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Abstract

Generating long and coherent reports to describe medical images poses challenges
to bridging visual patterns with informative human linguistic descriptions. We
propose a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent)
which reconciles traditional retrieval-based approaches populated with human prior
knowledge, with modern learning-based approaches to achieve structured, robust,
and diverse report generation. HRGR-Agent employs a hierarchical decision-
making procedure. For each sentence, a high-level retrieval policy module chooses
to either retrieve a template sentence from an off-the-shelf template database, or
invoke a low-level generation module to generate a new sentence. HRGR-Agent
is updated via reinforcement learning, guided by sentence-level and word-level
rewards. Experiments show that our approach achieves the state-of-the-art results
on two medical report datasets, generating well-balanced structured sentences with
robust coverage of heterogeneous medical report contents. In addition, our model
achieves the highest detection precision of medical abnormality terminologies, and
improved human evaluation performance.

1 Introduction

Beyond the traditional visual captioning task [41, 28, 43, 40, 18] that produces one single sentence,
generating long and topic-coherent stories or reports to describe visual contents (images or videos)
has recently attracted increasing research interests [19, 35, 22], posed as a more challenging and
realistic goal towards bridging visual patterns with human linguistic descriptions. Particularly, report
generation has several challenges to be resolved: 1) The generated report is a long narrative consisting
of multiple sentences or paragraphs, which must have a plausible logic and consistent topics; 2) There
is a presumed content coverage and specific terminology/phrases, depending on the task at hand.
For example, a sports game report should describe competing teams, wining points, and outstanding
players [38]. 3) The content ordering is very crucial. For example, a sports game report usually talks
about the competition results before describing teams and players in detail.

As one of the most representative and practical report generation task, the desired medical image
report generation must satisfy more critical protocols and ensure the correctness of medical term
usage. As shown in Figure 1, a medical report consists of a findings section describing medical
observations in details of both normal and abnormal features, an impression or conclusion sentence
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Comparison:  

Indication: 60-year-old male with seizure, ethanol abuse

Findings: The heart size and mediastinal contours appear within 
normal limits. There is blunting of the right lateral costophrenic 
sulcus which could be secondary to a small effusion versus scarring. 
No focal airspace consolidation or pneumothorax. No acute bony 
abnormalities.

Impression: Blunting of the right costophrenic sulcus could be 
secondary to a pleural effusion versus scarring. 

Findings: 

[R]: The heart size is normal. There is mild 
effusion. No acute bony abnormalities. 

[G]: The heart size normal. No pleural effusion or 
pneumothorax. No acute bony abnormalities. 

[HRGR-Agent]: The heart size and mediastinal 
contours are normal. There is blunting of 
costophrenic sulcus suggesting a small effusion.    
No bony abnormalities. 

Figure 1: An example of medical image report generation. The middle column is a report written by
radiologists for the chest x-ray image on the left column. The right column contains three reports
generated by a retrieval-based system (R), a generation-based model (G) and our proposed model
(HRGR-Agent) respectively. The retrieval-based model correctly detects effusion while the generative
model fails to. Our HRGR-Agent detects effusion and also describes supporting evidence.

indicating the most prominent medical observation or conclusion, and comparison and indication
sections that list patient’s peripheral information. Among these sections, the findings section posed as
the most important component, ought to cover contents of various aspects such as heart size, lung
opacity, bone structure; any abnormality appearing at lungs, aortic and hilum; and potential diseases
such as effusion, pneumothorax and consolidation. And, in terms of content ordering, the narrative of
findings section usually follows a presumptive order, e.g. heart size, mediastinum contour followed
by lung opacity, remarkable abnormalities followed by mild or potential abnormalities.

State-of-the-art caption generation models [41, 9, 43, 34] tend to perform poorly on medical report
generation with specific content requirements due to several reasons. First, medical reports are usually
dominated by normal findings, that is, a small portion of majority sentences usually forms a template
database. For these normal cases, a retrieval-based system (e.g. directly perform classification
among a list of majority sentences given image features) can perform surprisingly well due to the
low variance of language. For instance, in Figure 1, a retrieval-based system correctly detects
effusion from a chest x-ray image, while a generative model that generates word-by-word given
image features, fails to detect effusion. On the other hand, abnormal findings which are relatively rare
and remarkably diverse, however, are of higher importance. Current text generation approaches [16]
often fail to capture the diversity of such small portion of descriptions, and pure generation pipelines
are biased towards generating plausible sentences that look natural by the language model but poor at
finding visual groundings [17]. On the contrary, a desirable medical report usually has to not only
describe normal and abnormal findings, but also support itself by visual evidences such as location
and attributes of the detected findings appearing in the image.

Inspired by the fact that radiologists often follow templates for writing reports and modify them
accordingly for each individual case [5, 12, 10], we propose a Hybrid Retrieval-Generation Reinforced
Agent (HRGR-Agent) which is the first attempt to incorporate human prior knowledge with learning-
based generation for medical reports. HRGR-Agent employs a retrieval policy module to decide
between automatically generating sentences by a generation module and retrieving specific sentences
from the template database, and then sequentially generates multiple sentences via a hierarchical
decision-making. The template database is built based on human prior knowledge collected from
available medical reports. To enable effective and robust report generation, we jointly train the
retrieval policy module and generation module via reinforcement learning (RL) [30] guided by
sentence-level and word-level rewards, respectively. Figure 1 shows an example generated report
by our HRGR-Agent which correctly describes "a small effusion" from the chest x-ray image, and
successfully supports its finding by providing the appearance ("blunting") and location ("costophrenic
sulcus") of the evidence.

Our main contribution is to bridge rule-based (retrieval) and learning-based generation via reinforce-
ment learning, which can achieve plausible, correct and diverse medical report generation. Moreover,
our HRGR-Agenet has several technical merits compared to existing retrieval-generation-based
models: 1) our retrieval and generation modules are updated and benefit from each other via policy
learning; 2) the retrieval actions are regarded as a part of the generation whose selection of templates
directly influences the final generated result. 3) the generation module is encouraged to learn diverse
and complicated sentences while the retrieval policy module learns template-like sentences, driven by
distinct word-level and sentence-level rewards, respectively. Other work such as [24] still enforces
the generative model to predict template-like sentences.
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We conduct extensive experiments on two medical image report dataset [8]. Our HRGR-Agent
achieves the state-of-the-art performance on both datasets under three kinds of evaluation metrics:
automatic metrics such as CIDEr [33], BLEU [25] and ROUGE [20], human evaluation, and detection
precision of medical terminologies. Experiments show that the generated sentences by HRGR-Agent
shares a descent balance between concise template sentences, and complicated and diverse sentences.

2 Related Work

Visual Captioning and Report Generation. Visual captioning aims at generating a descriptive
sentence for images or videos. State-of-the-art approaches use CNN-RNN architectures and attention
mechanisms [27, 41, 43, 28]. The generated sequence is usually short, describing only the dominating
visual event, and is primarily rewarded by language fluency in practice. Generating reports that are
informative and have multiple sentences [38, 16] poses higher requirements on content selection,
relation generation, and content ordering. The task differs from image captioning [43, 23] and
sentence generation [14, 6] where usually single or few sentences are required, or summarization [2,
44] where summaries tend to be more diverse without clear template sentences. State-of-the-art
methods on report generation [16] are still remarkably cloning expert behaviour, and incapable
of diversifying language and depicting rare but prominent findings. Our approach prevents from
mimicking teacher behaviour by sparing the burden of automatic generative model with a template
selection and retrieval mechanism, which by design promotes language diversity and better content
selection.

Template Based Sequence Generation. Some of the recent approaches bridged generative language
approaches and traditional template-based methods. However, state-of-the-art approaches either
treat a retrieval mechanism as latent guidance [44], the impact of which to text generation is limited,
or still encourage the generation network to mimic template-like sequences [24]. Our method is
close to previous copy mechanism work such as pointer-generator [2], however, we are different
in that: 1) our retrieval module aims to retrieve from an external common template base, which is
particularly effective to the task, as opposed to copying from a specific source article; 2) we formulate
the retrieval-generation choices as discrete actions (as opposed to soft weights as in previous work)
and learn with hierarchical reinforcement learning for optimizing both short- and long-term goals.

Reinforcement Learning for Sequence Generation. Recently, reinforcement learning (RL) has
been receiving increasing popularity in sequence generation [27, 3, 13] such as visual captioning [21,
28, 18], text summarization [26], and machine translation [39]. Traditional methods use cross entropy
loss which is prone to exposure bias [27, 31] and do not necessarily optimize evaluation metrics such
as CIDEr [33], ROUGE [20], BLEU [25] and METEOR [4]. In contrast, reinforcement learning can
directly use the evaluation metrics as reward and update model parameters via policy gradient. There
has been some recent efforts [42] devoted in applying hierarchical reinforcement learning (HRL) [7]
where sequence generation is broken down into several sub-tasks each of which targets at a chunk of
words. However, HRL for long report generation is still under-explored.

3 Approach

Medical image report generation aims at generating a report consisting of a sequence of sentences
Y = (y1,y2, . . . ,yM ) given a set of medical images I = {Ij}Kj=1 of a patient case. Each sentence
comprises a sequence of words yi = (yi,1, yi,2, . . . , yi,N ), yi,j ∈ V where i is the index of sentences,
j the index of words, and V the vocabulary of all output tokens. In order to generate long and
topic-coherent reports, we formulate the decoding process in a hierarchical framework that first
produces a sequence of hidden sentence topics, and then predicts words of each sentence conditioning
on each topic.

It is observed that doctors writing a report tend to follow certain patterns and reuse templates, while
adjusting statements for each individual case when necessary. To mimic the procedure, we propose
to combine retrieval and generation for automatic report generation. In particular, we first compile
an off-the-shelf template database T that consists of a set of sentences that occur frequently in the
training corpus. Such sentences typically describe general observations, and are often inserted into
medical reports, e.g., "the heart size is normal" and "there is no pleural effusion or pneumothorax".
(Table 1 provides more examples.)
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Figure 2: Hybrid Retrieval-Generation Reinforced Agent. Visual features are encoded by a CNN
and image encoder, and fed to a sentence decoder to recurrently generate hidden topic states. A
retrieval policy module decides for each topic state to either automatic generate a sentence, or retrieve
a specific template from a template database. Dashed black lines indicate hierarchical policy learning.

As described in Figure 2, a set of images for each sample is first fed into a CNN to extract visual
features which is then transformed into a context vector by an image encoder. Then a sentence
decoder recurrently generates a sequence of hidden states q = (q1,q2, . . . ,qM ) which represent
sentence topics. Given each topic state qi, a retrieval policy module decides to either automatically
generate a new sentence by invoking a generation module, or retrieve an existing template from the
template database. Both the retrieval policy module (that determines between automatic generation
or template retrieval) and the generation module (that generates words) are making discrete decisions
and be updated via the REINFORCE algorithm [37, 30]. We devise sentence-level and word-level
rewards accordingly for the two modules, respectively.

3.1 Hybrid Retrieval-Generation Reinforced Agent

Image Encoder. Given a set of images {Ij}Kj=1, we first extract their features {vj}Kj=1 with a
pretrained CNN, and then average {vj}Kj=1 to obtain v. The image encoder converts v into a context
vector hv ∈ RD which is used as the visual input for all subsequent modules. Specifically, the image
encoder is parameterized as a fully-connected layer, and the visual features are extracted from the
last convolution layer of a DenseNet [15] or VGG-19 [29].

Sentence Decoder. Sentence decoder comprises stacked RNN layers which generates a sequence
of topic states q. We equip the stacked RNNs with attention mechanism to enhance text generation,
inspired by [32, 41, 23]. Each stacked RNN first generates an attentive context vector csi , where
i indicates time steps, given the image context vector hv and previous hidden state hsi−1. It then
generates a hidden state hsi based on csi and hsi−1. The generated hidden state hsi is further projected
into a topic space as qi and a stop control probability zi ∈ [0, 1] through non-linear functions
respectively. Formally, the sentence decoder can be written as:

csi = F sattn(h
v,hsi−1) (1)

hsi = F sRNN(c
s
i ,h

s
i−1) (2)

qi = σ(Wqh
s
i + bq) (3)

zi = Sigmoid(Wzh
s
i + bz), (4)

where F sattn denotes a function of the attention mechanism [28], F sRNN denotes the non-linear functions
of Stacked RNN, Wq and bq are parameters which project hidden states into the topic space while
Wz and bz are parameters for stop control, and σ is a non-linear activation function. The stop control
probability zi greater than or equal to a predefined threshold (e.g. 0.5) indicates stopping generating
topic states, and thus the hierarchical report generation process.

Retrieval Policy Module. Given each topic state qi, the retrieval policy module takes two steps.
First, it predicts a probability distribution ui ∈ R1+|T| over actions of generating a new sentence
and retrieving from |T| candidate template sentences. Based on the prediction of the first step, it
triggers different actions. If automatic generation obtains the highest probability, the generation
module is activated to generate a sequence of words conditioned on current topic state (the second
row on the right side of Figure 2). If a template in T obtains the highest probability, it is retrieved
from the off-the-shelf template database and serves as the generation result of current sentence topic
(the first row on the right side of Figure 2). We reserve 0 index to indicate the probability of selecting
automatic generation and positive integers in {1, |T|} to index the probability of selecting templates
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in T. The first step is parameterized as a fully-connected layer with Softmax activation:

ui = Softmax(Wuqi + bu) (5)
mi = argmax(ui), (6)

where Wu and bu are network parameters, and the resulting mi is the index of highest probability in
ui.

Generation Module. Generation module generates a sequence of words conditioned on current topic
state qi and image context vector hv for each sentence. It comprises RNNs which take environment
parameters and previous hidden state hgi,t−1 as input, and generate a new hidden state hgi,t which is
further transformed to a probability distribution ai,t over all words in V, where t indicates t-th word.
We define environment parameters as a concatenation of current topic state qi, context vector cgi,t
encoded by following the same attention paradigm in sentence decoder, and embedding of previous
word ei,t−1. The procedure of generating each word is written as follows, which is an attentional
decoding step:

cgi,t = F gattn(h
v, [ei,t−1;qi],h

g
i,t−1) (7)

hgi,t = F gRNN([c
g
i,t; ei,t−1;qi],h

g
i,t−1) (8)

at = Softmax(Wyh
g
i,t + by) (9)

yt = argmax(at) (10)
ei,t = WeO(yi,t), (11)

where F gattn denotes the attention mechanism of generation module, F gRNN denotes non-linear functions
of RNNs, Wy and by are parameters for generating word probability distribution, yi,t is index of the
maximum probable word, We is a learnable word embedding matrix initialized uniformly, and O
denotes one hot vector.

Reward Module. We use automatic metrics CIDEr for computing rewards since recent work on
image captioning [28] has shown that CIDEr performs better than many traditional automatic metrics
such as BLEU, METEOR and ROUGE. We consider two kinds of reward functions: sentence-level
reward and word-level reward. For the i-th generated sentence yi = (yi,1, yi,2, . . . , yi,N ) either
from retrieval or generation outputs, we compute a delta CIDEr score at sentence level, which is
Rsent(yi) = f({yk}ik=1, gt)− f({yk}i−1k=1, gt), where f denotes CIDEr evaluation, and gt denotes
ground truth report. This assesses the advantages the generated sentence brings in to the existing
sentences when evaluating the quality of the whole report. For a single word input, we use reward as
delta CIDEr score which is Rword(yt) = f({yk}tk=1, gts)− f({yk}t−1k=1, gts) where gts denotes the
ground truth sentence. The sentence-level and word-level rewards are used for computing discounted
reward for retrieval policy module and generation module respectively.

3.2 Hierarchical Reinforcement Learning

Our objective is to maximize the reward of generated report Y compared to ground truth report Y∗.
Omitting the condition on image features for simplicity, the loss function can be written as:

L(θ) = −Ez,m,y[R(Y,Y∗)] (12)
∇θL(θ) = −Ez,m,y [∇θ log p(z,m, y)R(Y,Y∗)] (13)

= −Ez,m,y

[∑
i=1

1(zi <
1

2
|zi−1)

(
∇θrL(θr) + 1(mi = 0|mi−1)∇θgL(θg)

)]
, (14)

where θ, θr ,and θg denote parameters of the whole network, retrieval policy module, and generation
module respectively; 1(·) is binary indicator; zi is the probability of topic stop control in Equation 4;
mi is the action chosen by retrieval policy module among automatic generation (mi = 0) and all
templates (mi ∈ [1, |T|]) in the template database. The loss of HRGR-Agent comes from two parts:
retrieval policy module L(θr) and generation module L(θg) as defined below.

Policy Update for Retrieval Policy Module. We define the reward for retrieval policy module Rr
at sentence level. The generated sentence or retrieved template sentence is used for computing the
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reward. The discounted sentence-level reward and its corresponding policy update according to
REINFORCE algorithm [30] can be written as:

Rr(yi) =

∞∑
j=0

γjRsent(yi+j) (15)

L(θr) = −Emi
[Rr(mi,m

∗
i )] (16)

∇θrL(θr) = −Emi
[∇θr log p(mi|mi−1)R

r(mi,m
∗
i )], (17)

where γ is a discount factor; yi is the i-th generated sequence; and θr represents parameters of
retrieval policy module which are Wu and bu in Equation 5 .

Policy Update for Generation Module. We define the word-level reward Rg(yt) for each word
generated by generation module as discounted reward of all generated words after the considered
word. The discounted reward function and its policy update for generation module can be written as:

Rg(yt) =

∞∑
j=0

γjRword(yt+j) (18)

L(θg) = −Eyt [Rg(yt,y∗t )] (19)

∇θgL(θg) = −Eyt [
∑
t=1

∇θg log p(yt|yt−1)Rg(yt, y∗t )], (20)

where γ is a discount factor, and θg represents the parameters of generation module such as Wy , by ,
We in Equation 9-11 and parameters of attention functions in Equation 7 and RNNs in Equation 8.
Detailed policy update algorithm is provides in supplementary materials.

4 Experiments and Analysis

Datasets. We conduct experiments on two medical image report datasets. First, Indiana University
Chest X-Ray Collection (IU X-Ray) [8] is a public dataset consists of 7,470 frontal and lateral-view
chest x-ray images paired with their corresponding diagnostic reports. Each patient has 2 images and
a report which includes impression, findings, comparison and indication sections. We preprocess the
reports by tokenizing, converting to lower-cases, and filtering tokens of frequency no less than 3 as
vocabulary, which results in 1185 unique tokens covering over 99.0% word occurrences in the corpus.

CX-CHR is a proprietary internal dataset of chest X-ray images with Chinese reports collected from
a professional medical institution for health checking. The dataset consists of 35,500 patients. Each
patient has one or multiple chest x-ray images in different views such as posteroanterior and lateral,
and a corresponding Chinese report. We select patients with no more than 2 images and obtained
33,236 patient samples in total which covers over 93% of the dataset. We preprocess the reports
through tokenizing by Jieba [1] and filtering tokens of frequency no less than 3 as vocabulary, which
results in 1282 unique tokens.

On both datasets, we randomly split the data by patients into training, validation and testing by a ratio
of 7:1:2. There is no overlap between patients in different sets. We predict the ’findings’ section as
it is the most important component of reports. On CX-CHR dataset, we pretrain a DenseNet with
public available ChestX-ray8 dataset [36] on classification, and fine-tune it on CX-CHR dataset on 20
common thorax disease labels. As IU X-Ray dataset is relatively small, we do not directly fine-tune
the pretrained DenseNet on it, and instead extract visual features from a DenseNet pretrained jointly
on ChestX-ray8 dataset [36] and CX-CHR datasets. Please see Supplementary Material for more
details.

Template Database. We select sentences in the training set whose document frequencies (the number
of occurrence of a sentence in training documents) are no less than a threshold as template candidates.
We further group candidates that express the same meaning but have a little linguistic variations. For
example, "no pleural effusion or pneumothorax" and "there is no pleural effusion or pneumonthorax"
are grouped as one template. This results in 97 templates with greater than 500 document frequency
for CX-CHR and 28 templates with greater than 100 document frequency for IU X-Ray. Upon
retrieval, only the most frequent sentence of a template group will be retrieved for HRGR-Agent or
any rule-based models that we compare with. Although this introduces minor but inevitable error in
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the generated results, our experiments show that the error is negligible compared to the advantages
that a hybrid of retrieval-based and generation-based approaches brings in. Besides, separating
templates of the same meaning into different categories diminishes the capability of retrieval policy
module to predict the most suitable template for a given visual input, as multiple templates share the
exact same meaning. Table 1 shows examples of templates for IU X-Ray dataset. More template
examples are provided in supplementary materials.

Template df(%)
No pneumothorax or pleural effusion.

18.36No pleural effusion or pneumothorax.
There is no pleural effusion or pneumothorax.

The lungs are clear
23.60Lungs are clear.

The lung are clear bilaterally.
No evidence of focal consolidation, pneumothorax, or pleural effusion.

6.55no focal consolidation, pneumothorax or large pleural effusion.
No focal consolidation, pleural effusion, or pneumothorax identified.

Cardiomediastin silhouett is within normal limit.
5.12The cardiomediastin silhouett is within normal limit.

The cardiomediastin silhouett is within normal limit for size and contour.

Table 1: Examples of template database of IU X-Ray dataset. Each template is constructed by a group
of sentences of the same meaning but slightly different linguistic variations. Top 3 most frequent
sentences for a template are displayed in the first and third column. The second column shows
document frequency (in percentage of training corpus) of each template.

Evaluation Metrics. We use three kinds of evaluation metrics: 1) automatic metrics including
CIDEr, ROUGE, and BLEU; 2) medical abnormality terminology detection accuracy: we select 10
most frequent medical abnormality terminologies in medical reports and evaluate average precision
and average false positive (AFP) of compared models; 3) human evaluation: we randomly select
100 samples from testing set for each method and conduct surveys through Amazon Mechanical
Turk. Each survey question gives a ground truth report, and ask candidate to choose among reports
generated by different models that matches with the ground truth report the best in terms of language
fluency, content selection, and correctness of medical abnormal finding. A default choice is provided
in case of no or both reports are preferred. We collect results from 20 participants and compute the
average preference percentage for each model excluding default choices.

Training Details. We implement our model on PyTorch and train on a GeForce GTX TITAN GPU.
We first train all models with cross entropy loss for 30 epochs with an initial learning rate of 5e-4,
and then fine-tune the retrieval policy module and generation module of HRGR-Agent via RL with
a fixed learning rate 5e-5 for another 30 epochs. We use 512 as dimension of all hidden states and
word embeddings, and batch size 16. We set the maximum number of sentences of a report and
maximum number of tokens in a sentence as 18 and 44 for CX-CHR and 7 and 15 for IU X-Ray.
Besides, as observed from baseline models which overly predict most popular and normal reports
for all testing samples and the fact that most medical reports describe normal cases, we add post-
processing to increase the length and comprehensiveness of the generated reports for both datasets
while maintaining the design of HRGR-Agent to better predict abnormalities. The post-processing
we use is that we first select 4 most commonly predicted key words with normal descriptions by
other baselines, then for each key word, if the generated report does not describe any abnormality
nor normality of these key words, we add the a corresponding sentence of these key words that
describe their normal cases respectively. The key words for IU X-Ray are ’heart size and mediastinal
contours’, ’pleural effusion or pneumothorax’, ’consolidation’, and ’lungs are clear’. As observed
in our experiments, this step maintains the same medical abnormality term detection results, and
improves the automatic report generation metrics, especially on BLEU-n metrics.

Baselines. On both datasets, we compare with four state-of-the-art image captioning models: CNN-
RNN [34], LRCN [9], AdaAtt [23], and Att2in [28]. Visual features for all models are extracted
from the last convolutional layer of pretrained densetNets respectively as mentioned in 4, yielding
16 × 16 × 256 feature maps for both datasets. We use greedy search and argmax sampling for
HRGR-Agent and the baselines on both datasets. On IU X-Ray dataset, we also compare with
CoAtt [16] which uses different visual features extracted from a pretrained ResNet [11]. The authors
of CoAtt [16] re-trained their model using our train/test split, and provided evaluation results for
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Dataset Model CIDEr BLEU-1 BLEU-2 BLEU-3 BLEU-4 ROUGE

CX-CHR

CNN-RNN [34] 1.580 0.590 0.506 0.450 0.411 0.577
LRCN [9] 1.588 0.593 0.508 0.452 0.413 0.577

AdaAtt [23] 1.568 0.588 0.503 0.446 0.409 0.575
Att2in [28] 1.566 0.587 0.503 0.446 0.408 0.576
Generation 0.361 0.307 0.216 0.160 0.121 0.322
Retrieval 2.565 0.535 0.475 0.437 0.409 0.536

HRG 2.800 0.629 0.547 0.497 0.463 0.588
HRGR-Agent 2.895 0.673 0.587 0.530 0.486 0.612

IU X-Ray

CNN-RNN [34] 0.294 0.216 0.124 0.087 0.066 0.306
LRCN [9] 0.284 0.223 0.128 0.089 0.067 0.305

AdaAtt [23] 0.295 0.220 0.127 0.089 0.068 0.308
Att2in [28] 0.297 0.224 0.129 0.089 0.068 0.308
CoAtt* [16] 0.277 0.455 0.288 0.205 0.154 0.369

HRGR-Agent 0.343 0.438 0.298 0.208 0.151 0.322
Table 2: Automatic evaluation results on CX-CHR (upper part) and IU X-Ray Datasets (lower part).
BLEU-n denotes BLEU score uses up to n-grams.

Dataset CX-CHR IU X-Ray
Models Retrieval Generation HRGR-Agent CNN-RNN [34] CoAtt [16] HRGR-Agent

Prec. (%) 14.13 27.50 29.19 0.00 5.01 12.14
AFP 0.133 0.064 0.059 0.000 0.019 0.043

Hit (%) – 23.42 52.32 – 28.00 48.00
Table 3: Average precision (Prec.) and average false positive (AFP) of medical abnormality terminol-
ogy detection, and human evaluation (Hit). The higher Prec. and the lower AFP, the better.

automatic report generation metrics using greedy search and sampling temperature 0.5 at test time. We
further evaluated their prediction to obtain medical abnormality terminology detection precision and
AFP. Due to the relatively large size of CX-CHR, we conduct additional experiments on it to compare
HRGR-Agent with its different variants by removing individual components (Retrieval, Generation,
RL). We train a hierarchical generative model (Generation) without any template retrieval or RL
fine-tuning, and our model without RL fine-tuning (HRG). To exam the quality of our pre-defined
templates, we separately evaluate the retrieval policy module of HRGR-Agent by masking out the
generation part and only use the retrieved templates as prediction (Retrieval). Note that Retrieval
uses the same model as HRG-Agent whose training involves automatic generation of sentences,
thus the results of which may be higher than a general retrieval-based system (e.g. directly perform
classification among a list of majority sentences given image features).

4.1 Results and Analyses

Automatic Evaluation. Table 2 shows automatic evaluation comparison of state-of-the-art methods
and our model variants. Most importantly, HRGR-Agent outperforms all baseline models that have
no retrieval mechanism or hierarchical structure on both datasets by great margins, demonstrating its
effectiveness and robustness. On IU X-Ray dataset, HRGR-Agent achieves slightly lower BLEU-
1,4 and ROUGE score than that of CoAtt [16]. However, CoAtt uses different pre-processing of
reports and visual features, jointly predicts ’impression’ and ’findings’, and uses single-image input
while our method focuses on ’findings’ and use combined frontal and lateral view of patients. On
CX-CHR, HRGR-Agent increases CIDEr score by 0.73 compared to HRG, demonstrating that
reinforcement fine-tuning is crucial to performance increase since it directly optimizes the evaluation
metric. Besides, Retrieval surpasses Generation by relatively large margins, showing that retrieval-
based method is beneficial to generating structured reports, which leads to boosted performance of
HRGR-Agent when combined with neural generation approaches (generation module). To better
understand HRGR-Agent’s performance, each generated report at testing has on average 7.2 and 4.8
sentences for CX-CHR and IU X-Ray dataset, respectively. The percentages of retrieval vs generation
are 83.5 vs 16.5 on the CX-CHR data, and 82.0 vs 18.0 on IU X-Ray, respectively.

Medical Abnormality Terminology Evaluation. Table 3 shows evaluation results of average preci-
sion and average false positive of medical abnormality terminology detection. HGRG-Agent achieves
the highest precision, and is only slightly lower AFP than CoAtt, demonstrating that its robustness on
detecting rare abnormal findings which are among the most important components of medical reports.
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Ground Truth CoAtt [16] HRGR-Agent
The cardiomediastinal silhouette is within
normal limits. Calcified right lower lobe
granuloma. No focal airspace consoli-
dation. No visualized pneumothorax or
large pleural effusion. No acute bony ab-
normalities.

The heart is normal in
size. The mediastinum is
unremarkable. The lungs
are clear.

The cardiomediastinal silhouette is nor-
mal size and configuration. Pulmonary
vasculature within normal limits. There
is right middle lobe airspace disease,
may reflect granuloma or pneumonia.
No pleural effusion. No pneumothorax.
No acute bony abnormalities.

Exam limited by patient rotation. Mild
rightward deviation of the trachea. Sta-
ble cardiomegaly. Unfolding of the tho-
racic aorta. Persistent right pleural effu-
sion with adjacent atelectasis. Low lung
volumes. No focal airspace consolidation.
There is severe degenerative changes of
the right shoulder.

The heart size and pul-
monary vascularity ap-
pear within normal limits.
The lungs are free of fo-
cal airspace disease. No
pleural effusion or pneu-
mothorax. No acute bony
abnormality.

The heart is enlarged. Possible car-
diomegaly. There is pulmonary vascular
congestion with diffusely increased inter-
stitial and mild patchy airspace opacities.
Suspicious pleural effusion. There is no
pneumothorax. There are no acute bony
findings.

Frontal and lateral views of the chest with
overlying external cardiac monitor leads
show reduced lung volumes with bron-
chovascular crowding of basilar atelecta-
sis. No definite focal airspace consolida-
tion or pleural effusion. The cardiac sil-
houette appears mildly enlarged.

The heart size and pul-
monary vascularity ap-
pear within normal limits.
The lungs are free of fo-
cal airspace disease. No
pleural effusion or pneu-
mothorax. no acute bony
abnormality.

The heart is mildly enlarged. The
aorta is atherosclerotic and ectatic.
Chronic parenchymal changes are noted
with mild scarring and/or subsegmental
atelectasis in the right lung base. No
focal consolidation or significant pleural
effusion identified. Costophrenic UNK
are blunted.

Apparent cardiomegaly partially accentu-
ated by low lung volumes. No focal con-
solidation, pneumothorax or large pleural
effusion. Right base calcified granuloma.
Stable right infrahilar nodular density (lat-
eral view). Negative for acute bone abnor-
mality.

The heart is normal in
size. The mediastinum is
unremarkable. The lungs
are clear.

The heart size and pulmonary vascular-
ity appear within normal limits. Low
lung volumes. Suspicious calcified
granuloma. No pleural effusion or pneu-
mothorax. No acute bony abnormality.

Figure 3: Examples of ground truth report and generated reports by CoAtt [16] and HRGR-Agent.
Highlighted phrases are medical abnormality terms. Italicized text is retrieved from template database.

Retrieval vs. Generation. It’s worth knowing that on CX-CHR, Retrieval achieves higher automatic
evaluation scores (Table 2 the 7th row) but lower medical term detection precision (Table 3 the 2nd
column) than Generation. Note that Retrieval evaluates retrieval policy module of HRGR-Agent by
masking out the generation results of generation module. The result shows that simply composing
templates that mostly describe normal medical findings can lead to high automatic evaluation scores
since the majority reports describe normal cases. However, this kind retrieval-based approaches
lack of the capability of detecting significant but rare abnormal findings. On the other hand, the
high medical abnormality term detection precision and low average false positive of HRGR-Agent
verifies that its generation module learns to describe abnormal findings. The win-win combination of
retrieval policy module and generation module leads to state-of-the-art performance of HRGE-Agent,
surpassing a generative model (Generation) that is purely trained without any retrieval mechanism.

Human Evaluation. Table 3 (last row) shows average human preference percentage of HRGR-Agent
compared with Generation and CoAtt [16] on CX-CHR and IU X-Ray respectively, evaluated in terms
of content coverage, specific terminology accuracy and language fluency. HRGR-Agent achieves
much higher human preference than baseline models, showing that it is able to generate natural and
plausible reports that are human preferable.

Qualitative Analysis. Figure 3 demonstrate qualitative results of HRGR-Agent and baseline models
on IU X-Ray dataset. The reports of HRGR-Agent are generally longer than that of the baseline
models, and share a well balance of templates and generated sentences. And, among the generated
sentences, HRGR-Agent has higher rate of detecting abnormal findings.

5 Conclusion

In this paper, we introduce a novel Hybrid Retrieval-Generation Reinforced Agent (HRGR-Agent)
to perform robust medical image report generation. Our approach is the first attempt to bridge
human prior knowledge and generative neural network via reinforcement learning. Experiments
show that HRGR-Agent does not only achieve state-of-the-art performance on two medical image
report datasets, but also generates robust reports that has high precision on medical abnormal findings
detection and best human preference.
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