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Abstract
The recently developed variational autoencoders (VAEs)

have proved to be an effective confluence of the rich repre-
sentational power of neural networks with Bayesian meth-
ods. However, most work on VAEs use a rather simple prior
over the latent variables such as standard normal distribu-
tion, thereby restricting its applications to relatively sim-
ple phenomena. In this work, we propose hierarchical non-
parametric variational autoencoders, which combines tree-
structured Bayesian nonparametric priors with VAEs, to en-
able infinite flexibility of the latent representation space.
Both the neural parameters and Bayesian priors are learned
jointly using tailored variational inference. The resulting
model induces a hierarchical structure of latent semantic
concepts underlying the data corpus, and infers accurate
representations of data instances. We apply our model in
video representation learning. Our method is able to dis-
cover highly interpretable activity hierarchies, and obtain
improved clustering accuracy and generalization capacity
based on the learned rich representations.

1. Introduction
Variational Autoencoders (VAEs) [11] are among the

popular models for unsupervised representation learning.

They consist of a standard autoencoder component, that em-

beds the data into a latent code space by minimizing recon-

struction error, and a Bayesian regularization over the la-

tent space, which enforces the posterior of the hidden code

vector matches a prior distribution. These models have

been successfully applied to various representation learning

tasks, such as sentence modeling [3, 8] and image under-

standing [19, 5].

However, most of these approaches employ a simple

prior over the latent space, which is often the standard nor-

mal distribution. Though convenient inference and learning

is enabled, converting the data distribution to such fixed,

single-mode prior distribution can lead to overly simpli-

fied representations which lose rich semantics present in

the data. This is especially true in the context of unsuper-

vised learning where large amount of available data with
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Figure 1. Illustration of the nonparametric hierarchical variational

autoencoder. We combines hierarhical Bayesian nonparametric

priors with variational autoencoders.

complex hidden structures is of interest which is unlikely

to be presented in the restricted latent space. For example,

a large video corpus can encode rich human activity with

underlying intricate temporal dependencies and hierarchi-

cal relationships. For accurate encoding and new insights

into the datasets, it is desirable to develop new representa-

tion learning approaches with great modeling flexibility and

structured interpretability.

In this paper, we propose hierarchical nonparametric
variational autoencoders, which combines Bayesian non-

parametric priors with VAEs. Bayesian nonparametric

methods as the code space prior can grow information ca-

pacity with the amount and complexity of data, which en-

dows great representational power of the latent code space.

In particular, we employ nested Chinese Restaurant Process

(nCRP) [2], a stochastic process allowing infinitely deep

and branching trees for representing the data. As opposed

to fixed prior distributions in previous work, we learn both

the VAE parameters and the nonparametric priors jointly
from the data, for self-calibrated model capacity. The in-

duced tree hierarchies serve as an aggregated structured

representation of the whole corpus, summarizing the gist

for convenient navigation and better generalization. On the

other hand, each data instance is assigned with a probabil-
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ity distribution over the paths down the trees, from which

an instance-specific prior distribution is induced for regu-

larizing the instance latent code. Figure 1 gives a schematic

overview of our approach.

The resulting model unifies the Bayesian nonparametric

flexibility with neural inductive biases, by viewing it as a

nonparametric topic model [1] on the latent code space, in

which raw data examples are first transformed to compact

(probabilistic) semantic vectors with deep neural networks

(i.e., the encoder networks). This enables invariance to dis-

tracting transformations in the raw data [12, 4], resulting

in robust topical inference. We derive variational inference

updates for estimating all parameters of the neural autoen-

coder and Bayesian priors jointly. A tailored split-merge

process is incorporated for effective exploration of the un-

bounded tree space.

Our work is the first to combine tree-structured BNPs

and VAE neural models in a unified framework, with all

parameters learned jointly. From the VAE perspective, we

propose the first VAE extension that learns priors of the la-

tent space from data. From the BNP perspective, our model

is the first to integrate neural networks for efficient genera-

tion and inference in Dirichlet process models.

We present an application on video corpus summariza-

tion and representation learning, in which each video is

modeled as a mixture of the tree paths. Each frame in the

video is embedded to the latent code space and attached

to a path sampled from the mixture. The attachment dy-

namics effectively clusters the videos based on sharing of

semantics (e.g., activities present in the video) at multiple

level of abstractions, resulting in a hierarchy of abstract-

to-concrete activity topics. The induced rich latent repre-

sentations can enable and improve a variety of downstream

applications. We experiment on video classification and re-

trieval, in which our model obtains superior performance

over VAEs with parametric priors. Our method also shows

better generalization on test set reconstruction. Qualitative

analysis reveals interpretability of the modeling results.

We begin by reviewing related work in §2. We then

present our approach in the problem setting of learning hi-

erarchical representations of sequential data (e.g., videos).

§3 describes the problem and provides background on the

nCRP prior. §4 develops our nonparametric variational au-

toencoders and derives variational inference for joint esti-

mation of both the neural parameters and Bayesian priors.

In §5 we apply the model for video representation learning.

§6 shows quantitative and qualitative experimental results.

We conclude the paper in §7.

2. Related Work
Variational autoencoders and variants. Variational Au-

toencoders (VAEs) [11] provide a powerful framework for

deep unsupervised representation learning. VAEs consist of

π���

π��

π�

π��

π��� π��� π��� π���

�

� �

��� � ��

Figure 2. Left: a sample tree structure draw from nCRP. Right:
The respective tree-based stick-breaking construction. The stick

length of the root node is π1 = 1. Each node performs a stick-

breaking process on its stick segment to construct its children.

encoder and decoder networks which encode a data exam-

ple to a latent representation and generate samples from the

latent space, respectively. The model is trained by minimiz-

ing an expected reconstruction error of observed data under

the posterior distribution defined by the encoder network,

and at the same time regularizing the posterior of the hid-

den code to be close to a prior distribution, by minimizing

the KL divergence between the two distributions. Vanilla

VAEs typically use a standard normal distribution with zero

mean and identity covariance matrix as the prior, which en-

ables closed-form optimization while restricting the expres-

sive power of the model. Adversarial autoencoders [13] re-

place the KL divergence with an adversarial training crite-

rion to allow richer families of priors. Our work differs in

that we compose VAEs with Bayesian nonparametric meth-

ods for both flexible prior constraints of individual instances

and structured representation induction of the whole corpus.

Previous research has combined VAEs with graphical mod-

els in different context. Siddharth et al., [16] replace the en-

coder networks with structured graphical models to enable

disentangled semantics of the latent code space. Johnson et

al., [10] leverage the encoder networks to construct graphi-

cal model potentials to avoid feature engineering. Our work

is distinct as we aim to combine Bayesian nonparametric

flexibility with VAEs, and address the unique inferential

complexity involving the hierarchical nonparametric mod-

els. Other VAE variants that are orthogonal to our work

are proposed. Please refer to [9] for a general discussion of

VAEs and their connections to a broad class of deep gener-

ative models.

Bayesian nonparametric methods. Bayesian nonpara-

metric methods allow infinite information capacity to cap-

ture rich internal structure of data. For example, mixture

models with Dirichlet process priors can be used to clus-

ter with an unbounded number of centers. A few recent

works have developed powerful hierarchical nonparametric

priors [2, 7] to induce tree structures with unbounded width

and depth. Nested Chinese Restaurant Process (nCRP) as-

signs data instances with paths down the trees. The attach-

ment dynamics lead to hierarchical clustering of the data

where high-level clusters represent abstract semantics while

low-level clusters represent concrete content. We leverage
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nCRP as the prior over the latent code space for enhanced

representational power. Gaussian processes [15] are another

line of Bayesian nonparametric approach which has been

incorporated with deep neural networks for expressive ker-

nel learning [21, 6]. These methods have typically been ap-

plied in supervised setting, while we are targeting on unsu-

pervised representation learning using hierarchical Dirich-

let nonparametrics.

3. Preliminaries
For concreteness, we present our approach in the prob-

lem setting of unsupervised hierarchical representation

learning of sequential data. We start by describing the prob-

lem statement, followed by an overview of nCRP. All the

notations used in the paper have been consolidated in Ta-

ble 1 for quick reference.

3.1. Problem Description

Let xm = (xmn)
Nm
n=1 denote a sequence xm of length

Nm with nth element denoted as xmn. Given unlabeled se-

quences {xm} of data, we want to learn compact latent rep-

resentation for each instance as well as capture the gist of

the whole corpus. To this end, we build a generative prob-

abilistic model that assigns high probability to the given

data. Further, to capture rich underlying semantic struc-

tures, we want the probabilistic model to be hierarchical,

that is, coarse-grained concepts are higher up in the hierar-

chy, and fine-grained concepts form their children.

For instance, video data can be modeled as above,

wherein each video can be represented as a sequence xm.

Each element xmn of the sequence is a temporal segment

of the video, such as a raw frame or sub-clip of the video,

or some latent representation thereof. In such data, the hi-

erarchy should capture high-level activities, such as, “play-

ing basketball” higher up in the hierarchy, while more fine-

grained activities, such as “running” and “shooting” should

form its children nodes. These hierarchies can then be used

for a wide variety of downstream tasks, such as, video re-

trieval, summarization, and captioning.

3.2. Nested Chinese Restaurant Process

We use nCRP priors [2], which can be recursively de-

fined in terms of Dirichlet process (DP). A draw from a

Dirchlet process DP (γ,G0) is described as

vi ∼ Beta(1, γ), πi = vi

i−1∏
j=1

(1− vj)

wi ∼ G0, G =

∞∑
i=1

πiδwi

(1)

Here, γ is the scaling parameter, G0 is the base distribution

of the DP, and δw is an indicator function that takes value 1

Symbol Description

(x)N a sequence of length N, with elements x1, . . . ,xN

xmn nth element of sequence (xm)N
zmn the latent code corresponding to xmn

par(p) the parent node of node p
αp the parameter vector for node p
α∗ the prior parameter over αp for the root node

σN the variance parameter for node parameters

σD the variance parameter for data

vme the nCRP variable for mth sequence on edge e
Vm the set of all vme for mth sequence

γ∗ the prior parameter shared by all vme

cmn the path assignment for data point xmn

cmn the path assignment for data point xmn

μp, σp parameters for variational distribution of αp

γme,0, γme,1 parameters for variational distribution of vme

φmn parameter for variational distribution of cmn

Table 1. Notations used in the paper

at w and 0 otherwise. The above construction admits an in-

tuitive stick-breaking interpretation, in which, a unit length

stick is broken at a random location, and π1 is the length of

the resulting left part. The right part is broken further, and

the length of left part so obtained is assigned to π2. The

process is continued to infinity. Note that,
∑∞

i=1 πi = 1.

Therefore, a draw from a DP defines a discrete probability

distribution over a countably infinite set.

The above process can be extended to obtain nCRP, or

equivalently, a tree-based stick-breaking process, in which,

we start at the root node (level 0), and obtain probabilities

over its child nodes (level 1) using a DP. Then we recur-

sively run a DP on each level 1 node to get probabilities

over level 2 nodes, and so on. This defines a probability dis-

tribution over paths of an infinitely wide and infinitely deep

tree. Figure 2 gives an illustration of the process. More for-

mally, we label all the nodes recursively using a sequence

of integers – the root node has label ‘1’, its children nodes

have labels ‘11’, ‘12’, . . ., children nodes of ‘11’ have la-

bels ‘111’, ‘112’, and so on. Now, we can assign probability

to every node p based on draws of stick-breaking weights v
as follows:

• For the root node (level 0), π1 = 1

• For ith node at level 1, π1i = π1v1iΠ
i
j=1(1− v1j).

• For jth child at level 2 of ith level-1 node,

π1ij = π1π1iv1ijΠ
j
k=1(1− v1ik).

This process is repeated to infinity. Please refer to [2, 20]

for more details.

4. Hierarchical Nonparametric Variational
Autoencoders

We first give a high-level overview of our framework,

and then describe various components in detail.

Formally, a VAE takes in an input x, that is passed

through an encoder with parameters φ to produce a distri-

bution qφ(z|x) over the latent space. Then, a latent code
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γ∗ Vm
cmn

α∗ αpar(p) αp

zmn

K

Nm

M

Figure 3. The proposed generative model. This diagram only

shows the BNP component. Thus, the latent codes zmn that are

learnt in VAE training are treated as observations.

z is sampled from this distribution, and passed through a

decoder to obtain the reconstructed data point x̃. Thus,

minimizing the reconstruction error amounts to maximizing

Ez∼qφ(z|x)[log pθ(x|z)], where pθ(x|z) corresponds to the

decoder parameterized by θ. The encoder and the decoder

can be arbitrary functions; however, they are typically mod-

eled as neural networks. Further, a prior pθ(z) is imposed

on the latent space. Thus we want to solve for parameters φ
and θ, which, using the standard variational inference anal-

ysis gives the following lower bound on the data likelihood:

log pθ(x
m) ≥ L(θ,φ;xm)

= Ez∼qφ(z|xm)[log pθ(x
m|z)]

−DKL(qφ(z|xm)‖pθ(z))
(2)

Therefore, the prior and the decoder together act as the gen-

erative model of the data, while the encoder network acts

as the inference network, mapping data to posterior distri-

butions over the latent space. Typically, the prior distribu-

tion pθ(z) is assumed to be standard normal distribution

N (0, I), which implies that maximizing the above lower

bound amounts to optimizing only the neural network pa-

rameters, since in that case, the prior is free of parameters.

In this work, we use a much richer prior, namely the

nCRP prior described in 3.2. This allows growing informa-

tion capacity of the latent code space with the amount and

complexity of data, and thus obtains accurate latent repre-

sentations. The tree-based prior also enables automatic dis-

covery of rich semantic structures underlying the data cor-

pus. To this end, we need to jointly optimize for the neural

network parameters and the parameters of the nCRP prior.

We make use of alternating optimization, wherein we first

fix the nCRP parameters and perform several backpropa-

gation steps to optimize for the neural network parameters,

and then fix the neural network, and perform variational in-

ference updates to optimize for the nCRP parameters.

We next describe the nCRP-based generative model and

variational inference updates.

4.1. Generative Model

The generative model assumes a tree with infinite depth

and branches, and generates data sequences through root-to-

leaf random walks along the paths of the tree. Each node p
has a parameter vector αp which depends on the parameter

vector of the parent node to encode the hierarchical relation.

That is, for every node p of the tree, draw a D-dimensional

parameter vector αp, according to

αp ∼ N (αpar(p), σ
2
NI) (3)

where par(p) denotes the parent node of p, and σN is a vari-

ance parameter shared by all nodes of the tree. For the root

node, we define αpar(p) = α∗, for some constant vector

α∗.

Each data sequence xm is modeled as a mixture of the

paths down the tree, and each element xmn is attached to

one path sampled from the mixture. Specifically, xm is

drawn as follows (Figure 3 gives the graphical model repre-

sentation):

1. For each edge e of the tree, draw vme ∼ Beta(1, γ∗).
We denote the collection of all vme for sequence m as

Vm. This defines a distribution over the paths of the

tree, as described in section 3.2. Let π(Vm) denote the

probabilities assigned to each leaf node through this

process.

2. For each element xmn in xm, draw a path cmn accord-

ing to the multinomial distribution Mult(π(Vm)).

3. Draw the latent representation vector zmn according

to N (αcmn
, σ2

DI) which is the emission distribution

defined by the parameter associated in the leaf node of

path cmn. Here σD is a variance parameter shared by

all nodes.

This process generates a latent code zmn, which is then

passed through the decoder to get the observed data xmn.

To summarize the above generative process, the node pa-

rameters of the tree depend on their parent node, and the

tree is shared by the entire corpus. For each sequence, draws

Vm define a distribution over the paths of the tree. For each

element of the sequence, a path is sampled according to the

above distribution, and finally, the data element is drawn

according to the node parameter of the sampled path.

Our goal is to estimate the parameters of the tree

model, including the node parameters αp, sequence-level

parameters Vm, and path assignments c, as well as the

neural parameters θ and φ, given the hyperparameters

{α∗, γ∗, σN , σD} and the data.

4.2. Parameter Learning

In this section, we first describe the variational inference

updates for estimating the parameters of nCRP prior (sec-

tion 4.2.1), and the update equations for our neural network
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parameters (section 4.2.2). Finally, we describe a procedure

for joint optimization of the nCRP prior parameters and the

neural network.

4.2.1 Variational Inference

Using the mean-field approximation, we assume the follow-

ing forms of the variational distributions:

• For each node p of the tree, the parameter vector αp

is distributed as αp ∼ N (μp, σ
2
pI), where μp is a D-

dimensional vector and σp is a scalar.

• For sequence m, the DP variable at edge e, vme is dis-

tributed as vme ∼ Beta(γme,0, γme,1), where γme,0

and γme,1 are scalars.

• For data xmn, the path assignment variable cmn is dis-

tributed as cmn ∼ Mult(φmn), where the dimension

of φmn is equal to the number of paths in the tree.

We want to find optimal variational parameters that max-

imize the variational lower bound

L = Eq[log p(W,X|Θ)]− Eq[log qν(W )] (4)

where W denotes the collection of latent variables,

X = {zmn} are the latent vector representations of

observations, Θ are the hyperparameters, and ν =
{μp, σp, γme,0, γme,1,φmn} are variational parameters.

We use p(W,X|Θ) to denote the generative model de-

scribed in section 4.1. We derive variational inference for a

truncated tree [7, 20]. We achieve this by setting the com-

ponents corresponding to all other paths of φmn equal to

0 for all m ∈ {1, . . . ,M} and n ∈ {1, . . . , Nm}. We

later describe how we can dynamically grow and prune the

tree during training. Thus, the generative distribution above

simplifies to the following:

p(W,X|Θ) (5)

=
∑
p

log p(αp|αpar(p), σN ) +
∑
m,e

log p(vme|γ∗)

+
∑
m,n

log p(cmn|Vm) + log p(zmn|α, cmn, σD)

Here, p ∈ {1, . . . , P} and e ∈ {1, . . . , E} index the paths

and the edges of the truncated tree respectively. Note that

the above truncation is nested. That is, for two trees T1 and

T2 such that the set of nodes of T1 is a subset of the set

of nodes of T2, the model generated from T2 subsumes all

possible configurations that can be generated from T1.

Proceeding as in standard derivation of posterior esti-

mate, we obtain the following variational updates:

q∗(αp|μp, σp) ∼ N (μp, σ
2
p) (6)

where, for a leaf node,

1

σ2
p

=
1

σ2
N

+

∑M
m=1

∑Nm

n=1 φmnp

σ2
D

(7)

μp = σ2
p ·
(
μpar(p)

σ2
N

+

∑M
m=1

∑Nm

n=1 φmnpzmn

σ2
D

)
(8)

while for an internal node:
1

σ2
p

=
1 + |ch(p)|

σ2
N

(9)

μp = σ2
p ·
(
μpar(p) +

∑
r∈ch(p) μr

σ2
N

)
(10)

Here, ch(p) denotes the set of all children of node p, and | · |
denotes the cardinality of a set. Intuitively, for a leaf node,

σp is small when we have many points (high φmnp) associ-

ated with this node, which corresponds to a good estimate of

parameter αp. The mean for a leaf node, μp, is a weighted

mean of the latent codes of the data. For an internal node,

the mean parameter, μp is a simple average of all the child

nodes (and the parent node). However, a child node with

larger amount of data is farther from its parent node, and

thereby has a greater effect on the mean implicitly.

q∗(vme|γme,0, γme,1) ∼ Beta(γme,0, γme,1) (11)

where
γme,0 = 1 +

Nm∑
n=1

∑
p:e∈p

φmnp (12)

γme,1 = γ∗ +
Nm∑
n=1

∑
p:e<p

φmnp (13)

Here, e ∈ p denotes the set of all edges that lie on path p,

while e < p denotes the set of all edges that lie to the left of

p in the tree.

q∗(cmn|φmn) ∼Mult(φmn) (14)

where

φmnp ∝ exp

{ ∑
e:e∈p

[Ψ(γme,0)−Ψ(γme,0 + γme,1)]

+
∑
e:e<p

[Ψ(γme,1)−Ψ(γme,0 + γme,1)]

− 1

2σ2
D

[
(zmn − μp)

T (zmn − μp) + σ2
p

]}
(15)

Here, Ψ(·) is the digamma function.

4.2.2 Neural network parameter updates

The goal of neural network training is to maximize the fol-

lowing lower bound on the data log-likelihood function:

L = Ez∼qφ(z|xm)[log pθ(x|z)]−DKL(qφ(z|x)‖pθ(z))
(16)
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with respect to the neural network parameters. Note that φ
denotes the parameters of the encoder network, while θ de-

notes the parameters of the decoder network and the nCRP

prior. Defining θNN as the set of parameters of the decoder

network, we need to learn parameters {φ,θNN}.
The update equations for a parameter β ∈ {φ,θNN} is

given by

β(t+1) ← β(t) + η · ∂L
∂β

(17)

where the partial derivative is computed using backpropa-

gation algorithm, while η is an appropriate learning rate.

4.2.3 Joint training

In order to jointly learn the nCRP parameters and the NN

parameters, we employ alternating optimization, wherein,

we first fix the nCRP prior parameters and perform several

steps of NN parameter updates, and then fix the NN param-

eters and perform several steps of nCRP parameter updates.

This enables the variational inference to use increasingly

accurate latent codes to build the hierarchy, and the con-

tinuously improving hierarchy guides the neural network to

learn more semantically meaningful latent codes.

4.3. Dynamically adapting the tree structure

Since our generative model is non-parametric, it admits

growing or pruning the tree dynamically, depending on the

richness of the data. Here, we list the heuristics we use

for dynamically growing and pruning the tree. Note that

each data point xmn has soft assignments to paths, given

by φmn. We use these soft assignments to make decisions

about dynamically adapting the tree structure.

Growing the tree We define weighted radius of leaf node

p as

rp =

√∑M
m=1

∑Nm
n=1 φmnp(zmn − μp)

T (zmn − μp)∑M
m=1

∑Nm
n=1 φmnp

(18)

If the weighted radius rp is greater than a threshold R, then

we split the leaf node into K children nodes.

Pruning the tree For a leaf node p, we can compute the

total fraction of the data assigned to this node as

fp =

∑M
m=1

∑Nm
n=1 φmnp∑M

m=1 Nm

(19)

If the data fraction fp is less than a threshold F , then the leaf

node is eliminated. If an internal node is left with only one

child, then it is replaced by the child node, thus effectively

eliminating the internal node. The parameters R and K for

growing the tree, and the parameter F for pruning the tree

are set using the validation set.

5. Video Hierarchical Representation Learning
In this section, we describe how we can apply our pro-

posed model to learn meaningful hierarchical representa-

tions for video data.

Consider an unlabeled set of videos. We want to build a

hierarchy in which the leaf nodes represent fine-grained ac-

tivities, while as we move up the hierarchy, we obtain more

coarse-grained activities. For instance, a node in the hier-

archy may represent “sports”, its child nodes may represent

specific sports, such as “basketball” and “swimming”. The

node “swimming” can, in turn, have child nodes represent-

ing “diving”, “backstroke”, etc.

To use the above framework, we treat each video as a

discrete sequence of frames, by sampling frames from the

video. Then, each frame is passed through a pre-trained

convolutional neural network (CNN) to obtain frame fea-

tures. The resulting frame features are then used as se-

quence elements xmn in our framework. Note, however,

that our framework is sufficiently general, and therefore,

instead of using the frame features extracted from a pre-

trained CNN, we can use the raw frames directly, or even

model the video as a discrete sequence of subshots, instead

of a discrete sequence of frames.

We optimize the neural and nCRP parameters jointly as

described in section 4.2. This process gives us a posterior

estimate of the nCRP parameters, which we can use to build

a hierarchy for the corpus, as follows. We obtain a distribu-

tion N (μp, σp) for each node parameter αp. Thus, we can

pass a frame feature vector x through the trained encoder

network to get a latent code z, and then assign the frame to

the path whose αp is closest to z. Doing this for all frames

results in each node being associated with the most repre-

sentative frames of the activity the node represents.

6. Experiments
Here, we present quantitative and qualitative analysis of

our proposed framework. It is worth pointing out that be-

cause of the unavailability of data labeled both with coarse-

grained and fine-grained activities, we conduct quantitative

analysis on the video classification task and video retrieval

task, and qualitatively show the interpretable hierarchy gen-

erated by our non-parametric model.

6.1. Experimental Settings

Dataset We evaluate the models on TRECVID Multime-

dia Event Detection (MED) 2011 dataset [14], which con-

sists of 9746 videos in total. Each video is labeled with

one of 15 event classes or supplied as a background video

without any assigned action label. In our experiments, we

used only the labeled videos of MED dataset, where 1241

videos are used for training, 138 for validation and 1169 for

testing. The mean length of these videos is about 3 minutes.
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Figure 4. The neural network architecture. The input x is a 4096-

dim VGG feature vector, that is mapped to 48-dim vectors zmean

and zstdev using one fully connected layer each. A latent code z is

then sampled from a Gaussian distribution defined by zmean and

zstdev , which is decoded to xrec using one fully connected layer.

Algorithm Mean test log-likelihood

VAE-StdNormal -28886.90

VAE-nCRP -28438.32

Table 2. Test-set log-likelihoods by our model “VAE-nCRP” and

traditional variational autoencoder “VAE-StdNormal”.

Feature extraction For each video, we extract one frame

for every five seconds, resulting in 42393 frames for train-

ing, 5218 frames for validation, and 41144 frames for eval-

uation. Then, each frame is passed through a VGG-16 net-

work [17] trained on ImageNet dataset. The output of the

first fully-connected layer is used as the 4096-dimensional

feature vector.

Neural network architecture Both the encoder and the

decoder networks were multi-layer perceptions (MLPs).

The detailed network is shown in Fig 4. In the alternating

optimization procedure we performed one iteration of varia-

tional inference updates after every epoch of neural network

training. We used RMSProp optimizer [18] with an initial

learning rate of 0.01 and a decay rate of 0.98 per 1000 iter-

ations. Our model converged in about 20 epochs.

6.2. Test Set Reconstruction

To better demonstrate the effectiveness of learning hier-

archical prior distribution by our non-parametric VAE, we

compare the test-set log likelihood of conventional VAE

with our model. Formally, the log likelihood of data point

x is given by Ez∼qφ(z|x)[log pθ(x|z)], where qφ(z|x) cor-

responds to the encoder network and pθ(x|z) indicates the

decoder network.

We computed the average log likelihood of the test set

across 3 independent runs of variational autoencoders with

standard normal prior, and with nCRP prior. We report the

sum of log likelihood over all frames in the test set. The

Category K-Means VAE-GMM VAE-nCRP
Board trick 44.6 47.2 31.3

Feeding an animal 57.0 42.5 53.8

Fishing 33.7 39.0 48.9
Woodworking 38.9 40.5 60.8
Wedding ceremony 59.8 54.3 63.6
Birthday party 6.5 7.4 27.8
Changing a vehicle tire 31.9 39.7 45.3
Flash mob gathering 43.4 40.1 38.2

Getting a vehicle unstuck 52.9 50.6 65.9
Grooming an animal 2.9 14.5 17.3
Making a sandwich 47.1 54.7 49.3

Parade 28.4 33.8 19.8

Parkour 4.5 19.8 27.7
Repairing an appliance 42.3 58.6 47.4

Sewing project 1.6 24.3 18.4

Aggregate over all classes 34.9 39.1 42.4

Table 3. Classification Accuracy (%) on TRECVID MED 2011.

results are summarized in Table 2. Our model obtains a

higher log likelihood, implying that it can better model the

underlying complex data distribution embedded in natural

diverse videos. This supports our claim that richer prior

distributions are beneficial for capturing the rich semantics

embedded in the data, especially for complex video content.

6.3. Video Classification

We compared our model (denoted as VAE-nCRP) with

two clustering baselines, namely, K-Means clustering (de-

noted as K-Means) and variational autoencoders with

Gaussian mixture model prior (denoted as VAE-GMM).

In order to evaluate the quality of the obtained hierarchy

for the data, our model learns to assign an action label to

each node (either leaf nodes or internal nodes) by taking a

majority vote of the labels assigned to the data points. For

each frame in the test data, we can obtain the latent repre-

sentation of the frame feature, and then find the leaf node to

which it is assigned by minimizing the Euclidean distance

between the latent representation and the leaf node param-

eter αp, and the predicted label of this frame is then given

by the label assigned to this leaf node. The classification

accuracy is then a measure of the quality of the hierarchy.

Similarly, for other clustering baselines, we assign a label to

each cluster, and then assign new data points to the closest

cluster to predict their labels.

Note that, in applications, we would typically use the

standard variational inference framework to find the path

assignments, in which case, an unseen frame can also be as-

signed to a new path, exploiting the non-parametric nature

of our model. However, for the purpose of our evaluations,

we need to assign a label to each frame, and therefore, it

must be assigned to one of the paths created during train-

ing. We would also like to point out that the hierarchy is
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Figure 5. Some example hierarchical structures learned by our model.

constructed in a purely unsupervised manner, and the class

labels are used only for evaluation.

We report the mean accuracy of each model, averaged

over three independent runs. The results are summarized in

Table 3. As can be seen, VAE-nCRP outperforms the base-

line models on 8 out of 15 classes, and also has an over-

all highest accuracy. This suggests that the clusters formed

by VAE-nCRP are more separated than those formed by K-

means clustering and VAE-GMM.

6.4. Video retrieval

We also conduct experiments on video retrieval task to

further verify the capability of our model. This task aims

to retrieve all frames from the test set that belong to each

class, which is closely related to video classification task.

We report the F-1 scores of the models, which incorporates

both the false positive rate and false negative rate. The re-

sults are summarized in Table 4. Again, it can be observed

that VAE-nCRP outperforms the baseline models on 8 out

of 15 classes, and achieves the highest overall F-1 score.

Category K-Means VAE-GMM VAE-nCRP
Board trick 32.1 38.9 32.1

Feeding an animal 33.7 33.8 36.2
Fishing 44.9 45.9 59.9
Woodworking 32.1 29.5 38.0
Wedding ceremony 41.0 51.2 51.0

Birthday party 14.0 11.0 30.5
Changing a vehicle tire 38.3 45.5 54.5
Flash mob gathering 45.8 41.6 42.3

Getting a vehicle unstuck 37.9 43.2 56.9
Grooming an animal 6.7 21.5 20.1

Making a sandwich 51.7 53.0 60.3
Parade 24.7 37.7 29.8

Parkour 6.8 28.2 39.1
Repairing an appliance 39.9 41.2 36.8

Sewing project 1.7 32.5 25.8

Aggregate over all classes 32.4 38.5 42.4

Table 4. F-1 scores of video retrieval on TRECVID MED 2011.

6.5. Qualitative analysis

In addition to the quantitative analysis, we also per-

formed a qualitative analysis of the hierarchy learned by our

model as shown in Figure 5. We visualized the hierarchy

structure by representing each node with the several closest

frames assigned to it. Observed from the first hierarchy, the

model puts a variety of vehicle-related frames into a sin-

gle node. These frames are then refined into frames about

cross-country vehicles and frames about vehicle-repairing.

The frames on vehicle-repairing are further divided into

bike repairing and car wheel repairing. These informative

hierarchies learned by our model demonstrates its effective-

ness of capturing meaningful hierarchical patterns in the

data as well as exhibits interpretability.

7. Conclusions
We presented a new unsupervised learning framework to

combine rich nCRP prior with VAEs. This embeds the data

into a latent space with rich hierarchical structure, which

has more abstract concepts higher up in the hierarchy, and

less abstract concepts lower in the hierarchy. We developed

a joint optimization framework for variational updates of

both the neural and nCRP parameters. We showed an ap-

plication of our model to video data, wherein, our experi-

ments demonstrate that our model outperforms other mod-

els on two downstream tasks, namely, video classification

and video retrieval. Qualitative analysis of our model by

visualizing the learned hierarchy shows that our model cap-

tures rich interpretable structure in the data.
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