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Weakly Supervised Person Re-ID: Differentiable
Graphical Learning and A New Benchmark
Guangrun Wang, Guangcong Wang, Xujie Zhang, Jianhuang Lai, Zhengtao Yu, and Liang Lin

Abstract—Person re-identification (Re-ID) benefits greatly
from the accurate annotations of existing datasets (e.g., CUHK03
[1] and Market-1501 [2]), which are quite expensive because each
image in these datasets has to be assigned with a proper label.
In this work, we ease the annotation of Re-ID by replacing the
accurate annotation with inaccurate annotation, i.e., we group the
images into bags in terms of time and assign a bag-level label for
each bag. This greatly reduces the annotation effort and leads to
the creation of a large-scale Re-ID benchmark called SYSU-30k.
The new benchmark contains 30k individuals, which is about
20 times larger than CUHK03 (1.3k individuals) and Market-
1501 (1.5k individuals), and 30 times larger than ImageNet
(1k categories). It sums up to 29,606,918 images. Learning a
Re-ID model with bag-level annotation is called the weakly
supervised Re-ID problem. To solve this problem, we introduce
a differentiable graphical model to capture the dependencies
from all images in a bag and generate a reliable pseudo label
for each person image. The pseudo label is further used to
supervise the learning of the Re-ID model. When compared
with the fully supervised Re-ID models, our method achieves
state-of-the-art performance on SYSU-30k and other datasets.
The code, dataset, and pretrained model will be available at
https://github.com/wanggrun/SYSU-30k.

Index Terms—Weakly Supervised Learning, Person Re-
identification, Graphical Neural Networks, Visual Surveillance

I. INTRODUCTION

PERSON re-identification (Re-ID) [3] has been extensively
studied in recent years, which refers to the problem

of recognizing persons across cameras. Solving the Re-ID
problem has many applications in video surveillance for public
safety. In the past years, deep learning has been introduced to
Re-ID and has achieved promising results.

However, a crucial bottleneck in building deep models is
that they typically require strongly annotated images during
training. In the context of Re-ID, strong annotation refers to
assigning a clear person ID for each person image, which is
very expensive because it is difficult for annotators to remem-
ber persons who are strangers to the annotators, particularly
when the crowd is massive. Moreover, due to the wide range
of human activities, many images must be annotated within a
rather short time (see Fig. 1 (a)).
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Fig. 1: Problem definition for the weakly supervised Re-ID. (a) is
an example of strong annotation while (b) is an example of a weak
annotation. During testing, there is no difference between the fully
and weakly supervised Re-ID problems, i.e., they both aim at finding
the best-matching image for a given person image, as shown in (c).

An alternative way to create a Re-ID benchmark is to
replace image-level annotations with bag-level annotations.
Suppose that there is a short video containing many person
images; we do not need to know who is in each image. A
cast of characters is enough. Here, the exact person ID of
each image is called the image-level label (Fig. 1 (a)), and
the cast of characters is called the bag-level label (Fig. 1
(b)). Based on our experience, collecting bag-level annotations
is approximately three times faster/cheaper than collecting
image-level annotations. Once the dataset has been collected,
we train Re-ID models with the bag-level annotations. We call
this the weakly supervised Re-ID problem.

Formally, with strong supervision, the supervised learn-
ing task is to learn f : X → Y from a training set
{(x1, y1), · · · , (xi, yi), · · · }, where xi ∈ X is a person image
and yi ∈ Y is its exact person ID. By contrast, the weakly
supervised learning task here is to learn f : B → L from
a training set {(b1, l1), · · · , (bj , lj), · · · }, where bj ∈ B is
a bag of person images, i.e., bj = {xj1, xj2, · · · , xjp}; and
lj ∈ L is its bag-level label, i.e., lj = {yj1, yj2, · · · , yjq}.
Note that the mappings between {xj1, xj2, · · · , xjp} and
{yj1, yj2, · · · , yjq} are unknown. During testing, there is no
difference between fully and weakly supervised Re-ID prob-
lems (see Fig. 1 (c)).

Solving the weakly supervised Re-ID problem is challeng-
ing. Because without the help of strongly labeled data, it is
rather difficult to model the dramatic variances across camera
views, such as the variances in illumination and occlusion
conditions, which makes it very challenging to learn a discrim-
inative representation. Existing Re-ID approaches cannot solve
the weakly supervised Re-ID problem. Regardless of whether
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Pairwise Term Unary Term
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        (a)                               (b)                               (c)
Fig. 2: An illustration of the proposed method for weakly super-
vised Re-ID. (a) shows a bag of images and their bag-level label.
(b) presents the process of differentiable graphical learning. Using
graphical modeling, we can obtain the pseudo image-level label for
each image, as shown in (c).

they are designed for computing either cross-view-invariant
features or distance metrics, the existing models all assume
that a strong annotation of each person image is available. This
is also reflected in the existing benchmarking Re-ID datasets,
most of which consist of a precise person ID for each image.
None of them are designed to train a weakly supervised model.

Although the weak annotations lack detailed clues for
directly recognizing each person image, they usually contain
global dependencies among images, which are very useful to
model the variances of images across camera views. By using
the weak annotations, we introduce a differentiable graphical
model to address the weakly supervised Re-ID problem, which
includes several steps. First, the person images are fed into
the DNNs in terms of bags (Fig. 2 (a)) to obtain the rough
categorization probabilities. These categorization probabilities
are modeled as the unary terms in a probabilistic graphical
model; see Fig. 2 (b). Second, we further model the relations
between person images as the pairwise terms in a graph by
considering their similarity in the features and appearance; see
Fig. 2 (b). The unary term and the pairwise term are summed
to form the refined categorization probability. Third, we
maximize the refined categorization probabilities and obtain
the pseudo-image-level label for each image. Fourth, we use
the generated pseudo labels to supervise the learning of the
deep Re-ID model. Note that different from traditional non-
differentiable graphical models (e.g., CRFs [4]), our model is
differentiable and thus can be integrated into DNNs, which
is optimized by using stochastic gradient descent (SGD). All
of the above steps are trained in an end-to-end fashion. We
summarize the contributions of this work as follows.

1) We define a weakly supervised Re-ID problem by re-
placing the image-level annotations in traditional Re-ID with
bag-level annotations. This new problem is worth exploring
because it significantly reduces the labor of annotation and
offers the potential to obtain large-scale training data.

2) Since existing benchmarks largely ignore this weakly
supervised Re-ID problem, we contribute a newly dedicated
dataset called the SYSU-30k for facilitating further research in
Re-ID problems. SYSU-30k contains 30k individuals, which
is about 20 times larger than CUHK03 (1.3k individuals)
and Market-1501 (1.5k individuals), and 30 times larger than
ImageNet (1k categories). SYSU-30k contains 29,606,918 im-
ages. Moreover, SYSU-30k provides not only a large platform
for the weakly supervised Re-ID problem but also a more

1, 2, 3, 4

(a) bags of  training images            (b) bag-level labels 

5, 6

7, 8, 9

10, 11, 12

 13, 14, 15

 16, 17

  18, 19, 20

 21, 22

(c) Test set
Fig. 3: Examples in our SYSU-30k dataset. (a) training images in
terms of bag; (b) their bag-level annotations; (c) test set.

challenging test set that is consistent with the realistic setting
for standard evaluation. Fig. 3 shows some samples from the
SYSU-30k dataset.

3) We introduce a differentiable graphical model to tackle
the unreliable annotation dilemma in the weakly supervised
Re-ID problem. When compared with the fully supervised Re-
ID models, our method achieves state-of-the-art performance
on SYSU-30k and other datasets.

The remainder of this work is organized as follows. Section
II provides a brief review of the related work. Section III
introduces the annotation of SYSU-30k, followed by the
weakly supervised Re-ID model in Section IV. We also discuss
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the relationship of our work with previous work in Section V.
The experimental results are presented in Section VI. Section
VII concludes the work and presents outlooks for future work.

II. RELATED WORK

Person Re-ID. Re-ID has been widely investigated in the
literature. Most recent works can be categorized into three
groups: (1) extracting invariant and discriminant features [1],
[3], (2) learning a robust metric or subspace for matching [3],
[5], [6], and (3) joint learning of the above two methods [7],
[8]. Recently, there are many works on the generalization of
Re-ID, such as video-based and image-to-video Re-ID [9],
spatio-temporal Re-ID [10], occluded Re-ID [11], and natural
language Re-ID [12]. However, all these methods assume that
the training labels are strong. They are thus ineffective for
solving the weakly supervised Re-ID. Recently, the robustness
of Re-ID are also examined by [13].

Unsupervised Re-ID. Another approach that is free from
the prohibitively high cost of manual labeling is unsupervised
learning Re-ID [14], [15]. These methods either use local
saliency matching or resort to clustering models [14]. How-
ever, without the help of labeled data, it is difficult to model
the dramatic variances across camera views in feature/metric
learning. Therefore, it is difficult for these pipelines to achieve
high accuracies [16]–[19]. In contrast, the proposed weakly
supervised Re-ID problem has a better solution. Note that
compared to unsupervised Re-ID, the annotation effort of
weakly supervised Re-ID is also very inexpensive.

Semi-supervised Re-ID. Apart from our model, there have
been some uncertain label learning models, among which the
one-shot/one-example Re-ID [20], [21] is the most related to
ours. The main differences between their methods and ours
are two-fold. First, in one-shot Re-ID, at least one accurate
label for each person ID is still in desire. While in our weakly
supervised Re-ID, no accurate label is needed. Second, there
are bag-level labels as constraints to guide the estimation of
the pseudo labels in our method, ensuring that our generated
pseudo labels to be more reliable than those generated by
one-shot Re-ID. Besides, [22] also proposes to cope with
the uncertain-label Re-ID problem using multiple-instance
multiple-label learning. However, similar to [21], at least one
accurate label for each person ID is still in a desire to form
the probe set in [22]. Therefore, mathematically, [20]–[22] are
all semi-supervised Re-ID but NOT weakly supervised Re-ID.

Weakly-supervised learning. Beyond Re-ID, although
training deep models with weak annotations is challenging,
it has been partially investigated in the literature, such as in
tasks of image classification [23], [24], semantic segmentation
[25]–[28], object detection [29]. Our method is related to them
in that our model is also based on the generation of a pseudo
label. However, the weakly supervised Re-ID problem has two
unique characteristics that distinguish it from other weakly
supervised learning tasks. (1) We cannot find a representative
image for a permanent ID because people will change their
clothes at short intervals. The same person wearing different
clothes may be regarded as two different persons. This results
in thousands of millions of person IDs. Therefore, the label
for a weakly supervised Re-ID sample is fuzzier than other

tasks. (2) The entropy of the weakly supervised Re-ID problem
is larger than other tasks. In weakly supervised segmentation
tasks, pixels in an image share certain motion of rigidity and
stability that benefits the prediction. Whereas in the weakly
supervised Re-ID, persons in video bags are more unordered
and irregular. Therefore, the weakly supervised Re-ID problem
is considerably more challenging than other problems.

Graphical learning. To address the weakly supervised Re-
ID problem, we propose to generate a pseudo label for each
image by introducing differentiable graphical learning, which
is inspired by the advances in image segmentation [30] and
videos [31]. Recently, one classical graphical model, i.e., CRF,
has been introduced to Re-ID for similarity learning [32].
However, our method differs from [32] in two aspects. First,
like existing methods, [32] uses CRF as a post-processing tool
to refine the prediction provided by fully supervised learning,
while our method exploits the supervision-independent prop-
erty of graphical learning [30] to generate pseudo labels for
our weakly-supervised Re-ID learning. Second, different from
traditional non-differentiable graphical models and [32], our
proposed model directly formulates the graphical learning as
an additional loss, which is differentiable to the neural network
parameters and thus can be optimized by using stochastic
gradient descent (SGD).

Person search. Another problem that is very related to
our problem is person search [12], which aims to fuse the
processes of person detection and Re-ID. There are two signif-
icant differences between weakly supervised Re-ID and person
search. First, the weakly supervised Re-ID only focuses on
visual matching, which is reasonable because current human
detectors are competent enough to detect persons. Second,
the weakly supervised Re-ID problem enjoys the inexpensive
efforts of weak annotation, while the person search still needs
a strong annotation for each person image.

III. SYSU-30k DATASET

Data collection. No weakly supervised Re-ID dataset is
publicly available. To fill this gap, we contribute a new Re-
ID dataset named SYSU-30k in the wild to facilitate studies.
We download many short program videos from the Internet.
TV programs are considered as our video source for two
reasons. First, the pedestrians in a TV program video are
often cross-view and cross-camera because there are many
movable cameras to capture the shots for post-processing. Re-
identifying pedestrians in a TV program video is exactly a Re-
ID problem in the wild. Second, the number of pedestrians in
a program is suitable for annotation. On average, each video
contains 30.5 pedestrians walking around.

Our final raw video set contains 1,000 videos. The annota-
tors are then asked to annotate the videos in a weak fashion. In
particular, each video is divided into 84,924 bags of arbitrary
length. Then, the annotators record the pedestrian’s identity for
each bag. YOLO-v2 [38] is utilized for pedestrian bounding
box detection. Three annotators review the detected bounding
boxes and annotate person category labels for 20 days. Finally,
29,606,918 (≈ 30M ) bounding boxes of 30,508 (≈ 30k)
person categories are annotated. We then select 2,198 identities
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TABLE I: A comparison of different Re-ID benchmarks. Categories: We treat each person identity as a category. Scene: whether the video
is taken indoors or outdoors. Annotation: whether image-level labels are provided. Images: the person images which are obtained by using
a human detector to detect the video frames. Actually, the person images in this work refer to the bounding boxes.

(a) Comparision with existing Re-ID datasets.
Dataset CUHK03 [1] Market-1501 [2] Duke [33] MSMT17 [34] CUHK01 [35] PRID [36] VIPeR [3] CAVIAR [37] SYSU-30k

Categories 1,467 1,501 1,812 4,101 971 934 632 72 30,508
Scene Indoor Outdoor Outdoor Indoor, Outdoor Indoor Outdoor Outdoor Indoor Indoor, Outdoor

Annotation Strong Strong Strong Strong Strong Strong Strong Strong Weak
Cameras 2 6 8 15 10 2 2 2 Countless
Images 28,192 32,668 36,411 126,441 3,884 1,134 1,264 610 29,606,918

(b) Comparison with ImageNet-1k
Dataset ImageNet-1k SYSU-30k

Categories 1,000 30,508
Images 1,280,000 29,606,918

Annotation Strong Weak

as the test set, leaving the rest as the training set. There is no
overlap between the training set and the test set. Notably, we
treat each person identity as a category in this paper.

We provide some samples of the SYSU-30k dataset in Fig.
3. As shown, our SYSU-30k dataset exhibits challenges of
illumination variance (Row 2, 7, and 9), occlusion (Row 6 and
8), low resolution (Row 2 and 9), looking-downward cameras
(Row 2, 5, 6, 8, and 9), and complicated backgrounds of the
real scenes (Row 2-10).

Dataset statistics. SYSU-30k contains 29,606,918 person
images with 30,508 categories in total, which is further divided
into 84,930 bags (only for training set). Fig. 4 (a) summarizes
the number of bags with respect to the number of images per
bag, showing that each bag has 2,885 images on average. This
histogram reveals the person image distribution of these bags
in the real world without any manual cleaning and refinement.
Each bag is provided with an annotation of bag-level labels.

Comparison with existing Re-ID benchmarks. We com-
pare SYSU-30k with existing Re-ID datasets, including
CUHK03 [1], Market-1501 [2], Duke [33], MSMT17 [34],
CUHK01 [35], PRID [36], VIPeR [3], and CAVIAR [37]. Fig.
4 (c) and (d) plots the person IDs and the number of images,
respectively, indicating that SYSU-30k is much larger than
existing datasets. To evaluate the performance of the weakly
supervised Re-ID approach, we randomly choose 2,198 person
categories from SYSU-30k as the test set. These person
categories are not utilized in training. We annotate an accurate
person ID for each person image. We also compare the test set
of SYSU-30k with existing Re-ID datasets. From Fig. 4 (b)
and (c), we can observe that the test set of SYSU-30k is more
challenging than those of the competitors in terms of both the
image number and person IDs. Thanks to the above annotation
fashion, the SYSU-30k test set can adequately reflect the
real-world setting and is consequently more challenging than
existing Re-ID datasets. Therefore, SYSU-30k is not only a
large benchmark for the weakly supervised Re-ID problem but
is also a significant standard platform for evaluating existing
fully-supervised Re-ID methods in the wild.

A further comparison of SYSU-30k with existing Re-ID
benchmarks is shown in Table I (a), including categories,
scene, annotation, cameras, and image numbers (bounding
boxes). After the comparison, we summarize the new features
in SYSU-30k in the following aspects. First, SYSU-30k is the
first weakly annotated dataset for Re-ID. Second, SYSU-30k
is the largest Re-ID dataset in terms of both person categories
and image number. Third, SYSU-30k is more challenging

0 2000 4000 6000 8000 10000
0

500

1000

1500

2000

Images per bag
(a)

(b)

(c)

Im
ages

Total
Test

Total
Test

B
ags

CUHK03

M
ar

ket
Duke

M
SM

T17

CUHK01
PRID

VIP
eR

CAVIA
R

SYSU-30
k

CUHK03

M
ar

ket
Duke

M
SM

T17

CUHK01
PRID

VIP
eR

CAVIA
R

SYSU-30
k

C
ategories

30M

20M

10M

10K

20K

30K

Fig. 4: The statistics of the SYSU-30k. (a) summarizes the number
of the bags with respect to the number of the images per bag. (b) and
(c) compare SYSU-30k with the existing datasets in terms of image
number and person IDs for both the entire dataset and the test set.

due to many cameras, realistic indoor and outdoor scenes,
and occasionally incorrect annotations. Fourth, the test set
of SYSU-30k is not only suitable for the weakly supervised
Re-ID problem but is also a significant standard platform to
evaluate existing fully supervised Re-ID methods in the wild.

Comparison with ImageNet-1k. Beyond the Re-ID family,
we also compare SYSU-30k with the well-known ImageNet-
1k benchmark for general image recognition. As shown in
Table I (b), SYSU-30k has several appealing advantages over
ImageNet-1k. First, SYSU-30k has more object categories
than ImageNet-1k, i.e., 30k vs 1k. Second, SYSU-30k saves
annotation due to the effective weak annotation.

Evaluation protocol. The evaluation protocol of SYSU-30k
is similar to that of the previous datasets [2]. Following [1], we
fix the train/test partitioning. In the test set, we choose 1,000
images belonging to 1,000 different person IDs to form the
query set. As the scalability is important for the practicability
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of Re-ID systems, we propose to challenge the scalability
of a Re-ID model by providing a gallery set containing a
vast volume of distractors for validation. Specifically, for each
probe, there is only one matching person image as the correct
answer in the gallery, while there are 478,730 mismatching
person images as the wrong answer in the gallery. Thus, the
evaluation protocol is to search for a needle in the ocean,
just like the police search a massive amount of videos for a
criminal. Following [2], we use the rank-1 accuracy as the
evaluation metric.

IV. WEAKLY SUPERVISED RE-ID MODEL

A. From Supervised Re-ID to Weakly Supervised Re-ID

Let b = {x1, · · · , xj , · · · , xp} denote a bag containing p
images. y = {y1, · · · , yj , · · · , yp} are the image-level labels
and l is the bag-level label.

In the fully supervised Re-ID, the image-level labels y are
known. The goal is to learn a model by minimizing the loss
between the image-level labels and the predictions.

In contrast, in the weakly supervised Re-ID, the bag-level
label l is provided, but the image-level labels y are unknown.
Suppose a bag contains n person IDs and there are m IDs
in the entire dataset. A preliminary image-level label Yj for
each image xj can be inferred from its bag-level label l:

Yj =



Y1
j

...
Yk

j

...
Ym

j


, where Y

k
j =

{ 1
n , if k ∈ l

0, otherwise
, (1)

Then, Y can be used as a bag constraint to deduce a pseudo-
image-level labels ŷ, which can be further used to supervise
the model learning.

B. Weakly supervised Re-ID: differentiable graphical learning

In this section, we propose differentiable graphical learning
to generate pseudo-image-level labels for the person images.

Graphically modeling Re-ID. In our graph, each node
represents a person image xi in a bag and each edge represents
the relation between person images, as illustrated in Fig. 5.
Here i is the image index in a bag. Assigning a label yi to a
node xi has an energy cost. The energy cost E(y|x) of our
graph is defined as:

E(y|x) =
∑
∀i∈U

Φ(yi|xi)︸ ︷︷ ︸
unary term

+
∑
∀i,j∈V

Ψ(yi, yj |xi;xj)︸ ︷︷ ︸
pairwise term

, (2)

where U and V denote a set of nodes and edges, respectively.
Φ(yi|xi) is the unary term measuring the cost of assigning
label yi to a person image xi. Ψ(yi, yj |xi;xj) is the pairwise
term that measures the penalty of assigning labels to a pair
of images (xi, xi). Mathematically, graphical modeling is to
smooth the uncertain prediction of person IDs. The unary
term performs the prediction based on sole nodes. While the
pairwise term smoothes the prediction of multiple nodes by
considering their appearance and features. In summary, Eq. (2)
is to clean up the spurious predictions of classifiers learned in
a weakly supervised manner.

...

...

...

...

x1    x2   x3    x4      ResNet50
A bag of images

categorization score

Unary term

Pairwise term

Loss

Graphical module

   cat score                  
bag-level label

cat score                  
bag-level label
appearance

Fig. 5: Graphical model to generate pseudo image-level labels for
person images. The unary terms are estimated by the deep networks,
while the pairwise terms involve the similarity of features, the image
appearance, and the bag-level label.

Unary term. The unary terms is typically defined as:

Φ(yi|xi) = −Pyi
i log(Yyi

i �Pyi
i ), (3)

where Pi is the categorization probability of a person image
xi outputted by a DNN. � denotes element-wise product.

As the unary term alone is generally noisy and inconsistent.
Interactions between pairwise terms are required.

Pairwise term. The pairwise term is defined as:

Ψ(yi, yj |xi;xj) = ζ(yi, yj)︸ ︷︷ ︸
label compatibility

Yyi
i Y

yj
j︸ ︷︷ ︸

bag constraint

exp

(
− ‖Ii − Ij‖

2

2σ2

)
︸ ︷︷ ︸

appearance similarity

,

(4)
where Ii and Ij are the low-level features and based on them,
a Gaussian kernel is employed to measure their appearance
similarity. The hyper-parameter σ controls the scale of the
Gaussian kernel. This kernel forces the images with similar
appearance to have the same labels. Similar to the unary
term, the pairwise terms are also bounded by the bag-level
annotations Yi and Yj . The pairwise terms are widely known
to provide nontrivial knowledge (e.g., structural context depen-
dencies) that is not captured by the unary term. A simple label
compatibility function ζ(yi, yj) ∈ {0, 1} in Eq. (4) is given
by the Potts model, namely,

ζ(yi, yj) =

{
0, if yi = yj

1, otherwise
, (5)

It introduces a penalty for similar images that are assigned
different labels. Considering that Eq. (2) is non-differentiable,
it is incompatible with DNNs. Thus, we will instead learn a
differential version of Eq. (2) in a deep learning model.

Bag constraint. As mentioned above, both the unary and
pairwise terms are constrained by the bag-level annotations
Yi and Yj . In fact, the bag-level annotation contains extra
knowledge that helps to improve the estimation. For example,
if the estimator mismatches a person image to an ID that is
not in the bag-level annotation, the estimation is undoubtedly
considered as incorrect. Then, the estimation will be corrected
by matching the image to the ID in the bag-level annotation
with the most significant prediction score. Furthermore, if
some IDs in the weak annotation are absent in the prediction,
the proposed method will encourage a portion of the person
images to be assigned to such IDs to improve the performance.
In this way, knowledge of the weakly labeled data can be fully
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1. loss supervised by 

2. graphical loss x

Non-
Differentiable

Graphical
Modelx x

1. loss supervised by 

Step 1                                  Step 2                              Step 3
(a) 

(b) 

x

Differentiable
Graphical

Model

P

P

P

Y

P

Y

Fig. 6: Differentiable graphical model in DNNs, where x,Y,P, ŷ
denote the input images, bag-level label, preliminary categorization,
and refined categorization, respectively. (a) is the stepwise graphical
model, while (b) is our proposed end-to-end differentiable graphical
model. Our model consists of two losses, i.e., an unsupervised loss for
pseudo label generation and a loss supervised by the pseudo labels.
Here, the black lines denote forward passing, while the blue lines
denote back-propagation.

exploited. Given a bag of images and their bag-level label, we
refine the DNN predictions by element-wisely multiplying P
with the bag-level weak annotation Y. This is shown in the
unary term in Eq. (3). Similarly, we also impose Yi and Yj

on the pairwise term in Eq. (4).
Moreover, there is a natural smoothness in a video that could

not be ignored. The person IDs in the adjacent bags change
slowly within a short time; for instance, an image-level label
yi in bag bT could also be in the bag bT+1. A large amount
of bags with overlapping IDs naturally exist in a video, which
sheds light on the ability of the weakly supervised Re-ID. As
a special example, if bT contains {yi, yj} and bT+1 contains
{yj , yk}, then the two bags share {yj}. Meanwhile, one image
in the first bag is similar to another image in the second bag.
Hence, our model predicts these two images as yi. Finally, yi
and yk are assigned to the remaining images.

Deducing pseudo image-level labels. By minimizing the
energy cost of Eq. (2), we can obtain the pseudo image-level
label ŷi for the person image x̂i:

ŷi = arg max
yi∈{1,··· ,m}

E(yi|xi), (6)

where {1, · · · ,m} denote all the person IDs in the training
set. Once such labels are generated, they are used to update
the network parameters.

Differentiablizing graphical learning. The above weakly
supervised Re-ID model is not end-to-end. Because we must
first use an external graphical learning solver to obtain the
pseudo labels and then use another solver to train the DNNs
under the supervision of the pseudo labels (see Fig. 6 (a)). To
enable an end-to-end optimization, we propose to make our
graphical learning differentiable and compatible with DNNs
(see Fig. 6 (b)).

We first investigate the mechanism of a non-differentiable
graphical model. As illustrated in Fig. 6 (a), a non-
differentiable graphical model consists of three steps. First,
a preliminary categorization score P is obtained through a
DNN. Second, the energy cost in Eq. (2) is minimized by
re-assigning labels to the images appropriately, subject to the
appearance similarity, the preliminary categorization scores,

and the bag constraint. Third, the re-assigned labels are
considered as the pseudo labels and used to supervise the
learning of the Re-ID model.

The label reassignment in the second step claimed above
is non-differentiable, which makes the graphical model in-
compatible with DNNs. To fill this gap, a relaxation form of
Eq. (2) is desirable. With a continuous version of Φ̂ and Ψ̂
to approximate the discrete Φ and Ψ, we rewrite Eq. (2) as
follows

Lgraph(x) =
∑
∀i∈U

Φ̂(xi)︸ ︷︷ ︸
unary term

+
∑
∀i,j∈V

Ψ̂(xi, xj)︸ ︷︷ ︸
pairwise term

, (7)

where Φ̂ and Ψ̂ are defined as:
Φ̂(xi) = −

m∑
j=1

[h( arg max
k∈{1,··· ,m}

Yk
i �Pk

i )]j log(Pj
i ),

Ψ̂(xi, xj) = − exp

(
− ‖Ii − Ij‖

2

2σ2

)
(YiPi)

T log(YjPj).

(8)
arg max returns the index of the largest element in a vector,
h is a function that maps a scalar to one-hot vector, and the
superscripts j and k mean indexing the j and k element of
a vector, respectively. The differences between Eq. (3)-(4)
and Eq. (8) are summarized as follows: 1) the replacement
of Φ(yi) with Φ̂(xi) facilitates an end-to-end learning. Be-
cause, in a non-differentiable model, yi is the input variable,
while xi is regarded as the input of DNNs in differentiable
models. 2) We use arg max to obtain the prediction, which
is consistent with the nature of DNNs. Namely, during the
testing phase, we directly obtain the prediction from the
output of the DNN without the graphical losses. 3) We use a
differentiable term −(YiPi)

T log(YjPj) to approximate the
non-differential term ζ(yi, yj)YiYj in Eq. (4).

C. Network Architecture and Loss functions

The network architectures for training and testing are illus-
trated in Fig. 7, where the black dotted lines denote training
flow, and the solid black lines denote inference flow.

Our weakly-supervised Re-ID model consists of three main
modules, including (a) a feature embedding module built upon
a ResNet-50 network followed by two fully connected layers,
(b) a rough Re-ID module using a fully connected layer as the
classifier, and (c) a refined Re-ID module that considers both
the rough results and bag-level weak annotation to perform
graphical modeling. It is noteworthy that we perform graphical
modeling only in the training stage for two reasons. First,
the graphical module is introduced to generate pseudo labels
to supervise the model training, which requires a bag-level
label as a constraint. However, there is no bag-level label in
the testing stage. Second, due to the specificity of the Re-ID
problem, the images in the inference stage are not organized in
the form of a bag. For example, only a query image and a set of
gallery images are provided in inference. As a result, there is
no bag-level dependency among the testing images to exploit.
Thus, performing graphical modeling may be infeasible in the
inference stage. In the following, we will elaborate the three
main modules.
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Fig. 7: Diagram of our approach. It mainly consists of three stages, i.e., feature extraction, rough Re-ID, and refined Re-ID. The solid
black flow denotes the testing stage, while the black dotted flow denotes the training stage. For simplification, the back-propagation flow is
omitted. The loss function is marked with a red arrow.

Feature embedding module. Many current best-performing
Re-ID models use multi-scale features as feature embeddings
[39], which guarantees a robust feature representation and thus
boosts the performance. However, in this work, our focus is
the mechanism of the weakly supervised Re-ID model alone,
rather than other tricks. Therefore, we simply take the ResNet-
50 [40] as the backbone without any feature pyramid [39].
Our feature embedding is similar to [41]. Specifically, the last
layer of the original ResNet-50 is discarded, and two new, fully
connected layers are added. The first has 512 units, followed
by a batch normalization [42], a Leaky ReLU [43] and a
dropout [44]. This module is shown in Fig. 7 (a).

Rough Re-ID module. We utilize a softmax classifier for
rough Re-ID. Specifically, our model has a fully connected
layer at the top of the feature embedding module, which has
the same number of units to that of person ID (i.e., ‘class
num’ in Fig. 7). A softmax cross-entropy loss is employed for
training. The derived person categorization score (e.g., P in
Fig. 7) is considered as the rough Re-ID estimation, indicating
the possibility of a person ID being present in a bag. This
module is shown in Fig. 7 (b).

Refined Re-ID module. Here, we aim to generate a pseudo
image-level label ŷ for each image by refining the previous
estimation results. The refinement has the following inputs:

1) Rough Re-ID score. As mentioned above, the rough Re-
ID module provides a preliminary categorization.

2) Appearance. Considering that rough Re-ID score is just
a high-level abstraction of images, as compensation,
we propose to integrate person appearance as low-level
information for our refinement.

3) Bag constraint. Intuitively, our bag constraint eliminates
any possibility of assigning a person image with a person
ID that is absent in the bag-level annotation; on the
contrast, it encourages a person image to be assigned with
a person ID that is present in the bag-level annotation.

Accordingly, once the refined pseudo labels are generated,
they are used to update the network weights as authentic
ground truth:

Lcls = −
n∑

i=1

(h(ŷi))
T log(Pi). (9)

By combining Eq. (9) and Eq. (7), we have the final loss
function:

L = wclsLcls + wgraphLgraph, (10)

where wcls and wgraph weights two loss components, respec-
tively. In our experiments, we search the loss weight in a grid
of {1:1, 1:0.5, 1:0.1} and find that 1:0.5 has good results on
the CUHK03 dataset.

D. Weakly-Supervised Triplet Loss

To further improve the performance of the Re-ID model,
inspired by multiple granulariry network (MGN) [45], we
propose a weakly-supervised triplet loss and derive our weakly
supervised MGN (W-MGN) for weakly supervised Re-ID.
MGN are learned with a triplet loss given strong annotations,
while our weakly-supervised triplet loss in W-MGN is devel-
oped to address the strict dependency on annotations.

Recall that a fully supervised triplet loss is defined as:

Lfull triplet =

tp∑
k=1

[
∆ + max

j 6=k;j=1,... ,tp;yk=yj
||zk − zj ||22

− min
j 6=k;j=1,... ,tp;yk 6=yj

||zk − zj ||22
]
,

(11)

where t denotes the number of bags in a training batch, || · ||22
denotes a L2-norm, and ∆ is a margin. The image-level labels
yk and yj are given for the fully supervised triplet loss, but
they are unavailable in the weakly supervised scenario.

To address this problem, we use YT
k Yj > 0 to approximate

the constraint that yk = yj in Eq. (11), which means that the
k-th and j-th samples belong to the same class. As YT

k Yj > 0
is a necessary but not sufficient condition of the constraint that
yk = yj , we relax the max operation to a median operation.
Similarly, we use YT

k Yj = 0 to approximate yk 6= yj .
Accordingly, our weakly-supervised triplet loss is formulated
as:

Lweak triplet =

tp∑
k=1

[
∆ + median

j 6=k;j=1,... ,tp;YT
k Yj>0

||zk − zj ||22

− min
j 6=k;j=1,... ,tp;YT

k Yj=0

||zk − zj ||22
]
.

(12)

Finally, our loss function is

L = wclsLcls + wgraphLgraph + wtripletLweak triplet, (13)

where wtriplet is a weight of our triplet loss.
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   (a) Epoch = 10                   (b) Epoch = 30                    (c) Epoch = 50                  (d) Epoch = 70 
Fig. 8: The effectiveness of our differentiable graphical learning module. Here we show the errors between the rough predictions and the
weak annotations in the form of a confusion matrix containing 76× 76 grids. Each grid indicates a bag of 10 categories, with a total sum
of 760 categories, which is approximately equivalent to the person categories in the full training set (i.e., 767 categories).

E. Computational Complexity

We discuss the computational cost of our weakly supervised
Re-ID model. In the training phase, the extra time cost only
relates to the generation of pseudo labels, which is a graphical
learning module. Generally, graphical learning needs many
iterations to search the optimal solution, and thus, the process
is time-consuming. However, our approach formulates the
differentiable graphical learning as a simple loss. This makes
our graphical module very effective. In the experiment section,
we will show that our training brings an additional time cost
of only 0.002×. Particularly, in the testing phase, there is no
extra time cost because the pseudo label generation component
is disabled. In brief, this extra time cost of our method is
negligible.

V. RELATIONSHIP TO PREVIOUS WORKS

In the following, we compare our weakly supervised Re-ID
with previous works on Re-ID with uncertain labels, includ-
ing the unsupervised/semi-supervised Re-ID. In general, our
weakly supervised Re-ID possesses not only cheap annotation
but also high accuracy. The details are presented below.

Unsupervised Re-ID. To get rid of the prohibitively high
cost of manual labeling, unsupervised learning Re-ID proposes
to use either local saliency matching models or clustering
models [14]. However, without the help of labeled data, it is
difficult to model the dramatic variances across camera views
in representation/metric learning. Therefore, it is difficult for
these pipelines to obtain high accuracies [16]–[19]. In contrast,
our weakly supervised Re-ID problem has a better solution.
Note that compared to unsupervised Re-ID, the annotation
effort of our weakly supervised Re-ID is also very inexpensive.

Semi-supervised Re-ID. One-shot/one-example [20], [21]
propose to reduce the annotation effort by annotating only one
example for each person ID. The main differences between
their methods and ours are two-fold. First, in one-shot Re-ID,
at least one accurate label for each person category is in desire.
While in our weakly supervised Re-ID, no accurate label is
needed. Second, there is a bag-level label as a constraint
to estimate the pseudo labels in our method, ensuring that
our generated pseudo labels to be more reliable than those
generated by one-shot Re-ID.

We would also like to acknowledge the contribution of
previous work [22] that matches a target person image with a

bag-level gallery video using multiple-instance multiple-label
learning. However, similar to [21], at least one accurate label
(of the target person) for each person category is still in a
desire to form the probe set in [22]. Hence, mathematically,
[22] still belongs to semi-supervised Re-ID but NOT weakly
supervised Re-ID.

Section VI-C3 and VI-C1 will compare the accuracy of our
weakly supervised Re-ID with previous works.

VI. EXPERIMENTS

In this section, we conducts extensive experiments to eval-
uate our weakly supervised Re-ID approach. Section VI-A
presents the experimental settings. Section VI-B provides a
comprehensive ablation study. Section VI-C presents compar-
isons of our approach with state-of-the-art methods and also
provides the discussion on the computational cost.

A. Experimental settings

1) Datasets: In addition to the proposed SYSU-30k dataset,
another four simulated datasets are introduced to evaluate the
effectiveness of our method by adjusting the existing datasets.
Specifically, we replace the strong annotations on the training
set of the PRID2011 [36], CUHK03 [1], Market-1501 [2],
and MSMT17 [34] with weak annotations while their test
sets are kept unchanged, as the definition states that during
testing, there is no difference between the fully and weakly
supervised Re-ID (see Fig. 1 (c)). For a fair comparison
(e.g., using the same images for both the fully and weakly
supervised Re-ID), we generate the weak annotations from the
strong annotations. This includes two steps. First, each bag is
simulated by randomly selecting several images and packaging
them. Second, the weak labels are obtained by summarizing
the strong annotations, e.g., four image-level labels {Alice,
Bob, Alice, Carol} are summarized as a bag-level label {Alice,
Bob, Carol}. We denote n ID/bag when a bag contains n
person IDs. Note that unless otherwise stated, our weakly
supervised learning setting is two IDs/bag.

PRID2011. Originally, PRID2011 dataset contains 200 per-
son IDs appearing in at least two camera views and is further
randomly divided into training/test sets following the general
settings [9], i.e., both having 100 IDs.

CUHK03. CUHK03 is a large-scale Re-ID, which contains
14,096 images of 1,467 IDs collected from 5 different pairs
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TABLE II: Ablation studies of the proposed weakly supervised Re-ID method. random: Each bag contains random person IDs, which
reflects the real-world state. RK: re-ranking, see [46], one of the effective tricks frequently used in fully supervised Re-ID problems. ? fully
supervised: when each bag contains only one person ID, the weakly supervised Re-ID problem degrades into a fully supervised Re-ID
problem. ∗full training set: the overall training set of CUHK03 contains 767 person IDs. w/: with. w/o: without.

(a) Impact of bag diversity on PRID2011 (b) Impact of bag diversity on CUHK03
categories / bag Rank-1 Rank-5 Rank-10 categories / bag Rank-1 Rank-5 Rank-10

1 (? fully supervised) 71.8 91.2 95.9 1 (? fully supervised) 67.5 88.2 91.8
2 68.0 87.5 94.8 2 61.0 82.0 87.0
3 66.1 86.4 92.3 3 59.4 80.7 86.7

10 49.5 73.9 82.2 10 55.2 79.3 84.5
random (5 on average) 69.3 89.0 94.0 random (5 on average) 60.6 81.6 87.0

(c) Fully supervised learning tricks on PRID2011 (d) Fully supervised learning tricks on CUHK03
method Rank-1 Rank-5 Rank-10 method Rank-1 Rank-5 Rank-10

fully supervised alone 48.9 79.6 88.8 fully supervised alone 52.1 77.9 85.6
weaky supervised alone 39.9 71.2 83.3 weaky supervised alone 44.0 70.6 79.7
fully supervised + RK 71.8 91.2 95.9 fully supervised + RK 67.5 88.2 91.8

weakly supervised + RK 68.0 87.5 94.8 weakly supervised + RK 61.0 82.0 87.0

(e) Scalability of our method on CUHK03 (f) Effectiveness of the graphical learning module on CUHK03
categories Rank-1 Rank-5 Rank-10 method Rank-1 Rank-5 Rank-10

67 16.3 34.7 44.9 w/o graphical model 56.4 80.0 85.1
367 43.6 67.0 75.5 w/o pairwise term 59.2 80.9 86.7

767 (∗full training set) 61.0 82.0 87.0 w/ graphical model 61.0 82.0 87.0

of camera views [1]. Each ID is observed by two disjointed
camera views. We follow the new standard protocol [46] of
CUHK03, i.e., a training set including 767 IDs is obtained
without overlap.

Market-1501. Market-1501 is another widely-used large-
scale Re-ID benchmark, which contains 32,668 images of
1,501 IDs captured from 6 different cameras. The dataset is
split into two parts: 12,936 images with 751 IDs for training
and 19,732 images with 750 IDs for testing. In testing, 3,368
hand-drawn images with 750 IDs are used as probe set to
identify the true IDs on the testing set.

MSMT17. MSMT17 is the current largest publicly available
Re-ID dataset and there are 126,441 images in MSMT17 in
total captured by 15 cameras. It has 4k person IDs, namely,
7.5 times smaller than our SYSU-30k. We follow the standard
protocol to split the training and testing set [34].

2) Implementation details: The parameters of the ResNet-
50 backbone are initialized using ImageNet pre-training. Other
parameters are initialized by sampling from a normal distri-
bution. For SGD, we use a minibatch of 90 images and an
initial learning rate of 0.01 (0.1 for the fully connected layer),
multiplying the learning rate by 0.1 after a fixed number of
iterations. We use the momentum of 0.9 and a weight decay of
0.0005. Training on SYSU-30k takes approximately ten days
on a single GPU (i.e., NVIDIA TITAN X).

B. Ablation Study

We first present ablation studies to reveal the benefits of
each main component of our method.

1) Effectiveness of the graphical learning module: As
aforementioned, the graphical learning module plays the role
of refining the ID prediction by correcting the errors between
the rough Re-ID predictions and the weak annotations, which
forms the basis of generating pseudo-image-level labels. We
visualize the errors between the rough predictions and the
weak annotations in Fig. 8 during training. This experiment is
conducted on CUHK03 using the setting of 10 IDs/bag.

Fig. 8 shows the errors between the rough predictions
and the weak annotations in the form of a confusion matrix
containing 76 × 76 grids. Each grid indicates a bag of 10
IDs, totally summing up to 760 IDs, which approximates
the number of person IDs in the full training set. We have
two appealing observations from Fig. 8. First, there is a
significant gap between the rough predictions and the weak
annotations (see 8 (a) or (b)), indicating that the rough Re-ID
results are still not competent for generating pseudo labels.
Therefore, refining the ID prediction is necessary with our
graphical learning module. Second, the gap between the rough
predictions and the weak annotations becomes smaller as the
training iteration increases (from 10 epochs in 8(a) to 70
epochs in 8 (d)). When the training model converges, the gap
between the ground truth becomes significantly small, which
indicates that the problem is well addressed by our graphical
learning module.

To further demonstrate the effectiveness of the differential
graphical models, we conduct two more empirical studies on
CUHK03 and Market-1501 with and without the graphical
model, respectively. The graphical module generates pseudo
labels to further supervise the learning. Once it is removed,
there will be no pseudo labels provided. To cope with this
problem, we use the preliminary image-level labels in Eq. (1)
as substitutes for pseudo labels, which is also a widely used
strategy in existing weakly supervised learning. Table II (f)
shows that without the graphical model, there is a significant
performance drop on CUHK03, i.e., from 61.0% to 56.4%.
Similarly, the performance of W-MGN drops significantly
from 95.5% to 88.4% when the graphical model is removed, as
shown in Table III (a). These comparisons clearly demonstrate
the effectiveness of our graphical model.

2) Effectiveness of the pairwise term: As claimed above,
the pairwise term is necessary for label smoothness in order
to train better models. To validate the necessity of the pairwise
term, we conduct two more experiments on CUHK03 and
Market-1501 with and without the pairwise term, respectively.
Without pairwise terms, a graphical model reduces to isolated
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Fig. 9: Analysis on different bag diversities. Cat/bag: the number
of person IDs in each bag. Random Cat/bag: each bag contains
random number of person IDs, which reflects the real-world state.
Fully supervised: each bag contains only one person ID. In this case,
the weakly supervised problem degrades into a fully supervised one.

nodes. Experimental results are provided in Table II (f) and
Table III (a). For example, on Market-1501 test set, the
accuracy drops significantly from 95.5% to 94.0% without the
pairwise term.

3) Effectiveness of the weakly supervised triplet loss: To
validate the effectiveness, we conduct ablation studies on
our weakly-supervised triplet loss on five benchmarks (i.e.,
Market-1501, CUHK03, PRID2011, MSMT17, and SYSU-
30k), respectively. Table III (a)-(e) show that W-MGN with
the weakly-supervised triplet loss outperforms that without
the weakly-supervised triplet loss ((i.e., “W-MGN w/o W-
Tr”)) by a large margin on all the five datasets, which verifies
its effectiveness. For example, without the weakly-supervised
triplet loss, W-MGN suffers a performance degradation from
95.5% to 92.9% on Market-1501.

4) Effectiveness of stronger baselines: To see how stronger
baselines affect the performance of the weakly supervised
Re-ID, we compare more strong baselines like Local CNN
[47] and MGN [45] with our ResNet-50 baseline on the five
datasets, i.e., Market-1501, CUHK03, PRID2011, MSMT17,
and SYSU-30k. Table III (a)-(e) show that strong baselines for
fully supervised Re-ID contribute to the overall performance
of the weakly supervised method on all the five datasets. For
example, the combination of our weakly supervised Re-ID
and MGN (i.e., W-MGN) outperforms the combination of the
weakly supervised Re-ID and ResNet-50 (i.e., W-Baseline) by
6.9% (95.5% vs. 88.6%).

5) Scalability of our approach: We have shown that a Re-
ID model can be learned with weakly labeled data. Next, we
investigate whether increasing the amount of weakly labeled
data will improve the performance of weakly supervised learn-
ing. The entire CUHK03 training set is randomly partitioned
into three subsets containing 67, 300, and 300 person IDs,
respectively. We evaluate the scalability of our approach by
gradually adding one subset in training. The rank-1 accuracy
is reported in Table II (e). For example, the first model is
trained with the first 67 person IDs, and the number of person
IDs is increased to 367 IDs in the second model. The third
model is trained with the full CUHK03 training set (i.e., 767
IDs). Table II (e) shows that the accuracies increase when we
increase the scale of training data in CUHK03. For instance,
our approach trained with full training data achieves the best
performance and outperforms the other two models by 44.7%
and 17.4%, respectively.
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Fig. 10: Comparison with state-of-the-art methods. Weakly sup.:
the proposed weakly supervised Re-ID approach. * Fully Sup.: each
bag contains only one person ID. In this case, the weakly supervised
problem degrades into a fully supervised one.

6) Impact of bag diversity: Intuitively, if a bag contains
more person IDs, it is more challenging to learn a weakly
supervised Re-ID model because of the increase in uncertainty.
Next, we investigate the performance with respect to such bag
internal diversity. We conduct experiments on PRID2011 and
CUHK03. In Table II (a)-(b) and Fig. 9 (a)-(b), we compare
five options, i.e., each bag containing 1, 2, 3, 10, or a random
number of person IDs, respectively. In particular, when each
bag has only one person ID, the weakly supervised Re-ID
problem degrades into a fully supervised one.

We have three major observations from Table II (a)-(b) and
Fig. 9 (a)-(b). First, the models trained with weakly labeled
samples achieves comparable accuracies to the models trained
with strongly labeled data (e.g., 68.0% vs. 71.8% in Table II
(a)). This result is quite important because a weak annotation
costs much less money and time than a strong annotation.

Second, the accuracy of the weakly supervised methods
gradually decreases as the number of IDs in each bag in-
creases. In particular, the rank-1 accuracy of our approach
drops by 18.5% when increasing the number of IDs per bag
from 2 to 10 in Table II (a). We argue that the increase in
uncertainty causes this optimization difficulty. When the IDs
per bag increases, the uncertainty in the label assignment also
increases, making the problem more challenging.

Third, it is noteworthy that the random version has ap-
pealing performance (69.3% vs 71.8% compared with the
baseline), as shown in the last line of Table II (a). Specifically,
the random version refers to each bag containing a random
number of person IDs (5 IDs on average), which reflects the
real-world states. The high performance suggests that solving
a weakly supervised Re-ID problem is feasible and appealing
in reality.

7) Compatibility with fully supervised learning tricks: Intu-
itively, a weakly supervised Re-ID problem is likely to be up-
per bounded by fully supervised learning with all annotations.
Next, we investigate the accuracy of our approach with respect
to models with different fully-supervised learning capacities.
Experiments are conducted on PRID2011 and CUHK03.

We first evaluate two different fully supervised learning
baseline models with and without re-ranking post-process.
Then, we evaluate them in the weakly supervised learning
scenario. The setting is similar to the aforementioned fully
supervised learning, except that all of the image-level anno-
tations are replaced with bag-level annotations in the training
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TABLE III: Comparison with state-of-the-art methods. W-Baseline: our weakly supervised Re-ID method. Baseline: each bag contains
only one person ID. In this case, the weakly supervised problem degrades into a fully supervised one. We thus consider the latter as the
baseline of our weakly supervised Re-ID. w/o Tri: without triplet loss. x(y): y is the number reported by the original paper; x is the result
of our reproduction. RK: re-ranking. ‡: pretrained on CUHK03. w/: with. w/o: without. W-: weakly supervised version of a method.

(a) Market-1501 test set. (b) CUHK03 test set. (d) MSMT17 test set.
Supervision Method Rank-1 Supervision Method Rank-1 Supervision Method Rank-1

Fully

MSCAN [48] 80.3

Fully

BOW+XQDA [2] 6.4

Fully

PDC [49] 58
DF [50] 81.0 PUL [18] 9.1 GLAD [51] 61.4

SSM [52] 82.2 LOMO+XQDA [53] 12.8 ABD-Net [54] 82.3
SVDNet [55] 82.3 IDE(R) [56] 21.3 GoogleNet [57] 47.6

GAN [33] 84.0 IDE+DaF [58] 26.4 IANet [59] 75.5
PDF [49] 84.1 IDE+XQ.+RK [46] 34.7 SFT [60] 73.6

TriNet [41] 84.9 PAN 36.3 Auto-ReID [61] 78.2
TriNet+Era.+RK [62] 85.5 DPFL [63] 40.7 MVP [64] 71.3

PCB [39] 93.4 TreeConv [65] 71.4 Verif-Identif [66] 60.5
VPM [67] 93.0 TriNet+Era. [62] 55.5 PCB [39] 68.2
JDGL [68] 94.8 ACNet [69] 64.8 JDGL [68] 77.2
AANet [70] 92.4 Baseline 67.5 ShuffleNet [71] 41.5

Local CNN [47] 95.9(97.0) Local CNN [47] 69.6 Local CNN [47] 82.9
MGN [45] 95.8(96.6) MGN [45] 70.4(68.0) MGN [45] 83.1

MGN w/o Tri 93.4 MGN w/o Tri 67.6 MGN w/o Tri 81.0
Baseline 94.2

Unsupervised
CAMEL [14] 31.9 MobileNetV2 [72] 50.9

Unsupervised

CAMEL [14] 54.5 PatchNet [73] 45.4 OSNet [74] 78.7
TAUDL [75] 63.7 PAUL [73] 52.3

Unsupervised

PTGAN [34] 11.8
UTAL [19] 69.2

Weakly

W-Baseline 61.0 SSG [76] 41.6
UDA [16] 75.8 W-Local CNN 67.6 TAUDL [77] 28.4
MAR [17] 67.7 W-MGN 69.8 UTAL [19] 31.4

DECAMEL [78] 60.2 W-MGN w/o W-Tri 67.2 ECN [79] 30.2
ECN [79] 75.1 UGA [80] 49.5
PAUL [73] 68.5 (c) PRID2011 test set

Weakly
W-MGN 81.1

HHL [81] 62.2 Supervision Method Rank-1 W-Local CNN 80.6
Distilled [82] 61.5

Fully

KISSME [5] 18.2 W-MGN w/o W-Tri 77.9
Smooting [83] 83.0 MAHAL 16

Semi

SPACO [84] 68.3 L2 25 (e) SYSU-30k
HHL [81] 54.4 XQDA [53] 39 Supervision Method Rank-1

Distilled [82] 63.9 P2SNet [9] 60.5

Fully

‡DARI [7] 11.2
One Example [20] 70.1 Baseline 71.8 ‡DF [6] 10.3

Many Examples [20] 82.5 MGN [45] 74.6 ‡Baseline 20.1

Weakly

W-Baseline 88.6 MGN w/o Tri 72.5 ‡Local CNN [47] 23.0
W-Local CNN 95.7 Local CNN [47] 74.2 ‡MGN [45] 23.6

W-MGN 95.5

Weakly

W-Local CNN 71.6 ‡MGN w/o Tri 21.5
W-MGN w/o W-Tri 92.9 W-Baseline 68.0 W-Baseline 26.9
W-MGN w/o graph 88.4 W-MGN 72.7

Weakly

W-Local CNN 28.8
W-MGN w/o pair 94.0 W-MGN w/o W-Tri 70.7 W-MGN 29.5

W-MGN w/o W-Tri 26.7

set.
It is observed that our rank-1 accuracy with weak annota-

tions is close to that of using strong annotations, as shown in
Table II (c)-(d). Moveover, weakly supervised learning with a
stronger baseline (‘weakly supervised + RK’) yields better
performance. For example, in the weak annotation setting,
“weakly supervised + RK” yields 68.0% on PRID2011, com-
pared to 39.9% obtained by “weakly supervised”, a relative
improvement of 70.4%. This comparison verifies the com-
patibility of our method with existing frameworks; namely,
existing tricks (e.g., re-ranking) for fully supervised learning
could also be applied to the weakly supervised Re-ID.

C. Comparison with the State-of-the-Arts

In this section, we compare our weakly supervised approach
with the best-performing fully-supervised / semi-supervised /
unsupervised methods.

1) Accuracy on Market-1501: Our weakly supervised Re-
ID is compared with state-of-the-art fully-supervised /unsuper-
vised / semi-supervised methods.

Fully supervised Re-ID. We compare our method with the
fully supervised Re-ID models. Fifteen representative state-
of-the-art methods are used as comparison methods, including
MSCAN [48], DF [50], SSM [52], SVDNet [55], GAN [33],
PDF [49], TriNet [41], TriNet + Era. + reranking [62], PCB
[39], VPM [67], JDGL [68], AANet [70], Local CNN [47],

and MGN [45]. Comparison results are provided in Table III
(a). Our approach achieves very competitive accuracy. For
example, our W-MGN and W-Local CNN achieve respectively
a rank-1 accuracy of 95.5% and 95.7%, which surpass many of
the compared fully-supervised methods. These results verify
the effectiveness of our method.

To validate the superiority of our weakly supervised Re-
ID over previous annotation-saving Re-ID works, we further
compare our method with state-of-the-art unsupervised and
semi-supervised Re-ID methods.

Unsupervised Re-ID. In Table III (a), we compare our
method with 11 current best-performing models for unsuper-
vised Re-ID, including CAMEL [14], TAUDL [75], UTAL
[19], UDA [16], MAR [17], DECAMEL [78], ECN [79],
PAUL [73], HHL [81], Distilled [82], and Smooting [83].
The results in Table III (a) show that our weakly supervised
Re-ID has obtained significant gain over unsupervised Re-
ID methods. For instance, our W-MGN outperforms the best-
performing model UDA [16] by a large margin (i.e., 19.7%).
Note that compared to unsupervised Re-ID, the annotation
effort of our weakly supervised Re-ID is also very inexpensive.
These results verify the effectiveness of our method again.

Semi-supervised Re-ID. In Table III (a), we compare
our method with the semi-supervised Re-ID models. Five
representative state-of-the-art methods are used as competing
methods, including SPACO [84], HHL [81], Distilled [82],
One Example [20], and Many Examples [20]. The results
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show that our weakly supervised Re-ID problem has obtained
significant gain over semi-supervised Re-ID methods. For
instance, our method outperforms the best-performing model
“ManyExamples” [20] by a large margin (i.e., 13%), indicating
that as an annotation-saving method, our weakly Re-ID obtains
higher accuracy than semi-supervised Re-ID.

2) Accuracy on CUHK03: Our weakly supervised Re-ID
is compared with state-of-the-art methods in two groups on
CUHK03, including the traditional fully-supervised Re-ID and
the unsupervised Re-ID. The semi-supervised Re-ID is not
compared here because existing works on semi-supervised Re-
ID do not provide results on this dataset.

Fully supervised Re-ID. In Table III (b), we compare
our method with the eleven current best models, including
BOW+XQDA [2], PUL [18], LOMO+XQDA [53], IDE(R)
[56], IDE+DaF [58], IDE+XQ+reranking [46], PAN, DPFL
[63], and newly proposed methods such as SVDNet [55],
TriNets [62], ACNet [69], Local CNN [47], MGN [45], and
TreeConv [65]. Our W-MGN and W-Local CNN achieve a
rank-1 accuracy of 69.8% and 67.6%, which surpass many of
the compared fully-supervised methods. These results verify
the effectiveness of our method.

Unsupervised Re-ID. In Table III (b), we compare our
method with the unsupervised Re-ID models. Three represen-
tative state-of-the-art methods are used as competing methods,
including CAMEL [14], PatchNet [73], and PAUL [73]. The
results in Table III (b) show that our weakly supervised Re-ID
problem has obtained significant gain over unsupervised Re-
ID methods. For instance, our W-MGN outperforms the best-
performing model PAUL [73] by a large margin (i.e., 17.5%).
Given that our method also saves the annotation effort, we
believe our weakly-supervised Re-ID balances well between
annotation and accuracy.

3) Accuracy on MSMT17: Our weakly supervised Re-ID
is compared with state-of-the-art methods fully-supervised /
unsupervised Re-ID on MSMT17. Semi-supervised methods
are not compared here because previous works on semi-
supervised Re-ID do not provide results on this dataset.

Fully supervised Re-ID. We compare our method with the
eleven current best models, including PDC [49], GLAD [51],
ABD-Net [54], GoogleNet [57], IANet [59], SFT [60], Auto-
ReID [61], MVP [64], Verif-Identif [66], PCB [39], JDGL
[68], ShuffleNet [71], MobileNetV2 [72], OSNet [74], Local
CNN [47], and MGN [45]. Comparison results are provided
in Table III (d). Our W-MGN and W-Local CNN achieve a
rank-1 accuracy of 81.1% and 80.6%, which surpass many of
the compared fully-supervised methods. These results verify
the effectiveness of our method.

Unsupervised Re-ID. We compare our method with the
unsupervised Re-ID models, as shown in Table III (b). Five
representative state-of-the-art methods are used as competing
methods, including PTGAN [34], SSG [76], TAUDL [77],
UTAL [19], ECN [79], and UGA [80]. The results in Table
III (d) show that our weakly supervised Re-ID problem has
obtained significant gain over unsupervised Re-ID methods.
For instance, our W-MGN outperforms the best-performing
model UGA [80] by a large margin (i.e., 81.1% vs. 49.5%).
Given that our method also saves the annotation effort, we

Fig. 11: Search examples of W-MGN on SYSU-30k dataset. Each
row represents a ranking result with the first image being the query
and the rest images being the returned list. The image with the red
bounding box is the matched one.

believe our weakly supervised Re-ID balances well between
annotation and accuracy.

4) Accuracy on PRID2011: In Table III (c) and Fig. 10 (a),
we compare the results of our model with five current best
models: the KISSME distance learning method [5], MAHAL,
L2, and XQDA [53], P2SNet [9], Local CNN [47], and MGN
[45]. For KISSME, MAHAL, L2, and XQDA, deep features
[85] are utilized to represent an image of a person. For P2SNet,
we train the model based on the image-to-video setting but
sample one frame from each video to formulate the image-
to-image setting. Our W-MGN and W-Local CNN achieve a
rank-1 accuracy of 72.7% and 71.6%, which surpass many of
the compared fully-supervised methods. These results verify
the effectiveness of our method.

5) Accuracy on SYSU-30k: As SYSU-30k is the only
weakly supervised Re-ID dataset and our method is the only
weakly supervised Re-ID method, we propose to compare the
traditional fully supervised Re-ID models with our weakly
supervised method by using transfer learning. Specifically, six
representative fully supervised Re-ID models including DARI
[7], DF [6], TriNet [62], Local CNN [47], MGN [45], and
MGN without triplet loss are first trained on CUHK03. Then,
they are used to performed cross-dataset evaluation on the
test set of SYSU-30k. In contrast, our weakly-supervised Re-
ID is trained on the training set of the SYSU-30k with weak
annotations and then is tested on the test set of SYSU-30k.

Table III (e) and Fig. 10 (b) are the results of the com-
parisons. It is observed that our W-MGN achieves state-of-
the-art performance (29.5%), even though it is trained in a
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TABLE IV: Computational complexity of weakly and fully super-
vised Re-ID. secs / 100 images: the time of forward-passing 100
images in the testing stage or the cycle of a forward-backward passing
in the training stage when the batch size is 100.

weakly (secs / 100 images) fully (secs / 100 image)
Testing 0.0559 0.0559
Training 0.2453 0.2448

weakly supervised manner while the comparison methods are
trained with full supervision. The success may be attributed
to two reasons. First, our model is quite effective due to the
graphical modeling that generates reliable pseudo labels as
compensation for the absence of strong labels. Second, the
large-scale SYSU-30k dataset provides rich knowledge that
improves the capacity of our model, even though SYSU-30k
is annotated weakly.

We also qualitatively present some query examples of
W-MGN for the SYSU-30k dataset in Fig. 11. Each row
represents a ranking result with the first image being the query
image and the rest being the result list. The matched one in
the returned list is highlighted by a red bounding box. This
figure exhibits the difficulty of this dataset. Actually, in the
failed examples, the images ranked higher than the matched
one often look more closer to the query image as in Row 46.

6) Computational Complexity: Table IV compares the com-
putational time of Re-ID in the context of weak supervision
to that in the context of full supervision in terms of time
cost per 100 images. For a fair comparison, both methods are
individually trained on the same desktop with 1 Titan-x GPU.
As shown in the table, the weakly and fully supervised Re-
ID methods have similar computational costs. Specifically, in
the testing phase, both methods share the same computational
costs. Even in the training phase, our method only performs
0.002× slower than the fully supervised Re-ID (0.2453 vs.
0.2448 seconds per 100 images using TITAN X.).

VII. CONCLUSION

We have considered a more realistic Re-ID problem chal-
lenge: the weakly supervised Re-ID problem. To address this
new problem, we proposed a graphical model to capture the
dependencies among images in each weakly annotated bag. We
further propose a weakly annotated Re-ID dataset (i.e., SYSU-
30k) to facilitate future research, which is currently the largest
Re-ID benchmark. Extensive experiments have conducted on
our SYSU-30k dataset and other four public Re-ID datasets
and a superior performance is achieved with our proposed
model, providing a promising and appealing conclusion that
learning a Re-ID model with less annotation efforts is possible
and feasible. Future work will include building automated
models [86] for the weakly supervised Re-ID .
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