of small and

independent subspaces, each of which is defined by the linear
system, so that our model is able to handle better challenging
scene variations. Our background model can be viewed as a
mixed compositional model consisting of the linear subspaces.
In particular, we conduct the background subtraction with our
model based on the following observations.

Assumption 1: The local scene variants (i.e. appearance
and motion changing over time) can be captured by the low-
dimensional subspace.

Assumption 2: It is feasible to separate foreground moving
objects from the scene background by fully exploiting spatio-
temporal statistics.

B. Spatio-Temporal Video Brick

Given the surveillance video of one scene, we first decom-
pose it with a batch of small brick-like volumes. We consider
the video brick of small size (e.g., 4× 4× 5 pixels) includes
relative simple content, which can be thus generated by few
bases (components). And the brick volume integrates both
spatial and temporal information, that we can better capture
complex appearance and motion variations compared with the
traditional image patch representations.

We divide each frame Ii , (i = 1, 2, . . . , n) into a set of
image patches with the width w and height h. A number t of
patches at the same location across the frames are combined
together to form a brick. In this way, we extract a sequence
of video bricks V = {v1, v2, . . . , vn} at every location for the
scene.

Moreover, we design a novel descriptor to describe the
video brick instead of using RGB values. For any video
brick vi , we first apply the CS-STLTP operator on each
pixel, and pool all the feature values into a histogram. For
a pixel xc, we construct a few 2D spatio-temporal planes
centered at it, and compute the local ternary patterns (LTP)
operator [33] on each plane. The CS-STLTP then encodes
xc by combining the LTP operators of all planes. Note that
the way of splitting spatio-temporal planes little affects the
operator’s performance. To simplify the implementation, we
make the planes parallel to the Y axis, as Fig. 2 shown.
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We index the neighborhood pixels of x by {0, . . . , M}, the
operator response of the j -th plane can be then calculated as:

�
j (x) =

M
2 −1⊎

m=0

sτ (pm, pm+ M
2
), (1)

where pixel k and k + M/2 are two symmetric neighbors of
pixel xc. pk and pk+ M

2
are the graylevels of the two pixels,

respectively. The sign
⊎

indicates stretching elements into a
vector. The function sτ is defined as follows:

sτ (pm, pm+ M
2
) =

⎧
⎪⎨

⎪⎩

1, if pm > (1+ τ )pm+ M
2
,

-1, if pm < (1− τ )pm+ M
2
,

0, otherwise.

(2)

where τ is a constant threshold for the comparing range.
Suppose that we take M = 8 neighborhood pixels for

computing the operator in each spatio-temporal plane, and
the number of planes is 4. The resulting CS-STLTP vector
contains M/2 × 4 = 16 bins. Fig. 2 illustrates an example
of computing the CS-STLTP operator, where we apply the
operator for one pixel on 4 spatial-temporal planes displayed
with different colors (e.g., green, blue, purple and orange).

Then we build a histogram for each video brick by accumu-
lating the CS-STLTP responses of all pixels. This definition
was previously proposed by Guo et al [36].

H (k) = �x∈vi �
4
j=11(�j(x), k), k ∈ [0, K], (3)

where 1(a, b) is an indicator function, i.e. 1(a, b) = 1 only
if a = b. To measure the operator response, we transform
the binary vector of CS-STLTP into a uniform value that is
defined as the number of spatial transitions (bitwise changes)
following, as discussed in [36]. For example, the pattern (i.e.
the vector of 16 bins) 0000000000000000 has a value of
0 and 1000000000000000 of 1. In our implementation, we
further quantize all possible values into 48 levels. To further
improve the capability, we can generate histograms in each
color channel and concatenate them together.

The proposed descriptor is computationally efficient and
compact to describe the video brick. In addition, by intro-
ducing a tolerative comparing range in the LTP operator
computation, it is robust to local spatio-temporal noise within
a range.

C. Model Definition

Let m be the descriptor length for each brick, and V =
{v1, v2, . . . , vn}, vi ∈ R

m be a sequence of video bricks at a
certain location of the observed background. We can use a set
of bases (components) C = [C1, C2, . . . , Cd ] to represent the
subspace where V lies in. Each video brick vi in V can be
represented as

vi =
d∑

j=1

zi, j C j + ωi , (4)

where C j is the j -th basis ( j -th column of matrix C) of the
subspace, zi, j the coefficient for C j , and ωi the appearance
residual. We denote C to represent appearance consistency of

the sequence of video bricks. In some traditional background
models by subspace learning, zi, j can be solved and kept as
a constant, with the underlying assumption that the appear-
ance of background would be stable within the observations.
In contrast, we treat zi, j as the variable term that can be further
phrased as the time-varying state, accounting for temporally
coherent variations (i.e. the motions). For notation simplicity,
we neglect the subscript j , and denote Z = {z1, z2, . . . , zn}
for all the bricks. The dynamic model is formulated as,

zi+1 = Azi + ηi , (5)

where ηi is the state residual, and A is a matrix of d × d
dimensions to model the variations. With this definition, we
consider A representing the temporal coherence among the
observations.

Therefore, the problem of pursuing dynamic subspace is
posed as solving the appearance consistency C and the tem-
poral coherence A, within the observations. Since the sequence
states Z are unknown, we shall jointly solve C, A, Z by
minimizing an empirical energy function Fn(C, A, Z):

min Fn(C, A, Z)= 1

2n

n∑

i=1

‖vi − Czi‖22 + ‖zi − Azi−1‖22. (6)

Here Fn(C, A, Z) is not completely convex but we can solve
it by fixing either Z or (C, A). Nevertheless, its computation
cost is expensive for learning the entire background online.
Here we simplify the dynamic model in Equation (5) into a
linear system, following the auto-regressive moving average
(ARMA) process. In literature, Soatto et al. [40] originally
associated the output of ARMA model with dynamic textures,
and showed that the first-order ARMA model, driven by
white zero-mean Gaussian noise, can capture a wide range of
dynamic textures. In our approach, the difficulty of modeling
the dynamic variations can be alleviated due to the brick-based
representation, i.e. the observed scene is decomposed into
video bricks. Thus, we consider the ARMA process a suitable
solution to model the time-varying variables, which can be
solved efficiently. Specifically, we introduce a robustness term
(i.e. matrix) B , which includes a number dε of bases, and we
set ηi = Bεi , where εi denotes the noise.

We further summarize the proposed dynamic model, where
we add the subscript n to the main components, indicating
they are solved within a number n of observations, as,

vi = Cn zi + ωi ,

zi+1 = An zi + Bn εi ,

ωi
I I D∼ N(0,�ω), εi

I I D∼ N(0, Idε ). (7)

In this model, Cn ∈ R
m×d and An ∈ R

d×d represent the
appearance consistency and temporal coherence, respectively.
Bn ∈ R

d×dε is the robustness term constraining the evolution
of Z over time. ωi ∈ R

m indicates the residual corresponding
to observation vi , and εi ∈ R

dε the noise of state variations.
During the subspace learning, ωi and εi are assumed to follow
the zero-mean Gaussian distributions. Given a new brick
mapped into the subspace, ωi and εi can be used to measure
how likely the observation is suitable with the subspace, so
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that we utilize them for foreground object detection during
online processing.

The proposed model is time-varying, and the parameters
Cn, An, Bn can be updated incrementally along with the
processing of new observations, in order to adapt our model
with scene changes.

III. LEARNING ALGORITHM

In this section, we discuss the learning for spatio-temporal
background models, including initial subspace generation and
online maintenance. The initial learning is performed at the
beginning of system deployment, when only a few foreground
objects move in the scene. Afterwards, the system switches to
the mode of online maintenance.

A. Initial Model Learning

In the initial stage, the model defined in Equation (7) can
be degenerated as a non-dynamic linear system, as the n
observations are extracted and fixed. Given a brick sequence
V = {v1, v2, . . . , vn}, we present an algorithm to identify
the model parameters Cn, An, Bn , following the sub-optimal
solution proposed in [40].

To guarantee the Equation (7) has an unique and canonical
solution, we postulate

n � d, Rank(Cn) = d, C�n Cn = Id , (8)

where Id is the identity matrix of dimension d × d . The
appearance consistency term Cn can be estimated as,

Cn = arg min
Cn

| Wn − Cn [ z1 z2 · · · zn ] | (9)

where Wn is the data matrix composed of observed video
bricks [v1, v2, · · · , vn]. The equation (9) satisfies the full rank
approximation property and can be thus solved by the singular
value decomposition (SVD). We have,

Wn = U�Q�,

U�U = I, Q�Q = I, (10)

where Q is the unitary matrix, U includes the eigenvectors,
and � is the diagonal matrix of the singular values. Thus,
Cn is treated as the first d components of U , and the state
matrix [z1 z2 · · · zn] as the product of d × d sub-matrix of
� and the first d columns of Q�.

The temporal coherence term An is calculated by solving
the following linear problem:

An=arg min
An

| [ z2 z3 · · · zn ] − An[ z1 z2 · · · zn−1 ] |. (11)

The statistical robustness term Bn is estimated by the recon-
struction error E

E = [ z2 z3 · · · zn ] − An [ z1 z2 · · · zn−1 ]
= Bn [ ε1 ε2 · · · εn−1 ], (12)

where Bn ∼= 1√
n−1

E . Since the rank of An is d and d � n, the
rank of input-to-state noise dε is assumed to be much smaller

than d . That is, the dimension of E can be further reduced by
SVD: E = Uε �ε Q�ε , and we have

Bn= 1√
n − 1

[
U1

ε · · · Udε
ε

]
⎡
⎢⎣

�1
ε

. . .

�
dε
ε

⎤
⎥⎦. (13)

The values of d , dε essentially imply the complexity of
subspace from the aspects of appearance consistence and
temporal coherence, respectively. For example, video bricks
containing static content can be well described with a function
of low dimensions while highly dynamic video bricks (e.g.,
from an active fountain) require more bases to generate. In real
surveillance scenarios, it is not practical to pre-determine the
complexity of scene environments. Hence, in the proposed
method, we adaptively determine d , dε by thresholding eigen-
values in � and �ε , respectively.

d∗ = arg max
d

�d > Td ,

d∗ε = arg max
dε

�dε
ε > Tdε , (14)

where �d indicates the d-th eigenvalue in � and �dε
ε the dε-th

eigenvalue in �ε .

B. Online Model Maintenance

Then we discuss the online processing with our model that
segments foreground moving objects and keeps the model
updated.

1) Foreground Segmentation: Given one newly appearing
video brick vn+1, we can determine whether pixels in vn+1
belong to the background or not by thresholding their appear-
ance residual and state residual. We first estimate the state of
vn+1 with the existing Cn ,

z′n+1 = C�n vn+1, (15)

and further the appearance residual of vn+1

ωn+1 = vn+1 − Cnz′n+1. (16)

As the state zn and the temporal coherence An have been
solved, we can then estimate the state residual εn according
to Equation (7),

Bnεn = z′n+1 − Anzn

⇒ εn = pinv (Bn) (z′n+1 − Anzn), (17)

where pinv denotes the operator of pseudo-inverse.
With the state residual εn and the appearance residual ωn+1

for the new video brick vn+1, we conduct the following criteria
for foreground segmentation, in which two thresholds are
introduced.

1) vn+1 is classified into background, only if all dimensions
of εn are less than a threshold Tε .

2) If vn+1 has been labeled as non-background, perform
the pixel-wise segmentation by comparing ωn+1 with a
threshold Tω: the pixel is segmented as foreground if its
corresponding dimension in ωn+1 is greater than Tω.
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2) Model Updating: During the online processing, the key
problem for model updating is to deal with foreground distur-
bance, i.e. to avoid absorbing pixels from foreground objects
or noise.

In this work, we develop an effective approach to update
the model with the synthesized data. We first generate a video
brick from the current model, namely noise-free brick, v̂n+1, as

ẑn+1 = Anzn,

v̂n+1 = Cn ẑn+1. (18)

Then we extract pixels from v̂n+1 to compensate occluded (i.e.
foreground) pixels in the newly appearing brick. Concretely,
the pixels labeled as non-background are replaced by the pixels
from the noise-free video brick at the same place. We can thus
obtain a synthesized video brick v̄n+1 for model updating.

Given the brick v̄n+1, the data matrix Wn composed of
observed video bricks is extended to Wn+1. Then we update
the model Cn+1 according to Equation (9).

Our algorithm of model updating includes two steps:
(i) update parameters for appearance consistency Cn+1 by
employing the incremental subspace learning technique, and
(ii) update parameters of state variations An+1, Bn+1.

(i) Step 1. For the d-dimension subspace, with eigenvectors
Cn and eigenvalues �n , its covariance matrix Covn can be
approximated as

Covn ≈

d∑

j=1

λn, j cn, j c
�
n, j = Cn�nC�n , (19)

where cn, j and λn, j denote the j -th eigenvector and eigen-
value, respectively. With the newly synthesized data v̄n+1, the
updated covariance matrix Covn+1 is formulated as

Covn+1 = (1− α) Covn + α v̄n+1 v̄�n+1

≈ (1− α) Cn�nC�n + α v̄n+1 v̄�n+1

=
d∑

i=1

(1− α) λn,i cn,i c�n,i + α v̄n+1 v̄�n+1, (20)

where α denotes the learning rate. The covariance matrix can
be further re-formulated to simplify computation, as,

Covn+1 = Yn+1Y�n+1, (21)

where Yn+1 = [yn+1,1 yn+1,2 . . . yn+1,d+1] and each column
yn+1, j in Yn+1 is defined as

yi =
{√

1− αλ j cn,i , if 1 < j < d,√
α v̄n+1, if j = d + 1.

(22)

To reduce the computation cost, we can estimate Cn+1 by a
smaller matrix Y�n+1Yn+1, instead of the original large matrix
Covn+1.

(Y�n+1 Yn+1)en+1, j =λn+1, j en+1, j j = 1, 2, . . . , d + 1, (23)

where en+1, j and λn+1, j are the j -th eigenvector and
eigenvalue of matrix Y�n+1Yn+1, respectively. Let cn+1, j =
Yn+1en+1, j , and we re-write Equation (23) as

Yn+1 Y�n+1 Yn+1 en+1, j = λn+1, j Yn+1 en+1, j ,

Covn+1 cn+1, j = λn+1,i cn+1, j j = 1, 2, . . . , d + 1. (24)

We thus obtain the updated eigenvectors Cn+1 and the cor-
responding eigenvalues �n+1 of the new covariance matrix
Covn+1. Note that the dimension of the subspace is auto-
matically increased along with the newly added data v̄n+1.
To guarantee the appearance parameters remain stable, we
keep the main principal (i.e. top d) eigenvectors and eigen-
values while discarding the least significant components.

The above incremental subspace learning algorithm has
been widely applied in several vision tasks such as face
recognition and image segmentation [43]–[45], and also for
background modeling in [4], [25] and [46]. However, the noise
observations caused by moving objects or scene variations
often disturb the subspace maintenance, e.g. the eigenvec-
tors could change dramatically during the processing. Many
efforts [47], [48] have been dedicated to improve the robust-
ness of incremental learning by using statistical analysis.
Several discriminative learning algorithms [49] were also
employed to train background classifiers that can be incre-
mentally updated. In this work, we utilize a version of Robust
Incremental PCA (RIPCA) [50] to cope with the outliers
in v̄n+1. Note that v̄n+1 consists of pixels either from the
generated data v̂n+1 or real videos, where outliers may exist
in some dimensions.

In the traditional PCA learning, the solution is derived by
minimizing a least-squared reconstruction error,

min |rn+1|2 = |CnC�n v̄n+1 − v̄n+1|2. (25)

Following [50], we impose a robustness function w(t) =
1

1+(t/ρ)2 over each dimension of rn+1, and the target can be
re-defined as,

min
∑

j

(rk
n+1)

2 ← w(rk
n+1)(r

k
n+1)

2, (26)

where the superscript k indicates the k-th dimension. The
parameter ρ in the robustness function is estimated by

ρ = [ρ1, ρ2, . . . , ρ|v̄n+1|]�
ρk = d

max
i=1

β
√

λn,i | ck
n, j |, j = 1, 2, . . . , |v̄n+1| (27)

where β is a fixed coefficient. The k-th dimension of ρ is
proportional to the maximal projection of the current eigen-
vectors on the k-th dimension, (i.e. ρk is weighted by their
corresponding eigenvalues). Note that w(rk

n+1) is a function
of the residual error which should be calculated for each
vector dimension. And the computation cost for w(rk

n+1) can
be neglected in the analytical solution.

Accordingly, we can update the observation v̄n+1 over each
dimension by computing the function w(rk

n+1),

ṽk
n+1 =

√
w(rk

n+1) v̄k
n+1. (28)

That is, we treat ṽn+1 as the new observation during the
procedure of incremental learning.

(i) Step 2. With the fixed Cn+1, we then update the
parameters of state variations An+1, Bn+1. We first estimate
the latest state zn+1 based on the updated Cn+1 as,

zn+1 = C�n+1ṽn+1. (29)
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Fig. 3. An example to demonstrate the robustness of model maintenance.
In the scenario of dynamic water surfaces, we visualize the original and
predicted intensities for a fixed position (denoted by the red star), with the blue
and red curves, respectively. With our updating scheme, when the position is
occluded by a foreground object during from frame 551 to 632, the predicted
intensities are not disturbed by foreground, i.e. the model remains stable.

An+1 can be further calculated, by re-solving the linear
problem of a fixed number of latest observed states,

An+1 [ zn−l+1 · · · zn ] = [ zn−l+2 · · · zn+1 ], (30)

where l indicates the number of latest observed states, i.e. the
span of observations. And similarly, we update Bn+1 by com-
puting the new reconstruction error E = [zn−l+2 · · · zn+1] −
An+1 [zn−l+1 · · · zn].

We present an empirical study in Fig. 3 to demonstrate
the effectiveness of this updating method. The video for
background modeling includes dynamic water surfaces. Here
we visualize the original and predicted intensities for a fixed
position (denoted by the red star), with the blue and red curves,
respectively. We can observe that the model remains stable
against foreground occlusion.

3) Time Complexity Analysis: We mainly employ SVD
and linear programming in the initial learning. The time
complexity of SVD is O(n3) and the learning time of lin-
ear programming is O(n2). For a certain location, the time
complexity of initial learning is O(n3) + O(n2) = O(n3)
for each subspace, where n denotes the number of video
bricks for model learning. As for online learning, incremental
subspace learning and linear programming are utilized. Given
a d-dimension subspace, the time complexity for component
updating (i.e. step 1 of the model maintenance) is O(dn2).
Thus, the total time complexity for online learning is O(dn2)+
O(l2), where l is the number of states used to solve the linear
problem.

We summarize the algorithm sketch of our framework in
Algorithm 1.

IV. EXPERIMENTS

In this section, we first introduce the datasets used in
the experiments and the parameter settings, then present the
experimental results and comparisons. The discussions of
system components are proposed at last.

Algorithm 1: The Sketch of the Proposed Algorithm

A. Datasets and Settings

We collect a number of challenging videos to validate
our approach, which are publicly available or from real
surveillance systems. Two of them (AirportHall and
TrainStation) from the PETS database1 include crowded
pedestrians and moving cast shadows; five highly dynamic
scenes2 include waving curtain active fountain, swaying trees,
water surface; the others contain extremely difficult cases
such as heavy rain, sudden and gradual light changing. Most
of the videos include thousands of frames, and some of the
frames are manually annotated as the ground-truth provided
by the original databases.

Our algorithm has been adopted in a real video surveillance
system and achieves satisfactory performances. The system is
capable of processing 15 ∼ 20 frames per second in the reso-
lution 352× 288 pixels. The hardware architecture is an Intel
i7 2600 (3.4 GHz) CPU and 8GB RAM desktop computer.

All parameters are fixed in the experiments, including the
contrast threshold for CS-STLTP descriptor τ = 0.2, the
dimension threshold for ARMA model Td = 0.5, Tdε = 0.5,
the span of observations for model updating l = 60, and the
size of bricks 4 × 4 × 5. For foreground segmentation, the

1Downloaded from http://www.cvg.rdg.ac.uk/slides/pets.html.
2Downloaded from http://perception.i2r.a-star.edu.sg
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threshold of appearance residual Tω = 3, update threshold
Tε = 3 and Tω = 5, Tε = 4 for RGB. In the online model
maintenance, the coefficient β = 2.3849, the learning rate
α = 0.05 for RIPCA.

In the experiments, we use the first 50 frames of each
testing video to initialize our system (i.e. to perform the initial
learning), and keep model updated in the rest of sequence.
In addition, we utilize a standard post-processing to eliminate
areas including less than 20 pixels. All other competing
approaches are executed with the same setting as our approach.

We utilize the F-score as the benchmark metric, which
measures the segmentation accuracy by considering both the
recall and the precision. The F-score is defined as

F = 2 T P

2 T P + F P + F N
, (31)

where TP is true positives (foreground objects), FN false
negatives (false background pixels), FP false positive (false
foreground pixels).

B. Experimental Results

Experimental results. We compare the proposed method
(STDM) with six state-of-the-art online background subtrac-
tion algorithms including Gaussian Mixture Model (GMM) [1]
as baseline, improved GMM [8]3, online auto-regression
model [20], non-parametric model with scale-invariant
local patterns [14], discriminative model using generalized
Struct 1-SVM [19]4, and the Bayesian joint domain-
range (JDR) model [11]5. In the comparisons, for the
methods [1], [8], [11], [19] we use their released codes, and
implement the methods [14], [20] by ourselves. The F-scores
(%) over all 10 videos are reported in Table I, where the last
two columns report results of our method using either RGB
or CS-STLTP as the feature. Note that for the result using the
RGB feature we represent each video brick by concatenating
the RGB values of all its pixels. We also exhibit the results and
comparisons using the precision-recall (PR) curves, as shown
in Fig. 4. Due to space limitation, we only show results on
5 videos. From the results, we can observe that the proposed
method outperforms the other methods in most videos in
general. For the scenes with highly dynamic backgrounds
(e.g., the #2 #5 and #10 scenes), the improvements made
by our method are more than 10%. And the system
enables us to well handle the indistinctive foreground objects
(i.e. small objects or background-like objects in the #1,
#3 scenes). Moreover, we make significant improvements
(i.e. 15% ∼ 25%) in the scene #6 and #7 including both
sudden and gradual lighting changes. A number of sampled
results of background subtraction are exhibited in Fig. 5.

The benefit of using the proposed CS-STLTP feature is
clearly validated by observing the results shown in Table I
and Fig. 5. In general, our approach simply using RGB values
can achieve satisfying performances for the common scenes,
e.g., with fair appearance and motion changes, while the

3Available at http://dparks.wikidot.com/background-subtraction
4Available at http://www.cs.mun.ca/∼gong/Pages/Research.html
5Available at http://www.cs.cmu.edu/∼yaser/

Fig. 4. Experimental results generated by our approach and competing
methods on 5 videos: first row left, the scene including a dynamic curtain
and indistinctive foreground objects (i.e. having similar appearance with
backgrounds); first row right, the scene with heavy rain; second row left,
an indoor scene with the sudden lighting changes; second row right, the
scene with dynamic water surface; third row, a busy airport. The precision-
recall (PR) curve is introduced as the benchmark measurement for all the
6 algorithms.

CS-SILTP operator can better handle highly dynamic vari-
ations (e.g. sudden illumination changing, rippling water).
In addition, we also compare CS-STLTP with the existing
scale invariant descriptor SILTP proposed in [14]. We reserve
all settings in our approach except replacing the feature by
SILTP, and achieve the average precision over all 10 videos:
69.70%. This result shows that CS-STLTP is very suitable and
effective for the video brick representation.

C. Discussion

Furthermore, we conduct the following empirical studies
to justify the parameter determinations and settings of our
approach.

a) Efficiency: Like other online-learning background
models, there is a trade-off between the model stability and
maintenance efficiency. The corresponding parameter in our
method is the learning rate α. We tune α in the range of
0 ∼ 0.3 by fixing the other model parameters and visualize
the quantitative results of background subtraction, as shown
in Fig. 6(a). From the results, we can observe this parameter
is insensitive in range 0 ∼ 0.1 in our model. In practice, once
the scene is extremely busy and crowded, it could be set as a
relative small value to keep the model stable.

b) Feature effectiveness: The contrast threshold τ is the
only parameter in CS-STLTP operator, which affects the power
of feature to character spatio-temporal information within
video bricks. From the empirical results of parameter tuning,
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Fig. 5. Sampled results of background subtraction generated by our approach (using RGB or CS-STLTP as the feature and RIPCA as the update strategy)
and other competing methods.

as shown in Fig. 6 (b), we can observe that the appropriate
range for τ is 0.15 ∼ 0.25. In practice, the model could
become sensitive to noise by setting a very small value of

τ (say τ < 0.15), and too large τ (say τ > 0.25) might
reduce the accuracy on detecting foreground regions with
homogeneous appearances.



3200 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 23, NO. 7, JULY 2014

TABLE I

QUANTITATIVE RESULTS AND COMPARISONS ON THE 10 COMPLEX VIDEOS USING THE F-SCORE (%) MEASUREMENT. THE LAST

TWO COLUMNS REPORT THE RESULTS OF OUR METHOD USING EITHER RGB OR CS-STLTP AS THE FEATURE

Fig. 6. Discussion of parameter selection: (i) learning rate α for model
maintenance (in (a)) and (ii) the contrast threshold of CS-STLTP feature τ
(in (b)). In each figure, the horizontal axis represents the different parameter
values; the three lines in different colors denote, respectively, the false positive
(FP), false negative (FN), and the sum of FP and FN.

Fig. 7. Empirical study for the size of video brick in our approach. We carry
on the experiments on the 10 videos with different brick size while keeping the
rest settings. The vertical axis represents the average precisions of background
subtraction and the horizontal represents the different sizes of video bricks
with respect to background decomposition.

c) Size of video brick: One may be interested in how the
system performance is affected by the size of video brick for
background decomposition, so that we present an empirical
study on different sizes of video bricks in Fig. 7. We observe
that the best result is achieved with the certain brick size of
4×4×3, and the results with the sizes of 4×4×1 and 4×4×5
are also satisfied. As of very small bricks (e.g. 1 × 1 × 3),
few spatio-temporal statistics are captured and the models may
have problems on handling scene variations. The bricks of
large sizes (e.g. 8 × 8 × 5) carry too much information, and
their subspaces cannot be effectively generated by the linear
ARMA model. The experimental results are also accordant
with our motivations in Section I. In practice, we can flexibly
set the size according to the resolutions of surveillance videos.

d) Model initialization: Our method is not sensitive to the
number of observed frames in the initial stage of subspace gen-
eration. We test the different numbers, say 30, 40, 60, on two
typical surveillance scenes, i.e. the Airport Hall (scene #1) and
the Train Station (scene #8). The F-score outputs show the
deviations with different numbers of initial frames are very
small, e.g. less than 0.2. In general, we require the observed
scenes to be relatively clean for initialization, although a few
objects that move across are allowed.

V. CONCLUSION

This paper studies an effective method for background
subtraction, addressing the all challenges in real surveillance
scenarios. In the method, we learn and maintain the dynamic
texture models within spatio-temporal video patches (i.e. video
bricks). Sufficient experiments as well as empirical analysis
are presented to validate the advantages of our method.

In the future, we plan to improve the method in two aspects.
(1) Some efficient tracking algorithms can be employed into
the framework to better distinguish the foreground objects.
(2) The GPU-based implementation can be developed to
process each part of the scene in parallel, and it would
probably significantly improve the system efficiency.
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