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An Approach to Streaming Video Segmentation
With Sub-Optimal Low-Rank Decomposition

Chenglong Li, Liang Lin, Wangmeng Zuo, Wenzhong Wang, and Jin Tang

Abstract— This paper investigates how to perform robust and
efficient video segmentation while suppressing the effects of
data noises and/or corruptions, and an effective approach is
introduced to this end. First, a general algorithm, called sub-
optimal low-rank decomposition (SOLD), is proposed to pursue
the low-rank representation for video segmentation. Given the
data matrix formed by supervoxel features of an observed video
sequence, SOLD seeks a sub-optimal solution by making the
matrix rank explicitly determined. In particular, the representa-
tion coefficient matrix with the fixed rank can be decomposed into
two sub-matrices of low rank, and then we iteratively optimize
them with closed-form solutions. Moreover, we incorporate a
discriminative replication prior into SOLD based on the obser-
vation that small-size video patterns tend to recur frequently
within the same object. Second, based on SOLD, we present
an efficient inference algorithm to perform streaming video
segmentation in both unsupervised and interactive scenarios.
More specifically, the constrained normalized-cut algorithm is
adopted by incorporating the low-rank representation with other
low level cues and temporal consistent constraints for spatio-
temporal segmentation. Extensive experiments on two public
challenging data sets VSB100 and SegTrack suggest that our
approach outperforms other video segmentation approaches in
both accuracy and efficiency.

Index Terms— Video processing, streaming segmentation,
low-rank representation, spectral clustering.

I. INTRODUCTION

V IDEO segmentation is to partition the video into several
semantically consistent spatio-temporal regions. It is a

fundamental computer vision problem in many applications,
such as object tracking, activity recognition, video analytics,
summarization and indexing. However, it is still a challenging
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research area due to its computational complexity and inherent
difficulties, like the large intra-category variations and the large
inter-category similarities.

According to the amount of manual annotation, recent
video segmentation algorithms can be categorized into four
groups, i.e., unsupervised, interactive, semi-supervised and
supervised. 1) The unsupervised methods produce coherent
spatial-temporal regions from the bottom-up fashion, and have
been introduced ranging from mean-shift [1], spectral cluster-
ing [2], [3], graph-based processing [4], [5] and superpixel
tracking [6]. Besides, some benchmarks [7], [8] have also
been provided to evaluate existing methods and help further
study. 2) A small amount of human at the start frame or
frames is required in the interactive approaches to segment
the foreground from the background [9]–[13]. Some of these
approaches [9]–[11] are strongly interactive that allow the user
to correct any mistakes in the loop if needed. 3) The semi-
supervised foreground propagation approaches accept a frame
labeled manually with the foreground region and propagate it
to the remaining frames [14]. 4) Methods for the supervised
setting attempt to segment the same object or object category
of interest as foreground by learning an object model from
labeled exemplars [15].

In this paper, we investigate the problem of streaming video
segmentation under the Low-Rank Representation (LRR)
framework.1 Although LRR had been very successful in image
segmentation [16]–[18], there exists several remaining issues
for applying LRR to video segmentation. First, most LRR
algorithms relax the rank constraint with the nuclear norm
to make the objective tractable. The relaxed objective usually
is optimized by ALM method [19] which converges slowly,
making it computationally inefficient for video segmentation.
Second, it is shown that internal video statistics is helpful to
improve segmentation performance, but it remains not well
studied for incorporating internal video statistics into LRR.
Finally, to cope with arbitrarily long video, temporally
consistent constraints is indispensable for streaming video
segmentation.

Aimed at addressing these issues and motivated by
the advances in subspace clustering [20], [21], especially
LRR methods for image segmentation [16]–[18], we propose
an effective approach for streaming video segmentation with
a Sub-Optimal Low-rank Decomposition (SOLD) algorithm,
which pursues the low-rank representation by exploiting the
low-rank structure of low-level supervoxel features. It is well
known that the rank constraint can suppress the effects of

1Project webpage: http://vision.sysu.edu.cn/projects/sold/.

1057-7149 © 2016 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



1948 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 5, MAY 2016

severe noises and/or corruptions, which is important for robust
video segmentation.

Instead of pixels or superpixels in previous works
like [3], [4], we take supervoxels as graph nodes to infer
their optimal affinities. Supervoxels can preserve local spatio-
temporal coherence as well as good boundaries, and substan-
tially improve segmentation efficiency. We assume that the
intra-class supervoxels are drawn from one identical low-rank
feature subspace, and all supervoxels in a temporal window lie
on a union of multiple subspaces. Herein, a temporal window
is defined as a number of adjacent frames. Thus, we can
represent each supervoxel descriptor as a linear combination
of other supervoxel descriptors, and seek for the low-rank
representation of all supervoxels in a joint fashion. More-
over, we also integrate discriminative replication prior in
the formulation for enhancing its discriminative ability. This
prior, local small-size video cubes (e.g., 6×6×6 voxels) with
certain appearance patterns tend to recur frequently within the
semantic region, but may not appear in the different semantic
regions, exploits the small non-local recurring regions [22] to
refine affinities among supervoxels. Herein, a semantic region
is defined as a set of spatio-temporal pixels of the same object.
It also can be viewed as the extension of internal image
statistics [23] for video data, but can substantially reduce the
computational complexity.

Unlike relaxing the rank minimization to the nuclear norm
minimization in other works [16], [17], the rank of the
representation coefficient matrix in SOLD is explicitly deter-
mined for better representation. In particular, the represen-
tation coefficient matrix with the fixed rank can be decom-
posed into two low rank sub-matrices. Thus, we efficiently
optimize the low-rank representation by iteratively solving
several sub-problems with closed-form solutions. The opti-
mization solution is then employed to define affinities among
supervoxels.

Based on SOLD, two special tasks, unsupervised and inter-
active video segmentation, are addressed in our framework.
First, we combine the low-rank representation matrix with
other low-level cues to define the affinity matrix. Then,
we directly apply constrained NCut algorithm [24] on the
defined affinity matrix to achieve the unsupervised segmen-
tation. In interactive task, we define the appearance mod-
els of foreground and background by user interactions, and
combine with the low-rank representation and the spatio-
temporal smoothness constraints to accurately segment the
target object. We formulate it as the Markov Random
Field (MRF) problem, which can be efficiently solved by the
Primal-Dual method [25]. Fig. 1 illustrates the unsupervised
and interactive segmentation results of our approach.

This paper makes the following contributions to video
processing and related applications.

• It presents an effective approach for segmenting videos
into consistent spatio-temporal regions, which pursues
the low-rank representation of the video supervoxel
feature matrix. Our approach is able to deal with
both unsupervised and interactive scenarios and outper-
forms other video segmentation methods on the standard
benchmarks.

Fig. 1. The unsupervised and interactive segmentation results of our approach
are shown in (a) and (b), respectively. The different colors indicate the
different regions in (a). The first row shows the quintessential frames in video
sequences, and the dash lines in (b) indicate the user interactions, in which the
red denotes the foreground and the blue denotes the background. Our results
and the corresponding ground truth are shown in the middle and last row,
respectively.

• It presents a novel low-rank decomposition method with
the fixed-rank representation coefficient matrix, achieving
a very efficient sub-optimal solution by iteratively solving
three closed-form sub-problems. This proposed method
can be extended to other similar tasks for pursuing
low-rank representations.

• It utilizes an internal replication prior for enhancing
discriminative ability between supervoxels, which is
naturally incorporated into SOLD. Moreover, we uti-
lize several temporal consistent constraints during the
inference of streaming video segmentation, effectively
improving the robustness.

The rest of this paper is organized as follows. In Sect. II,
the relevant existing unsupervised and interactive video seg-
mentation methods are introduced. In Sect. III, we describe
the details of our approach. The experimental results on two
public challenging datasets are shown in Sect. V. The final
Sect. VI concludes this paper.

II. LITERATURE REVIEW

Some of the relevant state-of-the-art methods on the unsu-
pervised and interactive video segmentation are reviewed in
this section.

Recent advances in hierarchical methods [4], [26], [27],
streaming methods [5], [28] and related benchmarks [7], [8]
have shown that unsupervised supervoxel segmentation has
gained potential as a first step in early video processing.
Hierarchical video segmentation provides a rich multiscale
decomposition of a given video. Grundmann et al. [4] pro-
posed Hierarchical Graph-Based video segmentation (HGB)
algorithm based on local properties. It iteratively merged nodes
in a region graph to produce a hierarchical segmentation.
To process arbitrary long video, Xu et al. [5] proposed
a streaming hierarchical video segmentation framework and
instantiated HGB within this framework (SHGB). This method
enforced a Markov assumption on the video stream, which
leveraged ideas from data streams. Galasso et al. [28] proposed
a spectral graph reduction algorithm for efficient streaming
video segmentation. In this method, the reduced superpixel
graph was reweighted such that the resulting segmentation
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was equivalent to the full graph under certain assumptions.
Xu and Corso [7] presented a thorough evaluation of five
supervoxel methods on a suite of suitable metrics designed
to access supervoxel desiderata. A united video segmentation
benchmark was provided by Galasso et al. [8] to evaluate
effectively over- and under-segmentation of current video
segmentation methods. These benchmarks not only allow to
analyze the current state-of-the-art in video segmentation,
but encourage the progress on new aspects of the video
segmentation methods.

Recent works on video segmentation focus only on salient
moving objects by analyzing point trajectories, while tak-
ing background as a single cluster [2], [29]. Some other
works [3], [6] over-segment frames into superpixels, and
partition them spatially and match them temporally. These
methods provide a desirable computational reduction and
powerful within-frame representation [30]. For instance,
Galasso et al. [3] proposed a robust Video Segmentation
approach with Superpixels (VSS) to explore various within-
and between-frame affinities. In addition, Tarabalka et al. [31]
presented a more efficient method for joint segmentation of
monotonously growing or shrinking shapes in a time sequence
of noisy images, and this method was applied to three practical
problems to validate its performance and practicality.

Different from unsupervised video segmentation, interactive
video segmentation focused on extracting foreground object
in clutter background with simple user interventions (often
just one scribble for the object and one for the background).
Wang et al. [9] introduced a hierarchical mean-shift preprocess
to reduce the number of nodes for efficient computation, and
extended 2D alpha matting scheme to 3D video volumes.
Bai et al. [10] presented an interactive framework for soft
segmentation and matting of natural images and videos. The
proposed technique was based on weighted geodesics distance
functions, which can be solved in computationally optimal
linear time. It also allowed additional constraints into the
distance definition to efficiently handle occlusions. A learning-
based method was proposed by Price et al. [11] to automati-
cally weighted multiple features by learning from the previous
implicitly-validated frame or the user corrections required in
the previous frame. The above methods segmented or matted
object frame by frame, and may require additional supervision
in more complex videos. The long video intervals (up to
100 frames) were considered by Dondera et al. [12] on the
basis of occlusion and long term spatio-temporal structure
cues. Their system obtained good results quickly by running
spectral clustering on superpixels.

III. SUB-OPTIMAL LOW-RANK DECOMPOSITION

Given an arbitrarily long input video, we adopt the over-
lapping sliding temporal window approach to save memory
and space. In this section, we focus on the proposed model
to obtain the low rank coefficient matrix Z of the supervoxel
feature matrix of a temporal window.

A. Formulation

The proposed low rank decomposition model is imposed on
the supervoxels for better tradeoff of efficiency and accuracy.

Fig. 2. Sample supervoxels at level 1 (200, where 200 indicates the number
of supervoxels), 2 (150) and 3 (100) extracted from a hierarchical video
segmentation [4]. The different colors indicate the different supervoxels.

Fig. 3. Illustration of low-rank assumption in our framework. The first
row indicates the singular value plots of supervoxel feature matrix in one
temporal window, and the second one denotes the rank of each semantic
class in this temporal window. These two sequences are randomly selected in
VSB100 dataset. (a) Arctic_kayak. (b) Palm_tree.

We over-segment a temporal window into supervoxels by
employing unsupervised video segmentation method [4],
where each supervoxel comprises an ensemble of voxels that
are coherent both spatially and temporally, and perceptually
similar with respect to certain appearance features (e.g. color).
Generally speaking, multi-level supervoxel representation can
provide more appearance and motion features. However, as
shown in Fig. 2, the finest-level supervoxels have good spatio-
temporal coherence and boundaries whilst the coarse-level
supervoxels usually introduce large under-segmentation errors.
Therefore, our model is formulated in the finest-level super-
voxels to avoid error propagation.

Each temporal window of the video is segmented into n
supervoxels. For each supervoxel, a set of appearance and
motion features are extracted and combined into one single
d-dimensional feature vector xi for supervoxel representation.
Then, all the feature vectors of the n supervoxels form the
data matrix X = [x1, x2, . . . , xn] ∈ R

d×n .
We assume that supervoxels belonging to the same seman-

tic region are all drawn from the same low-rank sub-
space, and all supervoxels in one temporal window lie on
a union of multiple subspaces. As illustrated in Fig. 3,
the supervoxel feature matrix can be well approximated by
a matrix with rank less than 10, and the rank of each
semantic class is less than 5, which justifies the low rank
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Fig. 4. Illustration of discriminative replication prior in SOLD. A video cube
consists of a set of spatially overlapped patches, where repeatedly occurred
patches are identified with the same color. One red cube is highlighted for
clarity.

representation assumption. Here, each supervoxel descriptor
can be represented as the linear combination of the supervoxel
descriptors, the low-rank representation (LRR) of all supervox-
els can then be pursued in a joint fashion, i.e., X = XZ, where
Z is the desired low-rank representation coefficient matrix.
Thanks to the low-rank constraint, the solution of LRR can
better capture the global structure of the matrix X than sparse
coding [21], and benefit subspace segmentation [20]. Since the
supervoxel feature matrix is often noisy or grossly corrupted,
the low-rank representation can be solved by the following
program,

X = XZ + E + ε, s.t . rank(Z) ≤ r, (1)

where r is the desired rank, and r � n. Z ∈ R
n×n is

the desired low-rank representation coefficient matrix, and
E ∈ R

d×n and ε ∈ R
d×n denote the sparse corrupted noise

and the dense Gaussian noise, respectively. Thus, the low-rank
representation model can be formulated as

min
Z,E

1

2
‖X − XZ − E‖2

F + λ‖E‖1, s.t . rank(Z) ≤ r, (2)

where λ denotes the regularization parameter. ‖ · ‖F and ‖ · ‖1
denote the Frobenius norm and the �1-norm of a matrix,
respectively.

To enhance the discriminative ability of the low-rank repre-
sentation coefficient matrix, we further integrate into the model
in Eq. (2) the discriminative replication prior based on internal
video statistics. Discriminative replication prior exploits the
small non-local recurring regions [22] to refine the affinity
between supervoxels. Similar work on image segmentation
was proposed in [23]. In our work, we assume that local
small-size cubes (e.g., 6 × 6 × 6 voxels) tend to recur
frequently within the same object, yet less frequently within
the different objects. Further, the prior to video also benefits
the preservation of temporal coherence and improvement on
computational efficiency, as shown in Fig. 4.

We utilize the cube recurrence density to quantify the dis-
criminative replication prior. Let � denote the spatio-temporal
subregion. We first define the empirical density of small-size
cube indexed by p with respect to � by Parzen window
method:

D(p, �) = 1

|�|
∑

q∈�

δζ (κ(‖xp − xq‖)), (3)

where q indexes the small-size cubes, xp and xq are the
features extracted from p and q , respectively, κ is a Gaussian
kernel, and the function δζ (a) denotes the hard-threshold
operator,

δζ (a) = a I (|a| > ζ), (4)

where I (·) is the indicator function, and the threshold ζ
is fixed to be 0.4 in this work. Parzen window method
does not distinguish between the smaller number of perfectly
similar patches and the larger number of partially similar
patches. Therefore, introducing the hard-thresholding operator
can depress the effects of partially similar patches.

Next, we define the discriminative replication prior to mea-
sure how likely two supervoxels belong to different semantic
region. The discriminative replication prior matrix Q ∈ R

n×n

is defined as follows:

Qij = e
−( 1

|�i |
∑

p∈�i
D(p, � j )+ 1

|� j |
∑

q∈� j
D(q, �i ))

, (5)

where �i denotes the spatio-temporal subregion covered
by supervoxel i , and |�i | indicates the number of cubes
within �i .

Then, we incorporate the discriminative replication prior
into the model in Eq. (2):

min
Z,E

1

2
‖X − XZ − E‖2

F +λ‖E‖1+γ tr(ZT Q),

s.t . rank(Z) ≤ r, (6)

where tr(·) returns the matrix trace, and γ is a tuning
parameter. Note that larger Qij indicates that the supervoxel
i and j belong to different semantic spatio-temporal regions
with higher probability, and will encourage smaller Zi j by
minimizing the last term tr(ZT Q). Therefore, minimizing
tr(ZT Q) prefers to enforce the coefficient matrix Z to be
block diagonal, where Zi j is zero if the supervoxel i and j are
from different semantic regions, and vice versa. It is known
that block-diagonal structure is critical for accurate subspace
segmentation [32]. In this way, high-level semantic internal
statistics can be incorporated as a soft constraint to enhance
the discriminative ability.

The model in Eq. (6) is nonconvex due to the rank
constraint, which is usually relaxed to a convex problem,
i.e., minimizing nuclear norm of Z. In this way, model
optimization can be performed using the Augmented
Lagrangian Method (ALM) [19] or linearized ALM [33].
However, in many applications it is easier to explicitly
determine the desired rank rather than implicitly tuning
the tradeoff parameter of nuclear norm [34]. For example,
rigid Structure From Motion (SFM) can be formulated as
a rank-3 matrix factorization problem [35], [36], while
nonrigid SFM can be formulated as a rank-3k matrix
factorization, where k is the number of shape basis
for depicting nonrigid deformation [37]. Moreover, as
demonstrated in [38]–[40], the incorporation of explicit
rank constraint may result in more efficient optimization
algorithm. Therefore, unlike using the nuclear-norm
regularizer in conventional LRR models [16]–[18], [20], [23],
we explicitly impose the fixed-rank constraint on Z.
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We decompose the representation coefficient matrix
as Z = AB, where A ∈ R

n×r , B ∈ R
r×n . By replacing Z

with AB, the Sub-Optimal Low-rank Decomposition (SOLD)
model is then formulated as,

min
A,B,E

1

2
‖X − XAB − E‖2

F + λ‖E‖1

+ β

2
‖AB‖2

F + γ tr((AB)T Q), (7)

where β is a regularization parameter that controls overfitting.
Even SOLD is nonconvex and sub-optimal, as demonstrated
in our experiments, such formulation can deliver both efficient
algorithms and promising video segmentation accuracy.

B. Optimization

To optimize Eq. (7), we adopt the alternating optimization
method, and denote

J (A, B, E) = 1

2
‖X − XAB − E‖2

F + λ‖E‖1

+ β

2
‖AB‖2

F + γ tr((AB)T Q). (8)

Given E, taking the derivative of J (A, B, E) w.r.t. B, and
setting it to zero, we obtain

B = (AT S1A)−1AT S2, (9)

where

S1 = XT X + βI,

S2 = (XT (X − E) − γ Q). (10)

By substituting Eq. (9) back into Eq. (7), the subproblem
on A becomes

A∗ = arg max
A

tr{(AT S1A)−1AT S2ST
2 A}. (11)

Eq. (11) can be transformed to a generalized eigen-problem,
where its global optimal solution is the top r eigenvectors of
S†

1S2ST
2 corresponding to the nonzero eigenvalues, where S†

1
denotes the pseudo-inverse of S1.

Given A and B, the noise matrix E can be solved by the
soft-thresholding (or shrinkage) operator in [19]:

E∗ = arg min
E

λ‖E‖1 + 1

2
‖E − (X − XAB)‖2

F . (12)

Please refer to Appendix A for the detailed derivations of
above equations. A sub-optimal solution can be obtained by
alternating between the updating of {A, B} and the updating
of E, and the algorithm is summarized in Alg. 1.

Although Alg. 1 is an iterative algorithm, we can guarantee
its convergence to a stationary point. Note that both the E sub-
problem and the {A, B} subproblem have unique closed-form
solutions. Therefore, the generated sequence is monotone, i.e.,
J (At , Bt , Et ) ≥ J (At+1, Bt+1, Et ) ≥ J (At+1, Bt+1, Et+1).
Moreover, the sequence of A, B and E in each iteration are
bounded, see Appendix B for more details. As shown in of [41]
(Proposi tion 2.7.1 in page 268), if the solutions to each
subproblem is unique, the accumulation point of the sequence
generated by alternating minimization is a stationary point.

Algorithm 1 Optimization Procedure to Eq. (7)

Our optimization delivers a more efficient algorithm. Some
matrices (computing S1 and XT X − γ Q) in our algorithm
can be pre-computed, and we require compute the top r
generalization eigenvectors, where r is the desired rank. Note
that r is generally much smaller than the size n of coefficient
matrix Z, making our algorithm more efficient to be optimized.

It should be noted that, both [38] and our SOLD adopt
the alternating minimization algorithm, but the algorithm
in [38] alternates between updating A and B while our
SOLD alternates between updating E and {A, B}. Moreover,
even for our specific subproblem on {A, B}, instead of the
AltMin algorithm by [38], we suggest a generalized eigenvalue
decomposition algorithm which can directly obtain the closed-
form solutions to A and B.

The low-rank coefficient matrix can be obtained by
Z = AB, and will be combined with other low-level cues
(e.g., edge strength and spatial smoothness) to define the affin-
ity between supervoxels in Sect. IV. Therefore, the optimized
Z can be utilized to suppress the effects of data noise and/or
corruption in video segmentation.

C. Implementation

Some important implementation details are briefly intro-
duced. In this work, we utilize the hierarchical graph-based
method (HGB) [4] to generate one layer supervoxels. HGB
performs well on all the metrics of the unified video seg-
mentation benchmarks [7], [8], and only involves one input
parameter, i.e., the total number n of supervoxels. Note that
the supervoxel number n should not be set too small (large
under-segmentation errors) or too large (heavy computational
cost). On one hand, as shown in Fig. 2, the supervoxel
segmentation result with n = 100 usually introduce large
under-segmentation errors. On the other hand, as demonstrated
in [7], when the supervoxel number n is between 200 and 900,
the 3D under-segmentation error of HGB on the SegTrack [42]
dataset only changes a little, and so do the other performance
metrics including boundary recall, segmentation accuracy and
explained variation. Therefore, it is reasonable to set n ≥ 200.
Moreover, considering that the computational complexity of
SOLD (two SVD operations in each iteration) is O(n3),
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we should let n as small as possible, and thus set n = 200 to
balance the accuracy-efficiency tradeoff.

For robust supervoxel description, four low-level features
are extracted from supervoxels and normalized with unit �2
norm. These feature vectors, including 12-dimension color
histogram in each channel of RGB, 58-dimension Local
Binary Pattern (LBP), 31-dimension Histogram of Oriented
Gradient (HOG) and 18-dimension Histogram of Optical
Flow (HOF), are concatenated into a single descriptor vector.
To reduce computational complexity, we perform PCA [43] on
the feature matrix X to remove insignificant components. The
same operation is employed on computing the discriminative
replication prior matrix Q.

IV. STREAMING VIDEO SEGMENTATION

In this section, we will deploy the optimized low-rank
representation in Sect. III to perform streaming video segmen-
tation in both unsupervised and interaction scenarios. First,
the coefficient matrix Z is combined with other low-level
cues to define the affinity matrix. Then, we apply NCut
with temporal consistent constraints for clustering supervoxels.
Finally, both unsupervised and interactive video segmenta-
tion can be conducted based on the supervoxel clustering
results.

An effective streaming (sometimes called online as a syn-
onym) algorithm can enable us to process an arbitrary-long
video with limited memory and computational resources.
Thus, it is essential to perform video segmentation in a stream-
ing way. To this end, we segment the video in overlapping
sliding windows. In particular, we consider both the temporal
consistent constraints and low-rank representations to improve
the long-range consistency and segmentation accuracy of the
inference algorithm.

A. Affinity Definition

We define the affinity between two supervoxels as a linear
combination of three cues:

Wi j =
3∑

m=1

ωmφm
i j , (13)

where φm is the m-th affinity value in the feature space, and
ωm is the linear combination weight. In this work, φ1 is the
intervening contours kernel, defined as

φ1
i j = e−α1maxx∈Lines(i, j)‖Edge(x)‖, (14)

where Lines(i, j) is a straight line set, in which each line
joins centers of one within-frame superpixel-pair. Herein,
supervoxel-pair (i, j) is decomposed into the within-frame
superpixel-pairs. The Edge(x) is the edge strength computed
by gradient at location x and α1 is a tuning parameter. φ2 is
the smoothness kernel defined as

φ2
i j = e−α2‖ci −c j ‖2

, (15)

where ci represents the centroid of the supervoxel i , and α2 is
the tuning parameter. And the third kernel φ3 is defined as

φ3
i j = e−α3e

−(|Zi j |+|Z j i |)/2

2σ2
, (16)

Fig. 5. The generation of the temporal consistent constraints between
two neighboring sliding windows Wn−1 and Wn . A denotes one segmentation
region in Wn−1, and provides some constraints to the segmentation of Wn . For
clarity, four typical supervoxels are shown here, which stand for four typical
supervoxel types based on their relationship to the region A: complete (SV3),
almost (SV2), part (SV1) and none (SV4). Thus, only SV2 and SV3 compose
a partial grouping supervoxel set and generate a constraint due to A.

where Zi j indicates the (i, j)-th element of the optimized
lowest-rank representation in Sect. III, α3 is the tuning para-
meter, and σ is the Gaussian parameter. The settings of all the
parameters are described in Sect. V-A.

B. NCut With Temporal Consistent Constraints

The temporal consistent constraints are introduced to
properly propagate solutions between neighboring windows.
We utilize some reasonable constraints to propagate the seg-
mentation labels, while avoiding some bad results should not
affect the quality of segmentation in the future frames. To this
end, we divide the supervoxels into two categories as follows.
Given segmentation labels of the current window, the super-
voxels in the next are divided into the deterministic supervox-
els and the non-deterministic supervoxels. More specifically,
the deterministic supervoxel is defined as completely or almost
(over 90% in this paper) belonging to one specific label, and
the non-deterministic supervoxel is defined as partly belonging
to some label. Then, the partial grouping supervoxel set is
composed by only the deterministic supervoxels. Fig. 5 shows
this process.

Given the partial grouping supervoxel set Ut , we can obtain
|Ut |−1 independent constraints, where | · | denotes the size of
a set, and t ∈ T indicates the label index. Then, the temporal
consistent constraint matrix U is computed as follows: For
each row k, there is two nonzero elements Uk(i) = 1 and
Uk( j) = −1, where i, j ∈ Ut and k ∈ [∑T

t=1(|Ut | − 1)],
[n] indicates the set of integers between 1 and n: [n] =
{1, 2, . . . , n}. Alg. 2 summarizes this procedure, and Fig. 6
demonstrate its effectiveness.

Generally, conventional methods [16], [20], [23] directly
employ NCut on affinity matrix to perform subspace seg-
mentation. In our work, we aim to integrate the temporal
consistent constraints in segmentation for improving temporal
segmentation accuracy. To this end, we apply the constrained
NCut method [24] on W to achieve the supervoxel-level
segmentation. The tractable K -ways normalized segmentation
criterion with temporal consistent constraints is formulated as

max
G

1

K
tr(GT WG)

s.t . UG = 0, GT DG = IK , (17)

where D = W1N is the degree matrix, and G =
M(MT DM)− 1

2 is the scaled partition matrix. N is total number
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Fig. 6. Illustrations of the temporal consistent constraints for temporal
consistency. Frame 41 to 61 of the video sequence “planet_earth_1” in the
dataset VSB100 [8] are shown in (a), and the segmentation results without and
with the temporal consistent constraints are shown in (b) and (c), respectively.
The different colors indicate the different segmentation labels.

Algorithm 2 Temporal Consistent Constraint Matrix Compu-
tation Between Two Neighboring Windows

of supervoxels. 1 and I denote all ones vector and identity
matrix, respectively. M ∈ {0, 1}N×K is the partition matrix.
The optimization of Eq. (17) has been addressed in [24], and
the main results are as follows. Let P be the row-normalized
weight matrix and H be a projector onto the feasible solution
space:

P = D−1W, H = I − U−1UT (UD−1UT )−1U. (18)

Let V[K ] be the first K eigenvectors of the matrix HPH,
then the solutions of Eq. (17) are V̂[K ] = D− 1

2 V[K ], which
indicates the desired segments. Next, we apply V̂[K ] to two
video segmentation tasks.

C. Unsupervised Video Segmentation

The eigenvectors V̂[K ] can be discretized by spectral rota-
tion [44] or k-means (spectral rotation in this paper) to obtain
the discrete solutions of graph partition.

In order to create new labels or remove old labels when the
objects enter or leave the camera view, we utilize a reason-
able strategy to determine the label mapping by their spatial
overlap [6]. An overlap of one frame between neighboring
windows is used to determine whether current labels are new

ones or mapped from previous ones. For simplicity, the over-
laps between new labels (from the current processing window)
and old labels (from the preceding processing window) are
measured by their Dice coefficients. For a current label l, it
is mapped from previous one if it significantly overlaps with
some previous label p, but barely overlaps with any other
previous label q . Otherwise, it is considered as new one s,
i.e., a new object:

l =
{

p, i f o(l, p) > o1 and o(l, q) < o2

s, else,
(19)

where o(·, ·) denotes the Dice coefficient in overlap between
two labels, and o1, o2 are fixed parameters, which is set to be
0.8 and 0.2, respectively.

D. Interactive Object Segmentation

For the applications which utilize priors from user interac-
tions, we employ an energy minimization approach to achieve
interactive object segmentation. Since objects are spatially
compact and temporally consistent, we integrate the appear-
ance model of foreground and background by user interactions,
the spatio-temporal smoothness constraints and the low-rank
representation into our framework to accurately segment the
target object. To this end, we formulate it as the MRF model,
and the energy function is defined as:

min
π

1∑

k=0

n∑

i=1

δ̄(k, πi ) Āk(i) + ξ1

1∑

k=0

∑

i∈Ck

δ̄(k, πi )

+ ξ2

1∑

k=0

n∑

i=1

δ̄(k, πi )d̄k(i) + ξ3

n∑

i=1

n∑

j=N (i)

δ̄(πi , π j )d̄(i, j),

(20)

where π ∈ {0, 1} and δ̄ are the assignment function and the
Dirac delta function, respectively. N (i) denotes the neigh-
boring node set of node i and Ck indicates the penalty node
set of segment k. ξ1, ξ2 and ξ3 are the weighted parameters.
The appearance model Ā consists of two Gaussian Mixture
Models (GMMs) over RGB values, one for the foreground
and one for the background. The parameters of GMMs are
estimated from manually labeled pixels in first window. Since
the appearance of the foreground and background typically
changes smoothly over time, we update these models over
time in later windows by employing the segmentation results.
d̄k(i) and d̄(i, j) are a unary potential function indicating the
cost of node i belonging to segment k and a pairwise potential
function denoting the cost of node i and j belonging to a same
segment, and defined as:

d̄k(i) = max(V̂i,:) − V̂i,k , (21)

d̄(i, j) = 1

‖V̂i,: − V̂ j,:‖2η
2

, (22)

where η is a parameter to control the penalty gap between
large and small V̂ differences, and fixed to be 2 in our
experiments. In Eq. (20), the first term evaluates how likely a
supervoxel is to be foreground or background according to the
appearance model; the second term reinforces that the labeled
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Fig. 7. Comparison curves of SOLD with its variants and other video segmentation approaches, including BMC [26], VSS [3], HGB [4], SHGB [5] and
Baseline [8]. The first two subfigures are the comparison curves for comparing SOLD with previous works, and the last two subfigures are the comparison
curves for comparing SOLD with its variants. (a) and (b) show Boundary Precision-Recall (BPR) and Volume Precision-Recall (VPR) curves, respectively,
on VSB100 dataset. (c) and (d) show the component evaluations of our approach. See text for more details.

supervoxels should be assigned with correct labels; the third
term represents the total distance between the supervoxels and
their corresponding segments, and the fourth term encodes the
spatial non-smoothness [45]. We adopt the Primal-Dual solver
in MRF framework introduced in [25] to optimize it due to
its high accuracy and efficiency.

For obtaining reliable interactive segmentation in later slid-
ing windows, we propagate the user interactions over time
by supervoxel propagation in overlapping frame(s), instead of
optical flow propagation because of its incorrect estimation.
Furthermore, we divide the penalty node set Ck into the
interactive node set (reliable) and the propagated node set (less
reliable) from preceding segmentation results, and empirically
set ξ1 to be 1010 and 102, respectively. Herein, the process
of supervoxel propagation is the same as generation of the
temporal consistent constraints.

V. EXPERIMENTAL RESULTS

In this section, we evaluate our approach on two challenging
datasets VSB100 [8] and SegTrack [42], and compare with
other video segmentation methods. Then, we further analyze
the effectiveness of the main components of our approach.
At last, the efficiency analysis is discussed.

A. Evaluation Settings

To make the comparison comprehensive, we employ the
segment number set {2, 3, . . . , 51} to produce multilevel
segmentation results in unsupervised settings, and fix all para-
meters in all evaluations: we empirically set {λ, β, γ } = {0.5,
0.5, 0.05} in optimization, and {ω1, ω2, ω3, α1, α2, α3, σ} =
{0.4, 0.3, 0.3, 30, 0.6, 10, 0.12} in affinity definition [18].

Followed by [45], we set {ξ1, ξ2, ξ3} = {1010(102), 10, 10−3

n2
√

n
}

in MRF (see III-C for details of setting ξ1), where n denotes
the number of supervoxels. In addition, the number of frames
per window is set to be 6, and one frame is overlapped between
neighboring windows. Generally, the rank r of representation
coefficient matrix is in the range of [k/2, k), where k is the
number of classes [39]. In our experiments, the segmentation
performance is slightly different with respect to different r
in [6, 12), where 12 indicates the average number of classes

TABLE I

THE AGGREGATION MEASURES OF BOUNDARY PRECISION-RECALL

(BPR) AND VOLUME PRECISION-RECALL (VPR) FOR COMPARING

PREVIOUS WORKS WITH SOLD ON DATASET VSB100 [8].
(*) DENOTES EVALUATED ON VIDEO FRAMES RESIZED

BY 0.5 DUE TO LARGE COMPUTATIONAL DEMANDS

AND THE ITALIC DENOTES THE STREAMING

METHOD. THE BOLD FONTS INDICATE
THE BEST PERFORMANCE

on the VSB100 [8]. Therefore, we simply fixed r to be 10 in
unsupervised settings, and 2 in interactive settings.

B. Exp-I: Unsupervised Video Segmentation

The selected VSB100 [8] for empirical evaluation is very
challenging. It is the largest video segmentation dataset with
high definition frames, and consists of four difficult sub-
datasets: general, motion segmentation, non-rigid motion seg-
mentation and camera motion segmentation. Using the same
setting as [8], we regard the general sub-dataset (60 video
sequences) as our test set for all the approaches.

1) Comparison Results: We compare our method [46] with
four unsupervised video segmentation methods, including
BMC [26], VSS [3], HGB [4] and SHGB [5]. The first
two subfigures of Fig. 7 illustrate the Boundary Precision-
Recall (BPR) and Volume Precision-Recall (VPR) curves
of the comparisons on the VSB100 dataset. Tab. I gives a
summary of the aggregation performance evaluations, which
includes Optimal Dataset Scale (ODS), Optimal Segmentation
Scale (OSS) and Average Precision (AP) of BPR and VPR.
Herein, the baseline introduced by [8] is the extension of a
state-of-the-art image segmentation method [47] by propagat-
ing the segmentation [47] of the central frame to the other
frames with optical flow [48] and labelling the image segments
(across the hierarchy) with maximum voting. This baseline
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Fig. 8. Qualitative comparisons of SOLD against other video segmentation methods HGB [4] and SHGB [5]. For clarity, the last two rows show one frame
results of two challenging samples. We can see that our method qualitatively improves on HGB, and substantially outperforms SHGB. (a) Image. (b) HGB.
(c) SHGB. (d) SOLD. (e) GT.

adopted more complex image features, and was introduced
to develop video segmentation methods referring to image
segmentation methods and exploiting additional cues like
motion.

From Fig. 7 and Tab. I, we can conclude that our approach
achieves comparable performance against other compared
approaches in both BPR and VPR on the VSB100 dataset.
Specifically, our approach achieves best ODS and OSS values
in both BPR and VPR. Though exploiting more informative
cues as VSS, our approach performs better for its insensitivity
to noise. This owes to the proposed sub-optimal low-rank
decomposition of representation coefficient matrix of super-
voxel features. Besides, the temporal consistent constraints
adopted by our method bring better performance than other
methods in VPR. It is also worth noting that SHGB is also
a streaming mode. These superior performances demonstrate
that our approach can not only effectively infer the affinities

between supervoxels, but also preserve the longer-range tem-
poral consistency in a streaming mode. In addition, the qual-
itative comparisons of our approach and previous works are
shown in Fig. 8 to demonstrate the superior performance of
our framework.

Though our approach has achieved superior performance,
its AP in both BPR and VPR is lower than some of the
state-of-the-arts (VSS and HGB). This is due to the low recall
caused by the small maximum supervoxel number for over-
segmentation. As a matter of fact, we can alleviate it by
simply increasing the supervoxel number. However, to balance
the accuracy-efficiency trade-off, we will develop an adaptive
version of SOLD in our future work.

2) Component Analysis: To justify the significance of the
main components of our approach, we implement three special
versions and two variants of our approach for empirical
analysis. They are: 1) SOLD-I, that sets ω3 = 0 to remove
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TABLE II

THE AGGREGATION MEASURES OF BOUNDARY PRECISION-RECALL
(BPR) AND VOLUME PRECISION-RECALL (VPR) FOR COMPARING

SOLD WITH ITS VARIANTS ON DATASET VSB100 [8]. THE

DESCRIPTION OF THIS TABLE IS THE SAME AS TABLE I

the affinity term inferred by the sub-optimal low-rank decom-
position in streaming segmentation approach. 2) SOLD-II, that
sets γ = 0 in Eq. (7) to remove the regularization term of the
discriminative replication prior in our approach. 3) SOLD-III,
that sets Ū = 0 to perform segmentation without the temporal
consistent constraints. 4) SOLD-SV, that substitutes the opti-
mal affinities optimized by the sub-optimal low-rank decom-
position with the affinities based on feature descriptors, i.e.
letting φ3

i j = e−α4‖xi −x j ‖2
in Eq. (16), where α4 is empirically

set to be 0.5 in our implementation. 5) LRR-MS [18], that
enforces multiscale consistency between multilayers, and is
solved by ALM method [19]. Specifically, we implement
LRR-MS as following three steps. Firstly, three level super-
voxel representations of video are generated via HGB [4]
with the supervoxel numbers of 200, 150, 100, respectively.
Secondly, we introduce both the cross-scale consistent con-
straint matrix and the discriminative replication prior matrix
into the LRR model, where the cross-scale consistent con-
straint matrix is obtained based on [23] to enforce con-
sistency of representation matrices at different scales, and
the discriminative replication prior matrix is obtained based
Eq. (5). Thirdly, we integrate it into our streaming framework
to facilitate the evaluation.

The last two subfigures of Fig. 7 show the components
evaluation of our approach, and corresponding aggregation
measures are reported in Tab. II. From Fig. 7 and Tab. II,
we can make some observations and conclusions as follows.
1) The complete approach outperforms SOLD-I in both BPR
and VPR. This justifies the significance of the low-rank
representation optimized by SOLD. 2) Comparing to the
complete approach, SOLD-II has a little performances drop in
BPR and VPR. This demonstrates the contribution of the dis-
criminative replication prior. 3) Though worse than SOLD-III
in BPR, our approach with the temporal consistent constraints
substantially improves the performance in VPR, i.e., keep-
ing longer-range temporal consistency. 4) Our approach out-
performs SOLD-SV in both BPR and VPR, and it shows
that the representations inferred by the sub-optimal low-rank
decomposition can alleviate the noises of low-level features
effectively. It is worth noting that VPR is greatly affected by
noises in our approach. 5) Our approach obtains better results
than LRR-MS. This validates that the multiscale consistency
constraints may not help to improve the segmentation results
due to error propagation as we previously discussed.

TABLE III

QUANTITATIVE EVALUATION OF THE INTERACTIVE VIDEO
SEGMENTATION ON THE SEGTRACK DATASET [42]. THE

SCORE IS THE AVERAGE LABEL MISMATCH PER FRAME.
THE BOLD FONTS INDICATE THE BEST PERFORMANCE

We also evaluate the streaming settings of our approach.
1) Setting the number of frames in a window as 4 and 6,
we find that the results are slightly different with the current
setting (The former obtains 0.01 higher in OSS of BPR, and
the latter obtains 0.01 lower in ODS of VPR). 2) Setting
the number of the overlapped frames as 2, we find that the
results are slightly helpful to propagate the segmentation while
reducing the values of BPR (0.01 higher in OSS of VPR, and
0.02 lower in ODS of BPR).

C. Exp-II: Interactive Object Segmentation

We further evaluate our approach on the SegTrack [42]
dataset under the interactive settings. The SegTrack con-
sists of six challenging video sequences, that were between
21 and 71 frames in length. With respect to the chal-
lenging measures (color, motion, and shape), these video
sequences can be characterized as: low-low-low (parachute),
low-low-high (girl), low-high-high (monkeydog), high-low-
low (penguin), high-high-low (birdfall2), and high-high-high
(cheetah).

For the evaluation of the interactive video segmentation
scenario, we make a few scribbles on the initial frame, and
no other user interactions are applied for the other frames.
We compare our approach against the high-performing interac-
tive video segmentation method from the literature [10], which
is a local classifier based segmentation method and included
in Adobe After Effects CS5 as the roto-brush tool. We call
this method as RotoBrush in this paper. We also compare our
approach to the MRF-based algorithm PF-MRF [49], which
employs the Pixel-Flow MRF (PF-MRF) for propagation.
In this paper, we discard the step of actively selecting frames
for labelling in PF-MRF for fair comparison.

Tab. III shows the quantitative results of our approach com-
pared to RotoBrush and PF-MRF. From Tab. III, our approach
outperforms them in 3 of the 6 video sequences. Specifically,
our approach can propagate the foreground well in birdfall2,
in which the background is extremely clutter and significantly
overlaps appearance of the foreground in many frames. Our
approach accurately segments the foreground of parachute in
spite of its large illumination variation. Though our approach
outperforms other methods in girl, the segmentation quality
of our method is still poor due to under-segmentation in the
supervoxels. Fig. 9 shows some representative examples.

Our weaker performance on cheetah, monkeydog and pen-
guin is due to the failure of supervoxel segmentation, which
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Fig. 9. Qualitative results on three sequences against the state-of-the-art approach RotoBrush [10]. The first sequence is from [9], and the last two sequences
are from the SegTrack [42].

may attributes to fast camera motion, strong non-rigid defor-
mations, similar appearance between the foreground and the
background or incorrect optical flow estimation.

In addition, we present some unsatisfying results generated
by our approach. The graph-based video over-segmentation
algorithm [4] adopted by our framework as preprocessing step
is sensitive to noises and/or corruptions, and usually introduces
under-segmentation errors. In such circumstance, it will lead
to the bad segmentation quality of our framework. Fig. 10
illustrates one quintessential case.

D. Efficiency Analysis

Runtime of our approach against other methods is presented
in Tab. V. It is worth mentioning that our approach is faster

than the original HGB due to two main reasons. First, we
employ HGB in a streaming way instead of batch processing.
Second, we just generate the fine supervoxels.

To further explore whether the proposed sub-optimal low-
rank decomposition is more efficient than the widely used
ALM method, we further compare the time efficiency of
SOLD with LRR-MS. Herein, LRR-MS and SOLD refer to
solving their respective low-rank problems. The experiments
are carried out on a desktop with an Intel i7 3.4GHz CPU
and 10GB RAM, and implemented on mixing platform of
C++ and MATLAB without any optimization. Fig. 11 shows
the convergence curves of LRR-MS and SOLD, and Tab. IV
reports their average iterations and running time. Thanks to
the proposed sub-optimal low-rank decomposition, it only
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Fig. 10. Illustrated unsatisfying result on the video sequence girl. The
first column shows one original frame and corresponding ground truth,
respectively. And the second column denotes over-segmentation and our
result, respectively. The amplified images indexed by the red box in over-
segmentation result are presented in last column.

Fig. 11. Convergence curves of LRR-MS and SOLD on dataset VSB100 [8].
(a) LRR-MS. (b) SOLD.

TABLE IV

THE AVERAGE ITERATIONS AND RUNNING TIME (SECONDS

PER FRAME) OF LRR-MS AND SOLD

TABLE V

RUNNING TIME (SECONDS PER FRAME) OF OUR
FRAMEWORK AGAINST OTHER METHODS

costs 0.12 sec./frame for SOLD, which converges faster than
LRR-MS (see Fig. 11), and brings 20-times over it
(see Tab. IV).

We also report runtime of other main procedures in SOLD
with the typical resolution of 640 × 360 pixels. 1) The
features extraction, including the discriminative replication
prior matrix Q calculation, takes approximately 0.35 second
per frame. 2) The constrained NCut is efficiently solved
within 0.01 second per frame due to the proposed supervoxel-
level segmentation. 3) The MRF minimization problem in
interactive settings takes about 0.30 second per frame.
4) The graph-based over-segmentation algorithm [4] is
mostly time consuming procedure, which costs approximately
2.24 second per frame (about 74%). Hence, through introduc-
ing the efficient over-segmentation algorithms, we can achieve
much better computation time under our approach.

VI. CONCLUSION

In this paper, we have proposed a general algorithm for low-
rank representation pursuit by decomposing the matrix with
the fixed rank and proved that a sub-optimal solution can be
achieved by alternating closed-form optimization. Based on
this algorithm, we have developed an effective and efficient
approach that automatically segments streaming videos in both
unsupervised and interactive way. In future work, we will
improve our video segmentation framework by introducing
more robust video features or deep feature learning meth-
ods [50]. Our low-rank decomposition algorithm can be also
extended to other vision tasks such as multi-object tracking
and saliency detection.

APPENDIX A
OPTIMIZATION TO SOLD

Given E, taking the derivative of J (A, B, E) w.r.t. B, and
setting it to zero, we obtain

−AT XT (X − XAB − E) + βAT AB + γ AT Q = 0. (23)

According to Eq. (10), Eq. (23) can be rewritten as Eq. (9).
By substituting Eq. (9) back into Eq. (7), the subproblem

on A becomes

min
A

1

2
‖(X − E) − XA(AT S1A)−1AT S2‖2

F

+β

2
‖A(AT S1A)−1AT S2‖2

F

+ γ tr(ST
2 A(AT S1A)−1AT Q). (24)

Note that ‖x‖2
F = tr(xT x), we have

min
A

tr((X − E)T (X − E)

− 2(X − E)T XA(AT S1A)−1AT S2

+ ST
2 A(AT S1A)−1AT XT XA(AT S1A)−1AT S2)

+ βtr(ST
2 A(AT S1A)−1AT A(AT S1A)−1AT S2)

+ 2γ tr(ST
2 A(AT S1A)−1AT Q). (25)

Merging the third and the fourth term, we have

min
A

tr((X − E)T (X − E)

− 2(X − E)T XA(AT S1A)−1AT S2

+ ST
2 A(AT S1A)−1AT S2)

+ 2γ tr(ST
2 A(AT S1A)−1AT Q). (26)

Substituting first S2 to XT (X − E) − γ Q in the third term
of Eq. 26 and employing tr(xT ) = tr(x), we obtain

min
A

tr((X − E)T (X − E)

− (X − E)T XA(AT S1A)−1AT S2

− γ QT A(AT S1A)−1AT S2)

+ 2γ tr(ST
2 A(AT S1A)−1AT Q), (27)

and it equals to

min
A

tr((X − E)T (X − E)

− (X − E)T XA(AT S1A)−1AT S2

+ γ QT A(AT S1A)−1AT S2). (28)
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Thus, we have

min
A

tr((X − E)T (X − E) − ST
2 A(AT S1A)−1AT S2). (29)

According to Eq. (29), we utilize the fact that tr(xy) =
tr(yx), and solve A by Eq. (11).

Eq. (11) can be transformed to a generalized eigen-problem.
Its global optimal solution is the top r eigenvectors of S†

1S2ST
2

corresponding to the nonzero eigenvalues, where S†
1 denotes

the pseudo-inverse of S1.
Given A and B, the optimization of E is written as Eq. (12),

which can be solved by the soft-threshold (or shrinkage)
method in [19].

A sub-optimal solution can be obtained by alternating
between the updating of {A, B} and the updating of E.

APPENDIX B
PROOF OF BOUNDEDNESS

From Eq. (12) and Eq. (9), we have

||Ek+1||F = ||Sλ(X − XAk+1Bk+1)||F

≤ ||X − XAk+1Bk+1||F

= ||X − XAk+1(AT
k+1S1Ak+1)

−1AT
k+1S2,k ||F

= ||X − XS−1
1 (XT X − γ Q) + XS−1

1 XT Ek ||F

= ||K(I − L)−1(I − Lk) + LkE1||F

≤ ||K(I − L)−1||F (1 + ||Lk ||F ) + ||Lk ||F ||E1||F ,

(30)

where Sλ(·) denotes the soft-thresholding operation with para-
meter λ. K = X−XS−1

1 (XT X−γ Q) and L = XS−1
1 XT . Since

||L||2 < 1, ||Lk ||F → 0 when k → ∞. Thus, {Ek} is bounded.
Since {Ek} is bounded, S2,k is bounded. Besides, S1 is

constant, and thus S†
1S2,kST

2,k is bounded. Therefore, Ak+1, the

top r eigenvectors of S†
1S2,kST

2,k corresponding to the nonzero
eigenvalues, is also bounded. According to Eq. (9), we obtain
Bk+1 = AT

k+1S−1
1 S2,k . {Bk} is bounded due to the boundedness

of {Ak} and S2,k .

REFERENCES

[1] S. Paris, “Edge-preserving smoothing and mean-shift segmenta-
tion of video streams,” in Proc. Eur. Conf. Comput. Vis., 2008,
pp. 460–473.

[2] K. Fragkiadaki, G. Zhang, and J. Shi, “Video segmentation by tracing
discontinuities in a trajectory embedding,” in Proc. IEEE Conf. Comput.
Vis. Pattern Recognit., Jun. 2012, pp. 1846–1853.

[3] F. Galasso, R. Cipolla, and B. Schiele, “Video segmentation
with superpixels,” in Proc. Asian Conf. Comput. Vis., 2012,
pp. 760–774.

[4] M. Grundmann, V. Kwatra, M. Han, and I. Essa, “Efficient hierarchical
graph-based video segmentation,” in Proc. IEEE Conf. Comput. Vis.
Pattern Recognit., Jun. 2010, pp. 2141–2148.

[5] C. Xu, C. Xiong, and J. J. Corso, “Streaming hierarchical
video segmentation,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 626–639.

[6] A. Vazquez-Reina, S. Avidan, H. Pfister, and E. Miller, “Multiple
hypothesis video segmentation from superpixel flows,” in Proc. Eur.
Conf. Comput. Vis., 2010, pp. 268–281.

[7] C. Xu and J. J. Corso, “Evaluation of super-voxel methods for early
video processing,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2012, pp. 1202–1209.

[8] F. Galasso, N. S. Nagaraja, T. J. Cardenas, T. Brox, and B. Schiele,
“A unified video segmentation benchmark: Annotation, metrics and
analysis,” in Proc. IEEE Int. Conf. Comput. Vis., Dec. 2013,
pp. 3527–3534.

[9] J. Wang, P. Bhat, R. A. Colburn, M. Agrawala, and M. F. Cohen,
“Interactive video cutout,” ACM Trans. Graph., vol. 24, no. 3,
pp. 585–594, Jul. 2005.

[10] X. Bai, J. Wang, D. Simons, and G. Sapiro, “Video SnapCut: Robust
video object cutout using localized classifiers,” ACM Trans. Graph.,
vol. 28, no. 3, Aug. 2009, Art. no. 70.

[11] B. L. Price, B. S. Morse, and S. Cohen, “LIVEcut: Learning-
based interactive video segmentation by evaluation of multiple prop-
agated cues,” in Proc. IEEE Int. Conf. Comput. Vis., Sep./Oct. 2009,
pp. 779–786.

[12] R. Dondera, V. Morariu, Y. Wang, and L. Davis, “Interactive video
segmentation using occlusion boundaries and temporally coherent super-
pixels,” in Proc. IEEE Workshop Appl. Comput. Vis., Mar. 2014,
pp. 784–791.

[13] L. Lin, W. Yang, C. Li, J. Tang, and X. Cao, “Inference with col-
laborative model for interactive tumor segmentation in medical image
sequences,” IEEE Trans. Cybern., doi: 10.1109/TCYB.2015.2489719,
2016.

[14] V. Badrinarayanan, F. Galasso, and R. Cipolla, “Label propagation in
video sequences,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2010, pp. 3265–3272.

[15] K. Tang, R. Sukthankar, J. Yagnik, and L. Fei-Fei, “Discriminative
segment annotation in weakly labeled video,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., Jun. 2013, pp. 2483–2490.

[16] B. Cheng, G. Liu, J. Wang, Z. Huang, and S. Yan, “Multi-task low-
rank affinity pursuit for image segmentation,” in Proc. IEEE Int. Conf.
Comput. Vis., Nov. 2011, pp. 2439–2446.

[17] G. Liu, Z. Lin, S. Yan, J. Sun, Y. Yu, and Y. Ma, “Robust recovery
of subspace structures by low-rank representation,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 35, no. 1, pp. 171–184, Jan. 2013.

[18] X. Liu, Q. Xu, J. Ma, H. Jin, and Y. Zhang, “MsLRR: A unified
multiscale low-rank representation for image segmentation,” IEEE Trans.
Image Process., vol. 23, no. 5, pp. 2159–2167, May 2014.

[19] Z. Lin, A. Ganesh, J. Wright, M. Chen, L. Wu, and Y. Ma, “Fast
convex optimization algorithms for exact recovery of a corrupted low-
rank matrix,” Univ. Illinois Urbana–Champaign, Champaign, IL, USA,
Tech. Rep. UILU-ENG-09-2214, 2009.

[20] G. Liu, Z. Lin, and Y. Yu, “Robust subspace segmentation by low-rank
representation,” in Proc. Int. Conf. Mach. Learn., 2010, pp. 1–8.

[21] E. Elhamifar and R. Vidal, “Sparse subspace clustering,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2009, pp. 2790–2797.

[22] A. Faktor and M. Irani, “Video segmentation by non-local consensus
voting,” in Proc. Brit. Mach. Vis. Conf., Sep. 2014, pp. 1–12.

[23] X. Liu, L. Lin, and A. L. Yuille, “Robust region grouping via internal
patch statistics,” in Proc. IEEE Conf. Comput. Vis. Pattern Recognit.,
Jun. 2013, pp. 1931–1938.

[24] S. X. Yu and J. Shi, “Segmentation given partial grouping constraints,”
IEEE Trans. Pattern Anal. Mach. Intell., vol. 26, no. 2, pp. 173–183,
Feb. 2004.

[25] N. Komodakis, G. Tziritas, and N. Paragios, “Performance vs compu-
tational efficiency for optimizing single and dynamic MRFs: Setting
the state of the art with primal-dual strategies,” Comput. Vis. Image
Understand., vol. 112, no. 1, pp. 14–29, Oct. 2008.

[26] J. J. Corso, E. Sharon, S. Dube, S. El-Saden, U. Sinha, and A. Yuille,
“Efficient multilevel brain tumor segmentation with integrated Bayesian
model classification,” IEEE Trans. Med. Imag., vol. 27, no. 5,
pp. 629–640, May 2008.

[27] L. Lin, X. Wang, W. Yang, and J.-H. Lai, “Discriminatively trained
And-Or graph models for object shape detection,” IEEE Trans. Pattern
Anal. Mach. Intell., vol. 37, no. 5, pp. 959–972, May 2015.

[28] F. Galasso, M. Keuper, T. Brox, and B. Schiele, “Spectral graph
reduction for efficient image and streaming video segmentation,” in Proc.
IEEE Conf. Comput. Vis. Pattern Recognit., Jun. 2014, pp. 49–56.

[29] K. Wang, L. Lin, J. Lu, C. Li, and K. Shi, “PISA: Pixelwise image
saliency by aggregating complementary appearance contrast measures
with edge-preserving coherence,” IEEE Trans. Image Process., vol. 24,
no. 10, pp. 3019–3033, Oct. 2015.

[30] L. Lin, K. Wang, W. Zuo, M. Wang, J. Luo, and L. Zhang, “A deep
structured model with radius–margin bound for 3D human activity
recognition,” Int. J. Comput. Vis., doi: 10.1109/TCYB.2015.2489719,
2016.

[31] T. Tarabalka, G. Charpiat, L. Brucker, and B. H. Menze, “Spatio-
temporal video segmentation with shape growth or shrinkage constraint,”
IEEE Trans. Image Process., vol. 23, no. 9, pp. 3829–3840, Sep. 2014.

[32] J. Feng, Z. Lin, H. Xu, and S. Yan, “Robust subspace segmentation
with block-diagonal prior,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2014, pp. 3818–3825.



1960 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 5, MAY 2016

[33] J. Yang and X. Yuan, “Linearized augmented Lagrangian and alternating
direction methods for nuclear norm minimization,” Math. Comput.,
vol. 82, no. 281, pp. 301–329, 2012.

[34] Y. Hu, D. Zhang, J. Ye, X. Li, and X. He, “Fast and accurate
matrix completion via truncated nuclear norm regularization,” IEEE
Trans. Pattern Anal. Mach. Intell., vol. 35, no. 9, pp. 2117–2130,
Sep. 2013.

[35] C. Tomasi and T. Kanade, “Shape and motion from image streams under
orthography: A factorization method,” Int. J. Comput. Vis., vol. 9, no. 2,
pp. 137–154, Nov. 1992.

[36] T. Okatani and K. Deguchi, “On the Wiberg algorithm for matrix
factorization in the presence of missing components,” Int. J. Comput.
Vis., vol. 73, no. 3, pp. 329–337, May 2007.

[37] C. Bregler, A. Hertzmann, and H. Biermann, “Recovering non-rigid 3D
shape from image streams,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2000, pp. 690–696.

[38] P. Jain, P. Netrapalli, and S. Sanghavi, “Low-rank matrix completion
using alternating minimization,” in Proc. Annu. Symp. Theory Comput.,
2013, pp. 665–674.

[39] X. Cai, C. Ding, F. Nie, and H. Huang, “On the equivalent of low-rank
linear regressions and linear discriminant analysis based regressions,” in
Proc. ACM SIGKDD Int. Conf. Knowl. Discovery Data Mining, 2013,
pp. 1124–1132.

[40] R. Liu, Z. Lin, F. De la Torre, and Z. Su, “Fixed-rank representation for
unsupervised visual learning,” in Proc. IEEE Conf. Comput. Vis. Pattern
Recognit., Jun. 2012, pp. 598–605.

[41] B. P. Bertsekas, Nonlinear Programming, 2nd ed. Belmont, MA, USA:
Athena Scientific, 1999.

[42] D. Tsai, M. Flagg, and J. M. Rehg, “Motion coherent tracking with
multi-label MRF optimization,” in Proc. Brit. Mach. Vis. Conf., 2010.

[43] M. Turk and A. Pentland, “Eigenfaces for recognition,” J. Cognit.
Neurosci., vol. 3, no. 1, pp. 71–86, 1991.

[44] S. X. Yu and J. Shi, “Multiclass spectral clustering,” in Proc. IEEE Int.
Conf. Comput. Vis., Oct. 2003, pp. 313–319.

[45] H. Hu, J. Feng, C. Yu, and J. Zhou, “Multi-class constrained normalized
cut with hard, soft, unary and pairwise priors and its applications to
object segmentation,” IEEE Trans. Image Process., vol. 22, no. 11,
pp. 4328–4340, Nov. 2013.

[46] C. Li, L. Lin, W. Zuo, S. Yan, and J. Tang, “SOLD: Sub-optimal low-
rank decomposition for efficient video segmentation,” in Proc. IEEE
Conf. Comput. Vis. Pattern Recognit., Jun. 2015, pp. 5519–5527.

[47] P. Arbeláez, M. Maire, C. Fowlkes, and J. Malik, “Contour detection
and hierarchical image segmentation,” IEEE Trans. Pattern Anal. Mach.
Intell., vol. 33, no. 5, pp. 898–916, May 2011.

[48] X. Zach, T. Pock, and H. Bischof, “A duality based approach for realtime
TV-L1 optical flow,” in Proc. Joint DAGM Symp., 2008, pp. 214–223.

[49] S. Vijayanarasimhan and K. Grauman, “Active frame selection for
label propagation in videos,” in Proc. Eur. Conf. Comput. Vis., 2012,
pp. 496–509.

[50] R. Zhang, L. Lin, R. Zhang, W. Zuo, and L. Zhang, “Bit-scalable
deep hashing with regularized similarity learning for image retrieval and
person re-identification,” IEEE Trans. Image Process., vol. 24, no. 12,
pp. 4766–4779, Dec. 2015.

Chenglong Li received the B.S. degree in applied
mathematics and the M.S. degree in computer
science from Anhui University, Hefei, China,
in 2010 and 2013, respectively, where he is currently
pursuing the Ph.D. degree in computer science.

His current research interests include computer
vision, machine learning, and intelligent media
technology.

Liang Lin received the B.S. and Ph.D. degrees
from the Beijing Institute of Technology, Beijing,
China, in 1999 and 2008, respectively. From
2006 to 2007, he was a joint Ph.D. Student with the
Department of Statistics, University of California,
Los Angeles (UCLA), Los Angeles, CA, USA.

He was a Post-Doctoral Research Fellow with
the Center for Vision, Cognition, Learning, and
Art, UCLA. He is currently a Professor with
the School of Data and Computer Science,
Sun Yat-sen University, Guangzhou, China. He has

authored over 80 papers in top-tier academic journals and conferences.
His current research interests include new models, algorithms, and systems
for intelligent processing and understanding of visual data, such as images
and videos.

Prof. Lin was a recipient of the Best Paper Runners-Up Award in
NPAR 2010, the Google Faculty Award in 2012, the Hong Kong Scholars
Award 2014, and the Best Student Paper Award in the IEEE ICME 2014.
He currently serves as an Associate Editor of the IEEE TRANSACTIONS

HUMAN-MACHINE SYSTEMS, Neurocomputing, and The Visual Computer.

Wangmeng Zuo (M’09–SM’14) received the
Ph.D. degree in computer application technology
from the Harbin Institute of Technology, Harbin,
China, in 2007.

He was a Research Assistant with the Depart-
ment of Computing, The Hong Kong Polytechnic
University, Hong Kong, from 2004 to 2008. From
2009 to 2010, he was a Visiting Professor with
Microsoft Research Asia, Beijing, China. He is
currently an Associate Professor with the School of
Computer Science and Technology, Harbin Institute

of Technology. He has authored over 50 papers in the research areas.
His current research interests include image modeling and low-level vision,
discriminative learning, and biometrics.

Dr. Zuo is an Associate Editor of the IET Biometrics.

Wenzhong Wang received the Ph.D. degree in
computer science from the Institute of Computing
Technology, Chinese Academy of Sciences, Beijing,
China, in 2007.

He is currently a Lecturer with the School of Com-
puter Science and Technology, Anhui University. His
research interests include computer vision, computer
graphics, and virtual reality.

Jin Tang received the B.Eng. degree in automation
and the Ph.D. degree in computer science from
Anhui University, Hefei, China, in 1999 and 2007,
respectively.

He is currently a Professor with the School of
Computer Science and Technology, Anhui Univer-
sity. His current research interests include computer
vision, pattern recognition, and machine learning.



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 600
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 600
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Required"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


