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a b s t r a c t

This work investigates how the traditional image classification pipelines can be extended into a deep
architecture, inspired by recent successes of deep neural networks. We propose a deep boosting fra-
mework based on layer-by-layer joint feature boosting and dictionary learning. In each layer, we con-
struct a dictionary of filters by combining the filters from the lower layer, and iteratively optimize the
image representation with a joint discriminative-generative formulation, i.e. minimization of empirical
classification error plus regularization of analysis image generation over training images. For optimiza-
tion, we perform two iterating steps: (i) to minimize the classification error, select the most dis-
criminative features using the gentle adaboost algorithm; (ii) according to the feature selection, update
the filters to minimize the regularization on analysis image representation using the gradient descent
method. Once the optimization is converged, we learn the higher layer representation in the same way.
Our model delivers several distinct advantages. First, our layer-wise optimization provides the potential
to build very deep architectures. Second, the generated image representation is compact and meaningful
by jointly considering image classification and generation. In several visual recognition tasks, our fra-
mework outperforms existing state-of-the-art approaches.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Visual recognition is one of the most challenging domains in
the field of computer vision and smart computing. Many complex
image and video understanding systems employ visual recognition
as the basic component for further analysis. Thus the design of
robust visual recognition algorithm is becoming a fundamental
engineering in computer vision literature and has been attracting
many related researchers. Since the inadequate visual repre-
sentation will greatly influence the performance of visual recog-
nition system, almost all of the related methods are concentrated
on developing the effective visual representation.

Traditional visual recognition systems always adopt the shal-
low model to construct the image/video representation. Among
them, the bag-of-visual-words (BoW) model, which is the most
successful one for visual content representation, has been widely
adopted in many computer vision tasks, such as object recognition
[1,2] and image classification [3,4]. The basic pipeline of BoW
model consists of local feature extraction [5,6], feature encoding
[7–9] and pooling operation. In order to improve the performance
of BoW, two crucial schemes have been involved. First, the tradi-
tional BoW model discards the spatial information of local
descriptors, which seriously limited the descriptive power of the
feature representation. To overcome this problem, the Spatial
Pyramid Matching method was proposed in [3] to capture geo-
metrical relationships among local features. Second, dictionaries
adopted to encode the local feature in traditional methods are
learned in a unsupervised manner and can hardly capture the
discriminative visual pattern for each category. This issue inspired
a series of works [10–12] to train more discriminative dictionaries
via supervised learning, which can be implemented by introducing
the discriminative term into dictionary learning phase as the
regularization according to various criteria.

As the research going, the deep models, which can be seen as a
type of hierarchical representation [13–15] have played an sig-
nificant role in computer vision and machine learning literature
[16–18] in recent years. Generally, such hierarchical architecture
represents different layer of vision primitives such as pixels, edges,
object parts and so on [19]. The basic principles of such deep
models are concentrated on two folds: (1) layerwise learning
philosophy, whose goal is to learn single layer of the model indi-
vidually and stack them to form the final architecture; (2) feature
combination rules, which aim at utilizing the combination (linear
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or nonlinear) of low layer detected features to construct the high
layer impressive features by introducing the activation function.

In this paper, the related exciting researches inspire us to
explore how the traditional image classification pipelines, which
include feature encoding, spatial pyramid representation and
salient pattern extraction (e.g., max spatial pooling operation), can
be extended into a deep architecture. To this end, this paper pro-
poses a novel deep boosting framework, which aims to construct
the effective discriminative features for image classification task,
jointly adopting feature boosting and dictionary learning. For each
layer, followed the famous boosting principle [20], our proposed
method sequentially selects the discriminative visual features to
learn the strong classifier by minimizing empirical classification
error. On the other hand, the analysis dictionary learning strategy
is involved to make the selected features more suitable for the
object category. A two-step learning process is investigated to
iteratively optimize the objective function. In order to construct
high-level discriminative representations, we composite the
learned filters corresponding to selected features in the same
layer, and feed the compositional results into next layer to build
the higher-layer analysis dictionary. Another key to our approach
is introducing the model compression strategy when constructing
the analysis dictionary, that reduces the complexity of the feature
space and shortens the model training time. The experiment
shows that our method achieves excellent performance on general
object recognition tasks. Fig. 1 illustrates the pipeline of our deep
boosting method (applying two layers as the illustration). Com-
pared with the traditional BoW based method [7], the analysis
operation in our model (i.e., convolution) is same as the encoding
process that maps the image into the feature space. While the
pooling stage is same as the traditional method to compute the
histogram representation adopting spatial pyramid matching.
Different from traditional models capturing the salient properties
of visual patterns by max spatial pooling operation, we adopt the
feature boosting to the discriminative features mining for image
representation.

The main contributions of this paper are three folds. (1) A novel
deep boosting framework is proposed and it leverages the gen-
erative and discriminative feature representation. (2) It presents a
novel formulation which jointly adopting feature boosting and
analysis dictionary learning for image representation. (3) In the
experiment on several standard benchmarks, it shows that the
learned image representation well discovers the discriminative
features and achieves the good performance on various object
recognition tasks.

The rest of the paper is organized as follows. Section 2 presents
a brief review of related work, followed by the overview of
Fig. 1. A two-layer illustration of proposed deep boosting framework. The horizontal p
analysis dictionary learning. When optimization in the single layer is done, the compositi
further processing. Note that the feature set in the higher-layer only dependents on the
background technique details in Section 3. Then we introduce our
deep boosting framework in Section 4. Section 5 gives the
experimental results and comparisons. Section 6 concludes
the paper.
2. Related work

In the past few decades, many works have been done to design
different kinds of features to express the characteristics of the
image for further visual tasks. These hand-craft features vary from
global expressions [21] to the local representation [5]. Such
designed features can be roughly divided into two types [22], the
one is geometric features and the other is texture features. Geo-
metric features which explicitly record the locations of edges are
employed to describe the noticeable structures of local areas. Such
features include Canny edge descriptor [23], Gabor-like primitives
[24] and shape context descriptor [25,26]. In contrast, the texture
features express the cluttered object appearance by histogram
statistics. SIFT [5], HoG [6] and GIST [27] are delegates of such
feature representation. Beyond such hand-craft feature descrip-
tors, Bag-of-Feature (BoF) model seems to be the most classical
image representation method in computer vision area. A lot of
illuminating studies [4,3,7,8] were published to improve this tra-
ditional approach in different aspects. Among these extensions, a
class of sparse coding based methods [7,8], which employ spatial
pyramid matching kernel (SPM) proposed by Lazebnik et al., has
achieved great success in image classification problem. However,
despite we are developing more and more effective representation
methods, the lack of high-level image expression still plagues us to
build up the ideal vision system.

On the other hand, learning hierarchical models to simulta-
neously construct multiple levels of visual representation has been
paid much attention recently. The proposed hierarchical image
representation is partially motivated by recent developed deep
learning approaches [13,14,28]. Different from previous hand-craft
feature design method, deep model learns the feature repre-
sentation from raw data and validly generates the high-level
semantic representation. And such abstract semantic representa-
tions are expected to provide more intra-class variability. Recently,
many vision tasks achieve significant improvement using the
convolutional architectures [16–18]. A deep convolutional archi-
tecture consists of multiple stacked individual layers, followed by
an empirical loss layer. Among all of these layers, the convolu-
tional layer, the feature pooling layer and the full connection layer
play major roles in abstract feature representation. The stochastic
gradient descent algorithm is always applied to the parameters
ipelines show the layer-wised image representation via joint feature boosting and
onal filters are fed into the higher-layer to generate the novel analysis dictionary for
training images and combined filters in the relevant layer.
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training in each layers according to back-propagation principle.
However, as shown in recent study [28], these network-based
hierarchical models always contain thousands of parameters.
Learning a useful network usually depends on expertise of para-
meter tuning (e.g., tuning the learning rate and parameter decay
rate in each layer) and is too complex to control in real visual
application. In contrast, we build up our hierarchical image
representation according to the simple but effective rules. Our
method can also achieve the near optimal classification rate in
each layer.

Another related work to this paper is learning a dictionary in an
analysis prior [29–31]. The key idea of analysis-based model is
utilizing analysis operator (also known as analysis dictionary) to
deal with latent clean signal and leading to a sparse outcome. In
this paper, we consider the analysis-based prior as a regularization
prior to learn more discriminative features to a certain category.
Please refer to Section 3 for more details about analysis dictionary
learning.
3. Background overview

3.1. Gentle Adaboost

We start with a brief review of Gentle Adaboost algorithm [20].
Without loss of generality, considering the two-class classification
problem, let ðx1; y1Þ…ðxN ; yNÞ be the training samples, where xi is a
feature representation of the sample and yiAf�1;1g. wi is the
sample weight related to xi. Gentle Adaboost [20,32] provides a
simple additive model with the form,

FðxiÞ ¼
XM
m ¼ 1

f mðxiÞ; ð1Þ

where fm is called weak classifier in the machine learning litera-
ture. It often defines fm as the regression stump f mðxiÞ ¼ aℏðxdi 4
δÞþb, ℏð�Þ denotes the indicator function which returns 1 when xdi
4δ and 0 otherwise, xdi is the d-th dimension of the feature vector
xi, δ is a threshold, a and b are two parameters contributing to the
linear regression function. In iteration m, the algorithm learns the
parameter ðd; δ; a; bÞ of f mð�Þ by weighted least-squares of yi to xi
with weight wi,

min
1rdrD

XN
i ¼ 1

wi Jadℏðxdi 4δdÞþbd�yi J
2; ð2Þ

where D is the dimension of the feature space. In order to give
much attention to the cases that are misclassified in each round,
Gentle Adaboost adjusts the sample weight in the next iteration as
wi’wie�yif mðxiÞ and updates FðxiÞ’FðxiÞþ f mðxiÞ. At last, the algo-
rithm outputs the result of strong classifier as the form of sign
function sign½FðxiÞ�. In this paper, we adopt Gentle Adaboost as the
basic component of proposed model. Please refer to [20,32] for
more technique details.

3.2. Analysis dictionary learning

Our work is also inspired by the recent developed analysis-
based sparse representation prior learning [29–31], which repre-
sents the input signal from a dual viewpoint of the commonly used
synthesis model [33]. The main idea of analysis prior learning is to
learn the analysis operators (e.g., convolution operator) that can
return the special responses (e.g., sparse response as usual) from
the latent signal according to the given constraint. Let bI be the
observed signal (e.g., natural image) with noisy which is often
assumed as zero-mean white Gaussian. An analysis-based prior
seeks the latent signal I whose analysis transform result is sparse,

min
I;G

1
2
JbI� IJ22þψΦðGnIÞ; ð3Þ

where ψZ0 is a scalar constant and the symbol n indicates the
analysis operation. The first term denotes the reconstruction error
and the second one denotes the sparsity constraint of the forward
transform coefficient. G is usually a redundant dictionary
employing as the analysis operator. In different context, such
analysis prior G is more frequently adopted to enforce some reg-
ularity on the signal. In this paper, we utilize the philosophy of
analysis-based prior to seek the discriminative filters for image
feature representation. Please refer to [29–31] for more technique
details and theoretical analysis.
4. Problem formulation

Considering the two-class classification problem, for given
training data and its corresponding label fðxi; yiÞj iAf1;…;

Ngg; yiAf�1;1g. In order to construct the rich and discriminative
image representation for each category, we propose a deep
boosting framework based on compositional feature selection and
analysis dictionary learning. For a single layer, we firstly introduce
the term of empirical error to the discriminative features mining.
This is equal to learn the weak classifier in Gentle Adaboost
algorithm. For each category, suppose that if we can find an ana-
lysis dictionary, denoted by GARp�M , that the selected feature can
be more suitable for such category by the analysis transformation,
then the feature representation would be more effective for visual
recognition. Based on this idea, the fundamental of our single layer
image representation is expressed as follows:

min
G

1
2

XN
i ¼ 1

lð�yiFðxiÞÞÞþλ
X
Ij =2Ω

JGnIj J22; ð4Þ

where xi is the feature representation corresponding to image Ii
and lð�Þ denotes the empirical error of the classifier. Ω indicates
positive training set and Ij =2Ω means that the image Ij does not
belong to the set of positive samples. We define G¼ ½g1; g2;…gm
…; gM � as the analysis dictionary and each gm indicates a linear
filter. Thus GnI can be considered as a series of convolutional
operations and the output is M feature maps, each of which is
related to a special linear filter. The properties of our proposed
model are two folds. On one hand, different from traditional
analysis prior learning, we adopt the empirical error, which is
more suitable for training the classifier, to replace the recon-
struction error in Eq. (2). On the other hand, the analysis operator
is introduced as the regularized term to learn more discriminative
features for each category. In the second term of Eq. (4), we desire
the analysis dictionary (i.e., a set of filters) has large filter response
over the positive training set. In this way, the analysis dictionary
learning process could discover category coherent features (i.e.,
one category one analysis dictionary) to promote the dis-
criminative ability of weak classifiers. It is equivalent to make the
analysis dictionary has the small response over negative samples,
thus we extract negative training samples and minimize the
objective function to train the analysis dictionary. Note that, if the
learned filter has the small response to both the positive and
negative samples, the related feature representation will be
eliminated in the further iteration of feature selection process. In
this way, the discriminative of our image representation is
enhanced by joint feature boosting and analysis dictionary learn-
ing, leading the model more robust and compact as well.

In Eq. (4), xi is the feature vector of i-th image associated with
the analysis transformation (i.e., filter response or convolution
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result). In order to obtain such feature representation, we employ
the pyramid-wise histograms to quantize the filter responses,
which provide some degree of translation invariance for the
extracted features, as in hand-crafted features (e.g., SIFT or HoG),
learned features (e.g., Bag-of-Visual-Words model), and average or
maximum pooling process in convolution neural network. Sup-
pose M is the total number of filters. Before construct the pyramid-
wise histograms for a special image I, we firstly activate the
maximum filter responses of each pixel and abandon the others as
follows:

um ¼ Jum J if Jum J ¼maxfJu1 J ; Ju2 J ;…; JuM Jg
0 otherwise

�
; ð5Þ

where um indicates the m-th filter response of pixel uA I.
According to the previous operation, we can obtain M feature

maps for a training image, each of which has only a few locations
being activated according to Eq. (5) (presented by red solid circle in
Fig. 2). As shown in Fig. 2, we apply a three-level spatial pyramid
representation of each resulting feature map, resulting 1þ2�2þ
4�4¼21 individual spatial blocks. We compute the histogram
(with C bins, C¼50 in the rest of the paper) of the filter responses in
each block. Finally, we can get the “long” feature vector formed by
concatenating the histograms of all blocks from all feature maps.
The dimension of such feature vector is 21�50�M. Note that M is
not a constant scalar in this paper, and the value could be dyna-
mically changed with the process of analysis dictionary learning.
Please refer to Section 4.2 for more details.

4.1. Feature boosting

In order to optimize the objective function in Eq. (4), we pro-
pose a two-step optimizing strategy integrating the feature
boosting and dictionary learning. In this subsection, we describe
the details of feature boosting method by setting up the rela-
tionship between the weak classifier and the image feature
representation. After the pyramid-wise histogram calculated, we
select the discriminative features and obtain the single layer
classifier through the given feature set. Follow the previous
notation, let xiARD be the feature representation of image Ii,
where D is the dimension of the feature space and D¼ 21� 50�
M as described in the previous content. In the feature boosting
phase, Gentle Adaboost is applied to the discriminative features
(i.e., weak classifiers ) mining, which can separate the positive and
negative samples nicely in each round. Note that in the rest of the
paper, we apply xi

d to denote the value of xi in the d-th dimension.
In each round of feature boosting procedure, the algorithm
retrieves all of the candidate regression functions ff 1; f 2;…; f Dg,
each of which is formulated as:

f dðxiÞ ¼ aϕðxdi �δÞþb; ð6Þ

where ϕð�Þ is the sigmoid function with the form ϕðxÞ ¼ 1=ð1þ
e� xÞ. For each round, the candidate function with minimum
empirical error is selected as the current weak classifier f, such
that

min
d

XN
i ¼ 1

wi J f
dðxiÞ�yi J

2; ð7Þ

where f dðxiÞ is associated with the d-th element of xi and the
function parameter ðδ; a; bÞ. According to the above discussion, we
build the bridge between the weak classifier and the feature
representation, thus the weak classifiers learning can be viewed as
the feature boosting procedure in our model. The feature boosting
is usually terminated when the training error is converged.

4.2. Analysis dictionary learning

To the regularization perspective, another advantage of method
is introducing analysis dictionary learning, which is conducted by
selected features in the feature boosting phase, to emphasize the
discriminative ability of analysis operator for the target category.
In our framework, since we rely on discriminative filters to gen-
erate higher-layer proper analysis dictionary, we only consider to
update a subset of filters which is corresponding to the selected
features. We first need to construct the relationship between
feature responses and filters. For any feature response, a four-item
index is recorded as,

½isActivited;w;h; g�; ð8Þ
where isActivited indicates whether the feature response is selec-
ted in feature boosting stage. w,h are the horizontal and vertical
coordinate in the image lattice domain respectively. g denotes the
relative filter defined in Eq. (4). Then we apply the gradient des-
cent algorithm to optimize filters which is corresponding to
selected features. As Fig. 1 illustrates, we combine any two opti-
mized filters but not the features to generate filters in the next
layer. In this way, the filter's optimization in the next layer is
independent with previous features. Note that in the first few
layers, the number of filters is limited, thus almost every filter is
taken into account in optimization. However, it will be shown in
Section 4.3 that the collection of compositional filters becomes
large along with the architecture going deep, thus the screening



Inp
P

Ou
A

Ini
T

Re

Z. Peng et al. / Neurocomputing 178 (2016) 36–4540
mechanism is introduced to control the complexity and keep the
effectiveness of the model.

Integrating the two stages described in Sections 4.1 and 4.2, we
achieve the feature boosting and analysis dictionary learning for
the single layer. The algorithm is summarized in Algorithm 1. In
the next subsection we will introduce the filter combination rules
to construct the hierarchical architecture of our model.

4.3. Deep boosting framework

In the context of boosting method, the strong classifier, which
is usually the weighted linear combination of weak classifiers, is
hardly to decease the test error when training error is approaching
to zero. Based on this fact, it is our interest to learn high-level
feature representations with more discriminative ability. In order
to achieve this goal, we propose the filter combination rules and
the output compositional filters of each layer are treated as a
whole to generate the analysis dictionary in the next layer.

For each image category, whose corresponding analysis dic-
tionary in layer l is denoted by ½G�l, we combine any two optimized
filters (presented by solid circle in Fig. 3(a)) in the l-th layer as
follows,

½gk�lþ1 ¼ϕð½gi�lþ½gj�lÞ; ð9Þ

where ϕð�Þ is the sigmoid function. ½gi�l and ½gj�l indicate the i-th
and j-th filters in the optimized subset of ½G�l. As illustrated in
Fig. 3(a), the number of filters in each layer is quite different and
we only adopt the optimized ones, which are related to selected
features, to construct the image filters for the next layer.

4.4. Model compression approach

Although we carefully select filters for further combination, the
number of compositional filters will still be out of control when
architecture going deep. Assuming there exists Ml optimized filters
1st Layer

2nd Layer

3rd Layer

Illustration of compositional filters.

The similarity matrix of
2nd layer.

The similarity matrix of
3rd layer.

Fig. 3. Illustration of compositional filters for deep boosting. We composite filters
in a pairwise manners in each layer and treat the output compositional filters as
base filters (presented by solid circle in Fig. 3(a)) in next layer. After combination,
the similar matrix of filters is built up to drop out redundancies (presented by
hollow circle in Fig. 3(a)). (a) Illustration of compositional filters. (b) The similarity
matrix of 2nd layer. (c) The similarity matrix of 3rd layer.
in layer l, thus we can obtain he maximum number 1
2 �Ml �

ðMl�1Þ of compositional filters. In this way, the dimension of each
image in the layer lþ1 would be 1

2 �Ml � ðMl�1Þ � 21� 50,
which make the feature space is too complex and the training time
becomes intolerable. To this end, we introduce model compression
in the training phase. For any couple of filers, the L2 distance is
calculated to measure the similarity between them. If the distance
is smaller than the threshold δ (set as 0.7 in all the experiment),
we maintain the two filters are similar and one of them is dropped
out randomly (presented by hollow circle in Fig. 3(a)). Fig. 3(b) and
(c) illustrate the similarity matrix of filters in different layer. The
intensity of every square indicates the similar degree of two filters.
Please refer to Figs. 6 and 7 for more details about the classifica-
tion accuracy and training time comparison with and without
model compression for different depth of proposed framework.

According to Section 4.3, we build up the hierarchical archi-
tecture of our deep boosting framework. In the testing phase, we
employ the weak classifiers learned in every layer to produce the
final classifier. The overall of our proposed method is summarized
in Algorithm 2.

Algorithm 1. Joint Feature Boosting and Analysis Dictionary
Learning.
Inp
P

Ou
T

Ini
I

Re
ut:
ositive and negative training samples ðx1; y1Þ…ðxN ; yNÞ, the
number of selected features Π.
tput:
pool of selected features Ψ, the learned dictionary G.

tialization:
he dictionary G;
peat:
1. Start with score FðxÞ ¼ 0 and sample weights wi ¼ 1=N,

i¼ 1;2;…;N.
2. Select features and learn the strong classifier as follows:
Repeat for m¼ 1;2;…;Π:
(a) Learn the current weak classifier fm by Eq. (6).
(b) Update wi’wie�yif mðxÞ and renormalize.
(c) Update FðxÞ’FðxÞþ f mðxÞ.

3. Update the dictionary G by gradient descent method.
4. Generate new feature vectors of each image using G

according to Section 4.
til The objective function in Eq. (4) converges.
un

Algorithm 2. Deep Boosting Framework.
ut:
ositive and negative training images and corresponding
labels ðI1; y1Þ…ðIN ; yNÞ, the number of selected features Πl in
layer l, the total layer number L.
tput:
he final classifier FLðxÞ for a special category.
tialization:
nitialize G0 in first layer applying Gabor wavelets.
peat for l¼ 1;2;…; L:
1. Generate new feature x of image I using G according to

Section 4.
2. Boost features with dictionary learning according to

Algorithm 1.
3. Build up filters of next layers according to Eq. (9).
4.5. Preprocessing and multi-class decision

At the beginning, we initialize the filters with the size of 5�5
adopting Gabor wavelets. Let I be an image defined on image



Table 2
Classification accuracy on STL-10 dataset with and
without regularized term.

Accuracy (7σ)

With regularized term 59.3% (70.8%)
Without regularized term 55.8% (71.5%)

Table 1
Classification accuracy on STL-10.

Method Accuracy (7σ)

1-layer Vector Quantization [36] 54.9% (70.4%)
1-layer Sparse Coding [36] 59.0% (70.8%)
3-layer Learned Receptive Field [37] 60.1% (71.0%)
OURS-5 59.3% (70.8%)
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Fig. 4. The learned templates in the first four layers for each image categories. When the model goes deeper, we get higher level primitives and the more discriminative
features.
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lattice domain and G0 be the Gabor wavelet elements with para-
meters ðw;h;α; sÞ, where (w,h) is the central position belonging to
the lattice domain, α and s denote the orientation and scale
parameters. Different orientation and scale parameters makes
Gabor wavelets variant. For simplicity, we apply 1 scale and 16
orientations in our implementation, so there are total 16 filters at
first layer. Notably, multi scales promote the performance while
the filter combination process becomes complicated, because the
combination is only allowed in the same scale. Followed by [34],
we utilize the normalize term to make the Gabor responses
comparable during the inception phase between different training
images:

δ2ðsÞ ¼ 1
jP jA

X
α

X
w;h

j 〈I;G0
w;h;α;s〉j 2; ð10Þ

where jP j is the total number of pixels in image I, and A is the
number of orientations. 〈 � 〉 denotes the convolution process. For
each image I, we normalize the local energy as j 〈I;G0

w;h;α;s〉j 2=δ2ðsÞ
and define positive square root of such normalized result as fea-
ture response.

To the multiclass situation, we consider the naive one-vs-all
scheme to train multiple binary classifiers, each one learns to distin-
guish the samples in a single class from the samples in all remaining
classes. Given the training data fðxi; yiÞgNi ¼ 1, yiAf1;2;…;Kg, we train K
strong classifiers, each of which returns a classification score for a
special test image. In the testing phase, we predict the label of image
referring to the classifier with themaximum score. The reasonwhywe
adopt one-vs-all or OVA scheme throughout the paper is concentrated
on two folds. On one hand, according to Eq. (4), we desire each learned
analysis dictionary should have powerful capability to distinguish the
images from one category. Thus we select the negative samples from
all other categories to optimize the filters in Eq. (4) (i.e., leaning the
class-specific analysis dictionary) and this strategy is naturally con-
sistent with the OVA scheme. On the other hand, as shown in [35],
many multiclass models may not offer advantages over the simple
OVA scheme in the solution of classification problem. Under such
circumstances, we finally choose the OVA strategy followed by its
intuitive concept.
5. Experiment

We conduct several experiments to investigate the properties
of proposed deep boosting framework and evaluate the perfor-
mance for different challenging visual recognition tasks (i.e., facial
age estimation, natural image classification and similar appear-
ance categories recognition). All of the experiments are carried out
on a PC with Core i7-3960X 3.30 GHZ CPU and 24 GB memory. In
these tasks, we demonstrate superior or comparable performances
of our framework over other state-of-the-art approaches.

5.1. Learning image template for image categories

In the first experiment we focus on whether our algorithm can
learn and select meaningful and discriminative features for
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different image categories. Take CIFAR-10 dataset, for example. The
CIFAR-10 dataset1 consists of 60 K 32�32 color images in 10
classes (with 6 K images per class), including airplane, automobile,
bird, cat, deer, dog, frog, horse, ship and truck. We randomly select
1000 images per class as the training samples to learn the hier-
archical image representation. Fig. 4 shows some learned tem-
plates in different layers for each image categories. According to
the visualizations, it is obviously that the higher layer it goes, the
more informative features we gain.

5.2. Natural image classification

The same to CIFAR-10, the STL-102 is also a ten-category image
dataset, but with the image size 96�96. It has 1300 images per
class. There are 500 training images and 800 test images. The
training set is mapped to ten predefined folds. Due to its relatively
1 http://www.cs.toronto.edu/�kriz/cifar.html
2 http://cs.stanford.edu/�acoates/stl10/
large image size, much prior research chose to downsample the
images to 32�32. Table 1 shows the comparison of average test
accuracies on all folds of STL-10. It is clear that our method can
achieve very competitive results compared to other state-of-the-
art methods.

5.2.1. Impact of analysis dictionary learning
In this section, we are interested in the performance of our

method in the context of analysis dictionary learning. As we men-
tioned above, the analysis operator is introduced as a regularized
term to learn more discriminative features over the positive sam-
ples. We desire that the analysis dictionary is able to make the
margin between positive and negative training sets as larger as
possible. That is, the analysis dictionary has large response over the
positive training set, but not vice versa. Note that, the related fea-
ture representation will be eliminated in the further iteration of
feature selection process, if the learned filter responds a small value
both to the negative set and to the positive set. In this way, we will
gain more discriminative features in feature boosting procedure,
resulting a more robust and compact image representation model.

Table 2 shows the classification accuracy with and without
regularized term. The result using regularized term outperforms
the other and the standard deviation among folds is smaller, which
illustrates that the feature is more discriminative and the model is
more robust. In Fig. 5, the empirical error in boosting phase is
shown. For the more discriminative features, it is reasonable to
accelerate convergence rate using regularized term.

5.2.2. Impact of model depth and compression
In this experiment, we perform classification experiments on

the STL-10 in the context of different number of layers. We learn
the deep boosting model to construct multiple levels of visual
representation simultaneously. In order to construct high-level
discriminative representations, we composite the learned filters
corresponding to selected features in the same layer, and feed the
compositional results into next layer to build the higher-layer
analysis dictionary. Hopefully when the model goes higher, the
features are more discriminative. Fig. 6 exhibits the performance
of image classification on STL-10 at different layers. The results
demonstrate that the features in higher layer conduct better per-
formance. In order to avoid the sudden explosion of filters, we
drop out similar filters randomly after pairwise combination of the

http://www.cs.toronto.edu/~kriz/cifar.html
http://www.cs.toronto.edu/~kriz/cifar.html
http://cs.stanford.edu/~acoates/stl10/
http://cs.stanford.edu/~acoates/stl10/


Fig. 8. The LHI-Animal-Faces dataset. Three images are shown for each category.

Table 3
Classification accuracy on LHI-Animal-Faces.

Method Accuracy (%)

HoGþSVM 70.8
HIT [22] 75.6
LSVM [39] 77.6
AOT [38] 79.1
OURS-5 81.5
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The original images.

40 41 42 36 36 38 40

20 20 22 55 56 57 57

The aligned and cropped images.

Fig. 9. The MORPH-II dataset. Four individuals in different races and genders are
picked as an example. The ages are given around the images. (a) The original
images. (b) The aligned and cropped images.

Table 4
MAE (in Years) on MORPH-II (the lower the better).

Method MAE

MLBPþSVM 6.85
HoGþSVM 6.19
SIFTþSVM 8.77
WAS [42] 9.21
AGES [43] 6.61
IIS-LLD [41] 5.67
OURS-2 5.61
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learned filters. Although it losses accuracy slightly, we control the
training time and make the limitless growth of model possible,
which is illustrated in Figs. 6 and Fig. 7.

5.3. Similar appearance categories recognition

The LHI-Animal-Faces dataset3 [22] consists of about 2200
images for 20 categories. Fig. 8 provides an overview of the
3 http://www.stat.ucla.edu/�zzsi/hit/changelog.html
dataset. In contrast with other general classification datasets, LHI-
Animal-Faces contains only animal or human faces, which are
similar to each other. It is challenging to discern them for their
evolutional relationship and shared parts. Besides, interesting
within-class variation is shown in the face categories, including
rotation, flip transforms, posture variation and sub-types.

We compare our result with those reported in [38] obtained by
other methods, which include HoG feature trained with SVM [6],
HIT [22], AOT [38] and partbased HoG feature trained with latent
SVM [39]. In the experiment, we split the dataset as training set
and test set following AOT [38]. For our method, we resize all the
images to the uniform size of 60�60 pixels and the number of
layers is 5. Table 3 exhibits the classification accuracy on LHI-
Animal-Faces. It has shown that our method achieves a 2.4%
increase, compared with the second best competitor.

5.4. Facial age estimation

Human age estimation based on facial images plays an impor-
tant role in many applications, e.g., intelligent advertisement,
security surveillance monitoring and automatic face simulation. To
our best knowledge, MORPH-II4 is the largest publicly available
dataset for facial age estimation. In the MORPH-II dataset, there
are more than 55,000 facial images from more than 13,000 indi-
viduals with only about 4 labeled images per individual. The ages
vary over a wide range from 16 to 77. The individuals come from
different races, among them Africans accounted for about 77%, the
Europeans about 19%, and the remaining includes Hispanic, Asian
and other races. Some sample images are shown in Fig. 9(a).

We use two usually performance measures in our comparative
study, i.e., MAE (Mean Absolute Error) and CumScore (Cumulative
4 http://www.faceaginggroup.com/morph/

http://www.stat.ucla.edu/~zzzsi/hit/changelog.html
http://www.stat.ucla.edu/~zzzsi/hit/changelog.html
http://www.faceaginggroup.com/morph/
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Score) [40]. Suppose there are N test images, the MAE is the sum of
average absolute errors between the true ages ai and the predicted
ages ai, i¼ 1;2;…;N. The MAE is calculated as,

MAE¼ 1
N

XN
i

jai�ai j ; ð11Þ

where j � j denotes the absolute value of a scalar value.
The CumScore is the cumulate accuracy rate. A certain error

range (i.e., l years) is acceptable for many real applications. The
cumulative score at error level l can be calculated as,

CumScoreðlÞ ¼Ner l=N � 100%; ð12Þ

where Ner l is the number of test images, which have absolute
prediction error no more than l years.

For an input image, we locate the face with bounding box and
detect the five facial key points in the bounding box. The five facial
key points include two eye centers, nose tip, and two mouth
corners. Then we align the facial image based on these key points.
Finally, the images are resized to the size of 60�60 pixels. The
aligned images are shown in Fig. 9(b).

We compare our results with several existing algorithms
designed for the age estimation, i.e., IIS-LLD [41], WAS [42] and
AGES [43]. Moreover, we also conduct experiments using some
feature descriptors usually used in face recognition, including
Multi-level LBP [44], HoG [6] and SIFT [5]. For all of these features,
age estimation is treated as classification problem using multi-
class SVMs. For our method, we set the number of layers to 2 and
six-folder cross-validation is performed. Table 4 summarizes the
results based on the MAE measure. We can see that our method
achieves better results compared to other state-of-the-art meth-
ods for age estimation. We also report the results in terms of the
cumulative scores at different error levels from 0 to 10 in Fig. 10,
exhibiting that our method outperforms other state-of-the-arts at
almost all levels.
6. Conclusion

In this paper, we propose a novel deep boosting framework,
which is applied to construct the high-level discriminative fea-
tures for general image recognition task. For each layer, the feature
boosting and analysis dictionary learning are integrated into a
unified framework for discriminative feature selection and learn-
ing. In order to construct high-level image representation, the
combined filters in the same layer are fed into next layer to gen-
erate the novel analysis dictionary. The experiments in several
benchmarks demonstrate the effectiveness of proposed method
and achieve good performance on various visual recognition tasks.
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