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Structure-Preserving Image Super-Resolution
via Contextualized Multitask Learning

Yukai Shi, Keze Wang, Chongyu Chen, Li Xu, and Liang Lin

Abstract—Single-image super-resolution (SR), which refers to
reconstructing a higher resolution image from the observed low-
resolution (LR) image, has received substantial attention due to
its tremendous application potentials. Despite the breakthroughs
of recently proposed SR methods using convolutional neural
networks, their generated results usually lack of preserving
structural (high-frequency) details. In this paper, regarding
global boundary context and residual context as complimentary
information for enhancing structural details in image restoration,
we develop a contextualized multitask learning framework to
address the SR problem. Specifically, our method first extracts
convolutional features from the input LR image and applies one
deconvolutional module to interpolate the LR feature maps in a
content-adaptive way. Then, the resulting feature maps are fed into
two branched subnetworks. On several standard benchmarks (e.g.,
Set5, Set14, and BSD200), our extensive evaluations demonstrate
the effectiveness of our SR method on achieving both higher
restoration quality and computational efficiency compared with
several state-of-the-art SR approaches.

Index Terms—Convolutional network, context learning,
multitask learning, structure-preserving image super-resolution
(SR).

I. INTRODUCTION

IMAGE super-resolution (SR) is a fundamental problem in
image processing. Single image SR approaches, which aim

at restoring a high-resolution (HR) image only from a single
low-resolution (LR) image, have been applied to many image
and video analysis tasks, such as video surveillance [1], image-
based medical analysis [2], and image/video streaming [3], [4].

Common techniques for single image SR can be
roughly categorized into reconstruction-, example- and
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interpolation-based approaches. Reconstruction-based ap-
proaches [5]–[7], which restore HR images by deconvolutional
methods [6] with a global blur degradation model, usually in-
troduce ringing artifacts around salient structures [7] due to
inaccurate blurring kernels in the inverse problem. Example-
based approaches [8] boost the amplification factor by using
internal or external patch data to guide the image restoration.
Recently, Huang et al. [9] proposed to exploit self-similarity
for single image SR, which greatly expands the internal patch
searching space. Hu et al. [10] proposed a cascaded linear regres-
sion technique to model the relationship between HR and LR
images. Interpolation-based approaches can achieve acceptable
tradeoff between performance and efficiency with a pre-defined
kernel. However, pre-defined kernels use fixed weights for in-
terpolation, which will inevitably cause blur when the weight
definition is inconsistent with image structures. To address is-
sue, various adaptive interpolations [11]–[13] are proposed. But
the improvements in restoration quality are still limited.

The success of deep convolutional neural network (CNN) in
computer vision tasks has inspired novel trends in low-level
image restoration researches, such as rain/dirt removal [14],
noise removal [15], face hallucination [16], [17], hashing [18]
and image inpainting [19]. Focusing on learning an end-to-end
mapping between the LR images and their corresponding HR
images, several CNN-based methods [20]–[23] have been pro-
posed to perform image SR in a pure data-driven manner. That is,
they directly minimize the mean squared error (MSE) between
the predicted and ground-truth images in the training stage.
Although the restoration performance is significantly improved,
the structural inconsistency between the LR input and HR output
still exists. This is because human visual system is more sen-
sitive to structural changes, which are difficult to be exploited
from MSE-based loss functions. Recent advances in image SR
try to address this issue [24]–[26] by introducing feature-based
perceptive loss functions to the training stage. However, un-
wanted artifacts and unreal details are also introduced, which
make their SR results look unrealistic.

Considering single image SR is an ill-defined problem, it is
necessary to exploit the priors of natural image to further im-
prove the SR performance. Motivated by recent advances in
deep learning researches that exploit priors in the form of con-
text information in designing neural networks [27], [28], in this
work, we propose to design neutral networks to investigate two
types of image structural information, i.e., global structural in-
formation which corresponds to salient boundaries in a global
perspective and residual structural information which contains
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noticeable details that are critical to visual quality. The suc-
cess of multitask learning framework inspires us to leverage
such structural information in a unified manner. For example,
Yang et al. [29] proposed to utilize the common knowledge
(e.g., feature selection functions) of multiple tasks as supple-
mentary information to facilitate decision making. Considering
aforementioned structural information are usually considered as
complementary context rather than common knowledge, in this
work, we concentrate on complimentary contextualized multi-
task learning for structure-preserving single image SR. In partic-
ular, we propose a deep joint contextualized multitask learning
framework, where three types of image components are im-
posed as complimentary contexts and jointly learned, i.e., the
base image content, the boundary map, and the residual map.
Besides a convolutional network that learns content-adaptive
interpolations to produce the intermediate base image, we im-
pose an auxiliary task to back-propagate the global boundary
structural context. Meanwhile, an independent subnetwork is
introduced to explicitly model the noticeable details to provide
residual structural context.

The key contribution of this work is a contextualized multi-
task learning framework for single image SR, which is the first
attempt to incorporate joint learning of local, global, and resid-
ual contexts into Convolutional networks. Other contributions
mainly come from the proposed content-adaptive interpolation
and the subnetworks for capturing complementary image con-
tents, which enables better tradeoff between restoration quality
and the number of network parameters.

Extensive experiments on several benchmarks datasets (e.g.,
Set5, Set14, BSD500) demonstrate that the proposed framework
shows superior performance to most learning-based approaches
in the perspective of both visual quality and quantitative metrics,
which facilitates the real-time image SR process.

A preliminary version of this work is published in [30], which
integrates content-adaptive interpolation and holistic edge con-
text for structure-aware image SR. In this paper, we inherit the
idea of preserving structures and re-develop the network from
the aspect of joint context learning and multitask learning. A
simple yet powerful subnetwork is further employed to capture
noticeable image details for better visual quality. Besides, more
comparisons with state-of-the-art approaches as well as analy-
sis of the proposed modules are presented to further verify our
statements.

The rest parts of this paper are organized as follows. Section II
briefly reviews existing machine learning-based SR approaches
which motivate this work. Section III presents the details of the
proposed framework, with thorough analysis of every compo-
nent. Section V demonstrates the experimental results on several
public benchmarks, comparing with state-of-the-art alternatives.
Finally, Section VI concludes this paper.

II. RELATED WORK

A. Interpolation-Based Image Super-Resolution

Interpolation-based approaches typically start from evenly
placing the pixels of LR image to the HR grid (the integral
coordinates in the HR image domain). The basic idea of these

approaches is to estimate the unknown pixel values in the HR
grid by weighted average of surrounding known pixels. Con-
sidering common pixel changes in a local region can be ap-
proximated by continuous functions, people have proposed var-
ious weight definitions for image interpolation. For example,
bilinear interpolation is proposed to utilize local linearity, and
bicubic interpolation is proposed to exploit the high-order con-
tinuity [31]. However, there are plenty of pixel changes that
cannot be described by these pre-defined functions, especially
for regions with rich image structures. In this case, structures
will be blurred due to improper pixel averaging. To address this
problem, various adaptive interpolation [11], [12] are proposed.
For instance, Walt et al. [12] proposed to express polygonal
pixel overlap as a linear operator to improve the interpolation
performance. But the improvements are still limited.

B. Multitask Learning in Image Super-Resolution

Decades of researches on multitask learning have demon-
strated that learning multiple correlated tasks simultaneously
can significantly improve the performance of the main task [32]–
[36]. In single image SR, there is also a trend of utilizing multi-
task learning. For example, Yang et al. [37] proposed a multitask
K-SVD learning for image SR, in which example image patches
are divided into different groups and K-SVD is applied to every
group. It is shown that simultaneous learning multiple dictio-
naries can lead to better SR quality. Liang et al. [38] proposed
a multitask learning framework that jointly considers image SR
process and the image degeneration process. These works claim
that the multitask learning framework is a feasible way of uti-
lizing priors in learning-based image SR.

C. Deep Learning in Image Super-Resolution

Recently, deep learning has achieved significant quality im-
provements in image SR. For example, Dong et al. [20] uti-
lized a three-layer fully convolutional network to learn the
non-linear mapping between HR and LR patches, which has
a close relationship to sparse coding. Ren et al. [21] intro-
duced Shepard CNNs to facilitate translation variant inter-
polation, which gives a solution to both inpainting and SR.
Wang et al. [22] proposed a sparse coding based network for
image SR. Based on learned iterative shrinkage and thresholding
algorithm(LISTA) [39], they employ a set of neural networks to
restore images. Zeng et al. [40] proposed a deep autoencoder for
SR, which explores the consistent representations of HR and LR
images and demonstrate a superior efficiency compared to sim-
ilar methods based on sparse representation. Kumar et al. [41]
studied on several factors that affect the training phase to facil-
itate learning-based SR with fewer training samples. The mod-
els of these methods, although being proposed from different
aspects, are trained to minimize the squared error w.r.t. the
ground-truth HR image, which is not necessarily correlated to
good perceptual quality. Bruna et al. [24] referred this problem
as regression to mean. Their proposed solution is a conditional
generative model, which demonstrates improvement over visual
quality, but with high time cost in both training and testing. More
recently, researchers notice the importance of image details and
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Fig. 1. Architecture of our contextualized multitask deep learning framework for single-image super-resolution. Given an input LR image, our framework first
extracts its convolutional features and applies one deconvolutional module to interpolate the feature maps in a content-adaptive way. The resulting maps are then
fed into two branched subnetworks, which incorporate global boundary context and residual context, respectively. Specifically, during the neural network training,
one subnetwork outputs salient image boundaries and the intermediate HR image; the other subnetwork outputs the local residual map, i.e., the residual difference
of the generated HR image and ground-truth image. The final HR estimation is obtained by fusing the intermediate HR image and the local residual map.

make various of attempts for exploration. Kim et al. [23], [42]
further improved the SR quality by different network archi-
tectures such as very deep and recursive network structures.
However, these methods heavily rely on very deep networks
with plenty of parameters. e.g., a 20-layer convolutional neural
network [43]. In addition, perceptual losses have been proposed
for CNNs [24], [26], which conduct the loss from the image
space to high-level feature space of a pre-trained VGG-net [43].
At the same time, Ledig et al. [25] proposed to apply adversarial
network to the task of SR, which results in more image details
but lower PSNR score. More related to our work, there are sev-
eral attempts to accelerate image SR. By developing a sub-pixel
convolutional layer, Shi et al. [3] used a single model to handle
real-time image SR. Similarity, Dong et al. [44] applied convo-
lutional layers on LR image and up-scaled it with deconvolution.
They both promise low computational complexity, but there still
exists plenty of room for performance improvement.

III. CONTEXTUALIZED MULTITASK LEARNING

In this section, we introduce each main component of our
framework. As sketched in Fig. 1, the proposed framework in-
cludes three components: feature extraction, content-adaptive
interpolation, and multitask estimation.

A. Feature Extraction

Inspired by the Pyramid-Net [45], we design a pyramid net-
work structure for feature extraction. That is, there are 3 con-
volutional layers with 16, 32 and 128 kernels, respectively. The
detailed setting is summarized in Table I. The first layer with
kernel size 5× 5 is designed as a spacious receptive field to
capture as much image information as possible, as illustrated
in [46]. The other two layers with 3× 3 kernel are adopted
for better efficiency as [47]. Note that we focus on extracting
features from original LR images instead of the interpolated
images. Thanks to the decreased computations of convolutional
operations caused by the small size of feature maps, the pro-

posed feature extraction can significantly accelerate the speed
without obvious quality drop. Since the LR image has been
represented as high-dimension feature maps through the first
3 layers, the computation cost may become pretty high if we
import the high-dimension feature maps to content-adaptive in-
terpolation directly.

Therefore, we apply a shrinking layer with 8 kernels of size
1× 1 to reduce the feature dimension. Note that the kernel
number is empirically chosen for a reasonable tradeoff between
effectiveness and efficiency.

Benefiting from the shrinking layer, our model not only avoids
parameter explosion but also promotes the restoration efficiency.

B. Content-Adaptive Interpolation

The second component is one deconvolutional layer, which
is used to interpolate the LR feature maps in a content-adaptive
way. The deconvolutional layer has 8 kernels of size n× n.
Note that in this work, n is determined by the upscaling factor,
which follows the principles of bicubic interpolation. That is,
the kernel should be large enough to cover the second pixel
around the anchor pixel in the HR grid. For example, the de-
convolutional kernel is of size 8× 8, 11× 11, and 16× 16 for
the upscaling factors of 2, 3 and 4, respectively. In this way,
the deconvolutional layer can be regarded as a neural network
implementation of standard image interpolation. Let y be the
HR image with a HR grid. We construct another HR image x by
evenly placed the LR image in the HR grid with identical pixel
intervals. Then, standard interpolation can be written as

yj =
∑

i∈Ω j

xi ωji (1)

where i and j are the pixel indices in the HR grid, Ωj represents
the subset of n× n neighbouring pixels around pixel j, and
ωji is the pre-defined weight for interpolation. Note that xi is
non-zero only when it comes from a pixel in the LR image.
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TABLE I
DETAILED SETTING OF EACH COMPONENT IN OUR FRAMEWORK

Component Feature Extraction Interpolation-1 BCN Interpolation-2 RCN

layer conv conv conv conv deconv conv conv deconv conv conv

filter 5 3 3 1 11 3 3 11 3 3
channels 16 32 128 8 8 12 2 8 12 1
size 128 124 124 124 372 372 370 372 372 370
parameters 400 4,608 36,864 1,024 7,744 864 216 7,744 864 108

The five rows of the table represent the “layer type”, “filter size”, “output channels”, “size of output feature maps” and
“number of parameters”, respectively. The content-adaptive interpolation layers for RCN and BCN are “Interpolation-1” and
“Interpolation-2”, respectively. Note that this table takes the magnification factor of 3 and input images of resolution 128 × 128
as an example of parameter setup.

With these definitions, we re-formulate the interpolation pro-
cess as a basic component of a deconvolutional layer, i.e.,

yj = δ

⎛

⎝
∑

i∈Ω j

xiW (i′) + b

⎞

⎠ (2)

where δ(·) represents the activation function, W is the decon-
volutional kernel, i′ represents the pixel of W that contributes
to pixel j, and b is the bias.

In the proposed content-adaptive interpolation, we use mul-
tiple deconvolutional kernels in a similar fashion. That is, we
evenly place the LR image in the HR grid to construct hl . Then

hl+1
k = δ(hl ⊗Wk + bk ) (3)

where the subscript k represents the kernel index, “⊗” repre-
sents the convolutional operator, and hl+1 is the output image of
the lth layer. In this way, content-adaptive image interpolation
can be accomplished via a deconvolutional layer, whose kernels
are learned from sufficient training data. Note that the deconvo-
lutional layer is in the middle of the proposed network, which
is different from other CNN-based SR methods [20], [21] that
use deconvolution as the last layer. It is shown empirically that
the proposed network can achieve nice restoration quality with
reasonably increasing network parameters.

To compare the proposed network with the bicubic interpo-
lation, we construct a small network which only has one decon-
volutional layer to learn an adaptive kernel, taking BSD300 as
training data and bicubic interpolation parameters for initializa-
tion. The intensity changes of bicubic and our learned kernels
are visualized in Fig. 2, which illustrates that the learned ker-
nel contains more high-frequency components. Meanwhile, the
restoration results also indicate that the learned kernel leads
to a superior restoration quality with more recovered details
compared to the bicubic kernel. Thus, the effectiveness of the
proposed adaptive interpolation is verified.

C. Contextualized Multitask Learning

In spired by the multitask learning principles, we make an
attempt to introduce auxiliary knowledge to SR issue.

Global boundary context: We develop a Boundary Context
subnetwork (BCN) to preserve salient boundaries that represent
global image structures. BCN consists of two convolutional lay-
ers with 3× 3 kernels, where one layer is with 12 kernels and

Fig. 2. Comparison between image interpolations by bicubic and learned
kernels. (a) Bicubic kernel PSNR: 32.71 dB. (b) Learned kernel PSNR:
33.10 dB

the other layer is with 2 kernels. In the training phase of BCN,
we propose to exploit salient image boundaries by regarding
edge detection as a joint task of HR image restoration. In partic-
ular, we introduce an auxiliary term into the objective function,
which computes the error between predicted and human-labeled
edge/boundary maps. These boundary maps are from Berkeley
Segmentation Dataset (BSD) [48]. Note that there are multiple
boundary maps in BSD500 data set, we use their summation for
better visualization and show the examples in Fig. 3.

With the two tasks of image restoration and edge detection,
image components and structural features are firstly extracted
and enlarged by content-adaptive interpolation before being fed
into the BCN. Several representative samples of the extracted
feature maps are shown in Fig. 4, in which the top row and bot-
tom row show image-like and edge-like features, respectively.
This implies that these layers simultaneously extract redundant
components and features, making it possible to produce base
image and boundary maps in the HR image domain.

Through joint optimization in an end-to-end manner, feature
extraction, content-adaptive interpolation and BCN can provide
complimentary context information to each other. In this way,
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Fig. 3. Example images with salient boundaries. (a) Original images.
(b) Manually labeled edge maps.

Fig. 4. Illumination of several representative feature maps produced by the
first three layers of feature extraction. The top row and bottom row show image-
like and edge-like features, respectively.

structure-aware feature representations can be learned with the
content-adaptive interpolation.

Residual context: As a result of paying close attention to gen-
erating the HR image with salient boundaries, the concatenated
BCN might fail to restore some subtle but noticeable structures.
Motivated by the recent residual learning paradigm [23], [49],
we make an attempt to address this issue by employing a Residue
Context subnetwork (RCN). The objective of the RCN is to
synthesize a residual image, which is defined as the difference
between the interpolated HR image and the ground-truth HR
image. In contrast to using the bicubic interpolated HR image
as in [23] and [49], our model uses the intermediate HR image
provided by BCN. This can bring us two benefits: i) Higher
image SR performance. As the HR image provided by BCN
achieves comparable performance to the state-of-the-art meth-
ods, RCN can focus on remedying the overlooked information
for higher SR quality; ii) A lightweight network architecture for
RCN. Our used interpolated image contains significantly richer
information than the bicubic one. Hence, compared with [23]
and [49], the synthesization of residual images is much easier.
As illustrated in Fig. 1, the architecture of RCN is the same as
that of the concatenated BCN.

For the joint optimization of content-adaptive interpolation,
BCN and RCN, we develop a fusion layer to merge the interme-
diate output of RCN and BCN in a data-driven way. In particular,
the final HR image y of our framework is obtained by

y = f ⊗ IinterHR + Ir (4)

where f denotes a 3× 3 convolutional filter, IinterHR is the
intermediate HR image provided by BCN, and Ir is the residue
image synthesized by RCN. In this way, the parameters of f can
be adaptively updated during the learning process.

IV. FRAMEWORK TRAINING

The proposed framework is jointly optimized on a set of “LR
image, HR image and HR edge map1” triplets. For convenience,
we use Il , Ih and Ib to represent the LR image, HR image and
boundary map, respectively. Given the input Il , the objective of
our model is to reconstruct a HR image similar to Ih and predict
a boundary map similar to Ib .

The parameter W of our model can be divided into 4 dis-
joint parts, i.e., W = {Ws ,Wh ,Wb ,Wd}, where Ws and
Wd denote the parameters of content-adaptive interpolation and
RCN, respectively. We denote the parameter of feature extrac-
tion stage has combined into content-adaptive interpolation part.
For BCN, we use Wh and Wb to represent the specific weights
for generating the intermediate HR image and the boundary
maps, respectively. Since the parameters are separable, we pro-
pose to train our model in three iterative steps. First, we jointly
train content-adaptive interpolation and BCN until their conver-
gence; Second, fixing the parameters of content-adaptive inter-
polation and BCN, we update the parameters of RCN. Third, we
jointly optimize content-adaptive interpolation, BCN and RCN.
Specifically, content-adaptive interpolation and BCN are trained
according to the following objective function:

L(Il , Ih , Ib ,W) = Lh(Il , Ih ,Ws ,Wh)

+ α · Lb(Il , Ib ,Ws ,Wb) (5)

where Lh and Lb represent the HR image reconstruction ob-
jective and the boundary prediction objective, respectively. The
balance weight α is used to control the importance of Lh and
Lb , which is empirically set to 1 in all our experiments. Both Lh

and the Lb are in the form of mean squared error (MSE), i.e.,

Lh =
1
N

N∑

i=1

(
Ii
h − fh(Ws ,Wh , Ii

l )
)2

(6)

and

Lb =
1
N

N∑

i=1

(
Ii
b − fb(Ws ,Wb , Ii

l )
)2

(7)

where fh(·) and fb(·) denote the reconstructed HR image and the
predicted boundary map, respectively, i represents the sample
index, and N is the number of training triplets. For simplicity,

1In BSD data sets, more than one boundary maps are provided for every
image, which are all used in our training process. Since multiple boundary
maps are used in the same way, in this subsection, we focus on the case of one
boundary map for simplicity.
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we use Iω to denote fb(Ws ,Wb , Il). Note that when multiple
boundary maps are available, there will be more edge prediction
objectives.

Algorithm 1: Contextualized multitask Learning
Require: Training LR images Il ; HR images Ih ; boundary

images Ib ;
1: while t < T do
2: t← t + 1;
3: Randomly select a subset of LR images, HR images

and boundary images I′l , I
′
h , I′b from the training set;

4: for all I
′i
l do

5: Obtain fh(Ws ,Wh , I
′i
l ) and fb(Ws ,Wb , I

′i
l ) via

forward propagation;
6: Update Wt

s ,W
t
h ,Wt

b via the intermediate HR
output and boundary output:

∂Lh

∂fh (W s ,W h ,I′il )
, ∂Lb

∂fb (W s ,W b ,I′il )
;

7: end for
8: end while
9: while t < 2T do

10: t← t + 1;
11: for all I

′i
l do

12: Obtain fd(Ws ,Wd , I
′i
l ) via forward propagation;

13: Update Wt
d via the residual output and intermediate

HR output: ∂Ld

∂ (fd (W s ,W d ,I′il )+fh (W s ,W h ,I′il ))
;

14: end for
15: end while

The loss function for training RCN is defined as

Ld =
1
N

N∑

i=1

(Ii
h − Ii

ω − fd(Ws ,Wd , Ii
l ))

2 . (8)

Finally, the whole framework is optimized by employing the
standard back propagation algorithm, i.e.,

L =
1
N

N∑

i=1

(Ii
h − y)2 (9)

where y, the output of fusion layer, is the final HR image in the
testing phase.

The whole training phase is summarized as Algorithm 1,
which accords with the pipeline of our proposed framework in
Fig. 1.

V. EXPERIMENTS

A. Experiment Setting

Datasets: All experiments are evaluated on three challeng-
ing benchmarks, i.e., Set5 [50], Set14 [51] and BSD500 [48].
The BSD500 dataset consists of 500 natural images and human
annotations for corresponding boundaries. We use the 300 im-
ages from its training and validation set for training. The rest of
200 images in BSD500 dataset form a widely used benchmark
called BSD200. Besides, the Set5 and Set14 datasets are also
adopted as testing sets in other state-of-the-art methods such

as [20], [22], [23]. Thus, we conduct experiments on the three
benchmarks.

Implementation details: In the training phase, we first con-
vert the original color image to grayscale image by extracting the
luminance component in YCbCr color space. Then, we down-
scale the training images by requested scaling factors (e.g., 2,
3, and 4) to obtain the LR images. The LR images are cropped
into a set of patches with a stride of 4. The size of patches is
set to be same as receptive field. The corresponding HR images
and boundary maps are cropped with respect to the scaling fac-
tors. Before training, we initialize the network parameters by
a zero-mean Gaussian distribution with a standard deviation of
1× 10−4 . For the pre-training of the proposed model, we use
the 91-images [8] and PASCAL VOC2012 [54] datasets, which
totally contain 13,487 clear images. Specifically, the model us-
ing LR and HR image pairs is pre-trained following the same
strategy as [20]. We use cuDNN [47] to accelerating our model.
In the training on BSD300 dataset, The learning rate of the last
layer is set to 1× 10−5 , while the rest layers are using a fixed
learning rate of 1× 10−4 . To increase the number of training
samples, we also employ data augmentation for BSD300 dataset,
as reported in [22].

Methods and metrics: We compare our model with several re-
cent state-of-the-art methods, including a three-layer CNN (SR-
CNN) [20], super-resolution forest (SRF) [53], sparse coding-
based network (SCN) [22], anchored neighborhood regression
(A+) [23], shepard interpolation neural network (ShCNN) [21],
very deep convolutional network (VDSR) [23], and fast convo-
lutional network for SR (FSRCNN) [44]. For fair comparisons,
we employ the popular PSNR and SSIM metrics for evalua-
tion. Quantitative results are given in Tables II and III, in which
the proposed method achieves the best restoration quality. To
evaluate the structure-preserving capability, we introduce a new
metric called “EPSNR”, which can be formulated as

EPSNR = 10 log10

⎛

⎜⎝
MAX2

I
1
|E |

∑
i∈E

(Gi − Pi)
2

⎞

⎟⎠ (10)

where MAXI = 255 is used for 8-bit images, G and P denote
the ground-truth and the produced HR images, respectively, E
indicates the pixels whose distances to their closest boundary
are less than 2 pixels, and i is the pixel index. It is believed that
EPSNR can better exploits image fidelity on edge regions.

We have also investigated the model complexity from the as-
pect of parameter number. Two profiles of our model are used,
i.e., the common model (denoted as “ours”) used in the above
comparisons, and the model with a much deeper architecture
(denoted as “deeper ours”). In the “deeper ours” profile, we
only increase the convolutional layer number of feature extrac-
tion stage from 4 to 18. Thus our model has similar number of
parameters compared to VDSR. Both profiles can be acceler-
ated by cuDNN [47]. All the CNN-based methods are compared
using the Set5 dataset with a scaling factor of 3. The results il-
lustrated in Table IV demonstrate that the performance of our
model keeps increasing as the parameter number increases. Us-
ing comparable network parameters, our model can achieve a
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TABLE II
QUANTITATIVE COMPARISONS AMONG DIFFERENT METHODS IN TERMS OF PSNR (DB), IN WHICH

THE UNDERLINE INDICATES THE SECOND PLACE AND BOLDFACE REPRESENTS THE FIRST PLACE

Test set Set5 Set14 BSD200

Scaling factor ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

Bicubic 33.66 30.39 28.42 30.23 27.54 26.00 29.43 27.18 25.92
A+ [52] 36.55 32.59 30.28 32.28 29.13 27.32 31.44 28.36 26.83
SRCNN [20] 36.34 32.59 30.09 32.18 29.00 27.20 31.38 28.28 26.73
SRF [53] 36.89 32.72 30.35 32.52 29.23 27.41 31.66 28.45 26.89
FSRCNN [44] 36.94 33.06 30.55 32.54 29.37 27.50 31.73 28.55 26.92
SCN [22] 36.93 33.10 30.86 32.56 29.41 27.64 31.63 28.54 27.02
ShCNN [21] 36.83 32.88 30.46 32.48 29.39 27.51 31.75 28.60 26.95
Proposed 37.17 33.45 31.11 32.77 29.63 27.79 31.81 28.67 27.11

TABLE III
QUANTITATIVE COMPARISONS AMONG DIFFERENT METHODS IN TERMS OF SSIM, IN WHICH THE

UNDERLINE INDICATES THE SECOND PLACE AND BOLDFACE REPRESENTS THE FIRST PLACE

Test set Set5 Set14 BSD200

Scaling factor ×2 ×3 ×4 ×2 ×3 ×4 ×2 ×3 ×4

Bicubic 0.9299 0.8682 0.8104 0.8687 0.7736 0.7019 0.8524 0.7469 0.6727
A+ [52] 0.9544 0.9088 0.8603 0.9056 0.8188 0.7491 0.8966 0.7945 0.7171
SRCNN [20] 0.9521 0.9033 0.8530 0.9039 0.8145 0.7413 0.8835 0.7794 0.7018
SRF [53] 0.9536 0.9046 0.8529 0.9042 0.8168 0.7457 0.9011 0.8053 0.7332
FSRCNN [44] 0.9552 0.9128 0.8619 0.9080 0.8231 0.7509 0.9064 0.8123 0.7378
SCN [22] 0.9571 0.9112 0.8644 0.9093 0.8246 0.7541 0.9058 0.8139 0.7403
ShCNN [21] 0.9551 0.9109 0.8638 0.9079 0.8239 0.7530 0.9069 0.8144 0.7407
Proposed 0.9583 0.9175 0.8736 0.9109 0.8269 0.7594 0.9074 0.8182 0.7460

TABLE IV
COMPARISON OF PARAMETER NUMBER AND PSNR PERFORMANCE

ON Set5 WITH A SCALING FACTOR OF 3

Methods Parameter number PSNR

SRCNN [20] 57,184 32.59
FSRCNN [44] 15,740 33.06
VDSR [42] 664,704 33.66
Ours 60,436 33.45
Deeper ours 594,964 33.80

Fig. 5. Efficiency analysis for the scaling factor of 3 on the Set5 dataset.

PSNR gain of 0.14 dB compared to VDSR. Since fewer param-
eters can benefit both the training and testing phases, we recom-
mend our model with the common profile. Fig. 5 illustrates the
efficiency of all the compared methods using the “time-quality”
diagram. It is demonstrated that our model with common profile

runs nearly 2 times faster than VDSR while maintaining the
second best SR performance, which is quite suitable for
lightweight and fast implementation on consumer-grade
devices. For applications that require extremely high SR quality,
deeper ours will be a nice choice.

Some promising examples are visualized in Figs. 6 and 7.
For better viewing, we interpolate the chrominance components
by the bicubic method to generate color images. To clearly
demonstrate the difference, we choose one patch from each
image and attach them below. Compared to other methods, our
model can produce images with sharper and clearer boundaries.

Visual comparison with SRGAN: We compare our method
with the super-resolution generative adversarial network (SR-
GAN) [25]. Because of their proposed adversarial loss, SRGAN
has obtained promising performance. However, it still has prob-
lems in recovering real details, which is verified by the com-
parisons shown in Fig. 8. It is shown in the enlarged patches
of Fig. 8(c) and 8(d) that some waterdrops exist in the ground-
truth image disappear, which are produced by SRGAN methods.
But these waterdrops are captured by our method and ShCNN.
As pointed out in [55], SRGAN tends to bring in similar tex-
tures instead of recovering real details. Therefore, our proposed
framework performs better than SRGAN on recovering more
accurate details.

Discussion on real-world cases: To justify the effectiveness
of our method, we move one step forward to deal with images
from video surveillance and mobile device. Specifically, we
apply our model on real-world images with a scaling factor
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Fig. 6. Visual comparison on the “Zebra” image from Set14 (factor 3), where the PSNR and SSIM are separated by “/”. (a) Bicubic 26.64 / 0.8232. (b) A+
[52] 29.11 / 0.8462. (c) SSRF [53] 29.23 / 0.8483. (d) SRCNN [20] 29.34 / 0.8513. (e) SCN [22] 29.58 / 0.8499. (f) ShCNN [21] 29.61 / 0.8521. (g) Proposed
29.80/ 0.8589. (h) Original PSNR / SSIM.

Fig. 7. Visual comparisons on the “Butterfly” image from Set5 (factor 4), where the PSNR and SSIM are separated by “/”. (a) Bicubic 22.18 / 0.7376. (b) A+
[52] 24.68 / 0.8402. (c) SRF [53] 24.60 / 0.8280. (d) SRCNN [20] 25.31 / 0.8677. (e) SCN [22] 25.98 / 0.8821. (f) ShCNN [21] 25.85 / 0.8677. (g) Proposed 26.05
/ 0.8830. (h) Original PSNR / SSIM.

of 3. As reported in Fig. 9, “Original” indicates the original
images and “Proposed” represent the images processed with
our model. As one can observe from results shown in Fig. 9,
“Proposed” have fewer artifacts compared with “Original”. This
demonstrates the robustness of our method towards real-world
challenges.

B. Ablation Study

In this subsection, we conduct detailed analyses on the pro-
posed modules, i.e., content-adaptive interpolation, BCN and

RCN, for better understanding of our framework. We hope such
analysis can lead to new insights into image restoration re-
searches.

Content-adaptive interpolation: One of the major differences
between our model and SRCNN [20] is the employment of the
deconvolutional layer. To demonstrate the superiority of our
design, we train several fully convolutional networks (FCNs)
with various layer numbers for comparisons. Specifically, we
increase the number of middle layers from 5 to 16, result-
ing in FCN-5, FCN-9, FCN-12, and FCN-16. These FCNs
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Fig. 8. Visual comparison on Bicubic, ShCNN, our proposed, and SRGAN
methods. Note that, “SRGAN-1” represents the adversarial network with MSE-
based content loss only. “SRGAN-2” is the adversarial network with perceptual
loss as mentioned in [25]. (a) Bicubic 21.51 dB. (b) ShCNN[21] 22.54 dB.
(c) SRGAN-1 [25] 20.45 dB. (d) SRGAN-2 [25] 19.07 dB. (e) Proposed
22.72 dB. (f) Ground truth.

Fig. 9. Visual results of our model on real-world cases. The upper row shows
the case of video surveillance and the lower row shows the case of mobile
device. To see clear comparisons, it is better to zoom in the electronic version
of this paper.

follow the bicubic upsampling strategy as in SRCNN [20].
Our content-adaptive interpolation consist of 5 convolutional
layers and one deconvolutional layer, which contain feature
extraction stage, content-adaptive interpolation and BCN. We
remove the task of boundary objective to address the effective-
ness of content-adaptive interpolation. By comparing content-

TABLE V
COMPARISON BETWEEN CONTENT-ADAPTIVE INTERPOLATION

AND FCNS ON Set5 DATASET WITH A SCALING FACTOR OF 3

Module FCN-5 FCN-9 FCN-12 FCN-16 LSPM

PSNR (dB) 32.75 32.82 32.86 32.97 33.29

We remove the edge prediction objective to justify the effectiveness of
content-adaptive interpolation.

TABLE VI
COMPARISONS ON BSD200 DATASET WITH A SCALING FACTOR OF 3

Methods PSNR (dB) EPSNR (dB)

Bicubic 27.18 (+0.00) 22.71 (+0.00)
A+ [52] 28.36 (+1.21) 24.28 (+1.57)
SRCNN [20] 28.28 (+1.1) 24.24 (+1.53)
SRF [53] 28.45 (+1.27) 24.27 (+1.56)
SCN [22] 28.54 (+1.36) 24.29 (+1.58)
ShCNN [21] 28.60 (+1.42) 24.32 (+1.61)
Ours w/o boundary 28.68 (+1.46) 24.36 (+1.65)
Ours 28.69 (+1.47) 24.43 (+1.72)

adaptive interpolation with these FCNs on Set5 dataset with a
scaling factor of 3, we obtain the results shown in Table V. It is
indicated in these results that although the SR performance of
FCN keeps increasing as the network depth increases, it still
cannot outperform content-adaptive interpolation even when
there are 16 layers. Nevertheless, our content-adaptive interpo-
lation network, which only has 6 layers, surpasses these FCNs
by a clear margin. More specifically, content-adaptive interpo-
lation network outperforms FCN-16 by 0.32 dB. This explicitly
verifies the superiority of the content-adaptive interpolation.

Global boundary context: The proposed BCN is motivated
by the paradigm of mult-task learning, which incorporates edge
estimation as a co-task of HR image generation. Therefore, its
analysis is conducted by comparing the SR performance be-
tween with and without the edge prediction objective. Since
the BSD200 dataset contains manually labeled boundary maps,
based on which we can easily compute the EPSNR. We com-
pare two profiles of our model on this dataset with a scaling
factor of 3 using both PSNR and EPSNR metrics. By remov-
ing the boundary prediction objective, we degrade BCN into
single-task learning and denote it as “ours w/o boundary”. As
illustrated in Table VI, the PSNR and EPSNR gains indicate
the benefit of multitask learning. Because the boundaries only
occupy a small portion of the whole image, the improvement
on overall PSNR is minor. However, the large improvement
on EPSNR verifies the effectiveness of BCN. Another bene-
fit of incorporating boundary prediction objective is the ac-
celeration of training process. As shown in the PSNR curves
of Fig. 10, the edge prediction objective not only accelerates
the convergence, but also contributes to a higher restoration
quality.

Local residue context: We design RCN to provide comple-
mentary information for image SR. Therefore, the SR perfor-
mance of our model will be degraded if RCN is removed. To
verify our statement, we use another profile named “ours w/o
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Fig. 10. PSNR curves generated by models trained with and without edge
prediction objective.

TABLE VII
COMPARISONS BETWEEN OUR MODEL WITH AND WITHOUT

RCN ON THE PSNR (TOP) AND SSIM (BOTTOM) METRICS

Test set Set5 Set14 BSD200

Ours w/o RCN 33.36 dB 29.57 dB 28.63 dB
Ours 33.47 dB 29.64 dB 28.69 dB
Ours w/o RCN 0.9162 0.8255 0.8176
Ours 0.9176 0.8273 0.8183

RCN”, which is very similar to the previous version of this
work [30], to conduct more comparisons on the aforementioned
datasets with a scaling factor of 3. Table VII reports the com-
parison results. It is shown that, although content-adaptive in-
terpolation and BCN can produce HR image of high quality,
the SR performance can still be further improved. The improve-
ment on PSNR is minor because PSNR is a squared error-based
metric, which is difficult to reveal subtle structure differences.
In contrast, because SSIM concentrates on structure similarity,
the improvement on SSIM is more significant.

VI. CONCLUSION AND FUTURE WORK

In this paper, to address single image super-resolution,
we have proposed a novel contextualized multitask deep learn-
ing framework. Our neural network model incorporates global
boundary context and residual context to super-resolve images
while well preserving their structural details. Moreover, we have
introduced “content-adaptive interpolation”, which leverages a
set of filters that are adaptive to the training samples. Different
from the kernel estimation in blind image SR which usually
employs only a single filter, our proposed content-adaptive in-
terpolation has more filtering parameters and better convenience
of being embedded into CNNs. Our extensive experiments sug-
gest that the proposed method outperforms other leading image

super-resolution approaches, and achieves state-of-the-art per-
formances on both popular evaluation metrics and visual quality
comparison.

There are several directions to extend our method. First, we
are considering to introduce a perceptual loss into the multitask
optimization, aiming to better capture realistic and meaning-
ful image details. Second, we shall generalize this framework
to adapt to video data by taking spatio-temporal coherency
into consideration. Third, considering that additional common
knowledge in deep neural networks would be an interesting
trial, we intend to utilize complementary spatial-temporal con-
texts as privileged information for video SR, as suggested by
Yang et al. [34].
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