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Scale-Aware Pixelwise Object Proposal Networks
Zequn Jie, Xiaodan Liang, Jiashi Feng, Wen Feng Lu, Eng Hock Francis Tay, and Shuicheng Yan

Abstract— Object proposal is essential for current state-of-the-
art object detection pipelines. However, the existing proposal
methods generally fail in producing results with satisfying local-
ization accuracy. The case is even worse for small objects, which,
however, are quite common in practice. In this paper, we propose
a novel scale-aware pixelwise object proposal network (SPOP-net)
to tackle the challenges. The SPOP-net can generate proposals
with high recall rate and average best overlap, even for small
objects. In particular, in order to improve the localization accu-
racy, a fully convolutional network is employed which predicts
locations of object proposals for each pixel. The produced
ensemble of pixelwise object proposals enhances the chance of
hitting the object significantly without incurring heavy extra
computational cost. To solve the challenge of localizing objects at
small scale, two localization networks, which are specialized for
localizing objects with different scales are introduced, following
the divide-and-conquer philosophy. Location outputs of these two
networks are then adaptively combined to generate the final
proposals by a large-/small-size weighting network. Extensive
evaluations on PASCAL VOC 2007 and COCO 2014 show the
SPOP network is superior over the state-of-the-art models. The
high-quality proposals from SPOP-net also significantly improve
the mean average precision of object detection with Fast-Regions
with CNN features framework. Finally, the SPOP-net (trained on
PASCAL VOC) shows great generalization performance when
testing it on ILSVRC 2013 validation set.

Index Terms— Object proposal, convolutional neural networks,
deep learning.

I. INTRODUCTION

IN recent years, object proposal has become crucial for mod-
ern object detection methods as an important pre-processing

step [1]–[3]. It aims to identify a small number (usually at
the order of hundreds or thousands) of candidate regions
that possibly contain class-agnostic objects of interest in an
image. Compared with the exhaustive search scheme such as
sliding windows [4], object proposal methods can significantly
reduce the number of candidates to be examined and benefit
object detection in following two aspects: they can reduce
computation time and allow for applying more sophisticated
classifiers.
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Most of existing object proposal methods can be roughly
divided into two categories: the classic low-level cues based
ones and the modern convolutional neural network (CNN)
based ones. The former category of methods mainly exploit
low-level image features, including edge, gradient and
saliency [5]–[10] to localize regions possibly containing
objects. Typically they either follow a bottom-up paradigm
e.g., hierarchical image segmentation [8], [11] or examine
densely distributed windows [5], [6]. However, it is difficult
for them to balance well between localization quality and com-
putation efficiency – they cannot provide object proposals of
high quality without incurring expensive computational cost.
On the other hand, CNN-based methods either directly predict
the coordinates of all the objects in an image [12] or scan the
image with a fully convolutional network (FCN) [13], [14]
to find the regions of high objectness.1 Although they can
achieve high recall rate w.r.t. relatively loose overlap criteria,
e.g. intersection over union (IoU) with a threshold value of
0.5, this type of methods usually fails to provide high recall
rate under more strict criteria (e.g. IoU > 0.7), suggesting
their poor localization quality.

Ideally, a generic object proposal generator should offer
the following desired features: high recall rate on objects of
various categories with only a few proposals, good localization
quality for each specific object instance and high computation
efficiency. In this work, we make an effort to develop the
object proposal method toward these targets.

Our method is motivated by a statistical study on the scale of
objects in a collection of natural images. As shown in Figure 2,
we plot the distribution of objects with varying scales (mea-
sured by number of pixels) from the training and validation
sets of the PASCAL VOC detection benchmark [15]. From the
figure, one can observe that the objects of small scales (less
than 2,000 pixels) actually dominate the distribution. Similar
observations also hold in the ILSVRC 2013 and 2014 bench-
mark [16]. Unfortunately, most of existing methods perform
poorly in localizing objects of such small sizes, in terms of the
best overlap.2 Based on these empirical observations, we argue
that the quality of small objects localization is one main
bottleneck for further improving the recall rate and average
best overlap (ABO) for object proposal methods. Therefore,
we focus on tackling such a challenging problem in this work.

In particular, we develop a novel CNN based object pro-
posal method which contains a pixel-wise object proposal
network, sharing the similar spirit with object segmentation
networks [17]–[19]. Here the “pixel-wise” refers to: for every

1“Objectness” measures membership to foreground objects vs. background
2Best overlap of a particular ground-truth object is defined as the maximal

intersection over union (IoU) among all the given proposals w.r.t. this object.
Throughout the paper, Average Best Overlap (ABO) is obtained by averaging
the best overlap of all the ground-truth objects
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pixel in an image, our proposed network model will predict
a bounding box of the object containing this pixel. Such
a pixel-level comprehensive object proposal strategy fully
exploits the available annotations for object segmentation3

and substantially improves the quality of object proposals
through enhancing the opportunities of accurately hitting the
ground-truth object. As the receptive field of each pixel in
CNN is a local region around the pixel, directly predicting
the coordinates of the bounding box is challenging due to the
various spatial displacements of objects. We thus propose to
predict the offset of the bounding box w.r.t this pixel, for each
pixel.

We then take a further step to focus on enhancing the local-
ization precision for small-scale objects. We propose a new
scale-aware strategy for object proposal, which is inspired by
the divide-and-conquer philosophy. Specifically, we train two
independent networks, each of which predicts bounding box
coordinates for objects at different scales (small or large). Then
for each pixel, we will obtain two object proposals for choice.
To adaptively fuse them, we introduce another object confi-
dence network. The network consists of two branches – one
for predicting objectness confidence and the other one for
weighting the large-/small-size4 object localization networks.
The objectness branch predicts the likelihood of each pixel
coming from an object of interest, and the large-/small-size
weighting branch trade-offs the contribution of the large-size
and small-size networks to final prediction, by predicting the
probability of the pixel belonging to an object of a large
size. In the training phase, the size of an object can be
easily inferred from its annotated segmentation mask, which
is used for training the proposed network. For a new image
without annotation, both the large-size and small-size object
localization networks will predict the bounding box coordi-
nates which are combined according to the weights from the
confidence network. An overview of the proposed network
model is presented in Figure 1.

Therefore, the scale-aware coordinates prediction can
achieve outperforming localization quality for a wide range
of object sizes as for various object sizes, the final result can
always considers and fuses the bounding boxes predicted by
two localization networks robustly based on a reliable large-
/small-size weighting mechanism.

To further improve the performance of localizing small
objects, we employ a multi-scale strategy for object proposal
on a new image. This is inspired by the observation that
by enlarging the challenging small object into a larger one,
the coordinates prediction error of the small object will be
scaled down, as in the case of zooming in on a small object
to obtain a clearer view for humans or cameras. Finally,
a superpixel based bounding box refinement operation is
applied to fine tune the proposals.

In short, we make the following contributions to object
proposal generation. Firstly, we introduce a segmentation-

3The segmentation annotations can be readily collected from many public
benchmark datasets.

4Throughout the paper, we use “large-size network”/“small-size network”
to refer to a localization network trained specifically for localizing objects of
large/small sizes.

Fig. 1. Examples of predicted “objectness map” in (b), “offsets to object
center” after weighted combination in (c) and “object proposals” in (d).
“Offsets to object center” is indicated by the arrows pointing to ((xi

min +
xi

max)/2 − xi , (yi
min + yi

max)/2 − yi ) for each pixel i . Yellow and magenta
colors in “offsets to object center” and “object proposals” indicate that the
prediction is from a pixel with large-size confidence higher than 0.5 or less
than 0.5. In the figure, only the predictions for the pixels with objectness
higher than 0.5 are shown. (a) Image. (b) Objectness. (c) Offsets to object
center. (d) Object proposals.

Fig. 2. Distribution of objects w.r.t. their areas (measured by number of
contained pixels) on the PASCAL VOC 2012 benchmark. It can be seen that
small objects occupy a large proportion of the collection.

like pixel-wise localization network to densely predict the
object coordinates for each pixel. Secondly, we develop a
scale-aware object localization strategy which combines the
predictions from a large-size and a small-size network with
a weighting mechanism to boost the coordinates prediction
accuracy for a wide range of object sizes. Thirdly, we conduct
extensive experiments on the PASCAL 2007, COCO 2014
and ILSVRC 2013 datasets. The results demonstrate that our
proposed approach outperforms the state-of-the-art methods by
a significant margin, verifying the superiority of the proposed
scale-aware pixel-wise object proposal network.

The remainder of this paper is organized as follows.
In Section II, we review the related works on object proposal
generation. In Section III, we describe our scale-aware pixel-
wise localization network. After showing the experimental
results in Section IV, we draw the conclusion in Section V.
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II. RELATED WORK

The existing object proposal generation methods can be
classified into three types: window scoring methods, segment
grouping methods and CNN-based methods.

Window scoring methods design different scoring strate-
gies to predict the confidence of containing an object of
interest for each candidate window. Generally, this type of
methods first initializes a set of candidate window regions
across scales and positions in an image, and then sorts them
with a scoring model and selects the top ranked windows as
proposals. Objectness [20] selects the initial proposals from the
salient regions in an image and sorts them based on multiple
low-level cues, such as color, edges, location size, etc. [10]
proposed a cascade of SVMs trained on gradient features to
estimate the objectness. BING [5] trains a simple linear SVM
on image gradients and applies it in a sliding window scheme
to find the highest scored windows as object proposals. Edge
Boxes [6] is also performed in a sliding window manner,
but relies on a carefully hand-designed scoring model which
sums the edge strengths fully inside the window. Window
scoring methods are usually computationally efficient as they
do not output segmentation masks for the proposals. However,
it seems difficult for them to achieve high recall rate under
high overlap criteria (e.g. IoU > 0.7), which suggests the
poor localization quality. This can probably be attributed to
the discrete sampling of the sliding windows which are all in
the pre-defined scales and positions.

Segment grouping methods are usually initialized with an
oversegmentation to obtain superpixels for an image. Then
different merging strategies are adopted to group the similar
segments hierarchically to generate the object proposals of
all scales. Generally, they follow a bottom-up scheme which
relies on diverse low-level image cues including color, shape
and texture. For example, Selective Search [8] iteratively
merges the most similar segments to form proposals based
on several low-level cues. Randomized Prim [9] learns a
randomized merging strategy based on the superpixel connec-
tivity graph. Multiscale Combinatorial Grouping (MCG) [11]
utilizes multi-scale hierarchical segmentations based on the
edge strength and the obtained proposals are then ranked
using features including size, location, shape and contour.
Geodesic object proposal [21] also depends on superpixels as
initialization, and then computes a geodesic distance transform
and selects certain level sets of the distance transform as
object proposals. [22] proposes learning conditional random
field (CRF) in multiscales to classify the superpixels into
objects or background. Generally, compared with window
scoring methods, segment grouping methods achieve more
consistent and acceptable recall under both loose and strict
overlap criteria, indicating a better localization ability. Nev-
ertheless, these methods produce high quality proposals often
by multiple segmentations in different scales and color spaces,
thus are quite computationally expensive and time-consuming.

CNN-based methods follow the great success of Con-
volutional Neural Network in other vision tasks, [23]–[26],
especially semantic segmentation [27]–[29]. They leverage
the powerful discrimination ability of Convolutional Neural
Network (CNN) to extract visual features as inputs of other

techniques to produce proposals or directly regress the coor-
dinates of all the object bounding boxes in an image. Multi-
Box [12] trains a network to directly predict a fixed number of
proposals and their confidences in an image and ranks them
with the obtained confidences. RPN [13] uses a Fully Con-
volutional Network (FCN) to densely generate the proposals
in each local patch based on several pre-defined “anchors”
in the patch. DeepProposal [30] hunts for the proposals in
a sliding window manner by using the CNN features from
the final to the beginning layers and training a cascade of
linear classifiers to obtain the highest scored windows. Current
CNN-based methods typically achieve high recall with only a
small number (usually < 1,000) of proposals, under loose
overlap criteria (e.g. 0.5<IoU<0.6). But similar to window
scoring methods, they can hardly achieve high recall rate under
more strict overlap criteria (e.g. IoU > 0.7). To improve the
object proposal localization quality, different from them, our
approach predicts the object locations in a pixel-wise manner
so that we have much more chances to localize each object
with high precision. This also takes the full advantage of
the publicly available segmentation masks annotations. This
is similar to [31] which deals with object detection task in the
object coordinates prediction part. In addition, our scale-aware
prediction strategy provides adaptive accurate prediction for
both large-size and small-size objects, which also distinguishes
our method from others.

III. SCALE-AWARE PIXELWISE PROPOSAL NETWORK

The proposed Scale-aware Pixel-wise Object Proposal Net-
work (SPOP-net) is based on a pixel-wise segmentation-like
object coordinates prediction network, and includes a scale-
aware localization mechanism for predicting the coordinates of
objects of different sizes. In addition, a multi-scale prediction
strategy is employed during testing to boost the small objects
localization. Finally, a superpixel boundary based proposal
refinement is introduced to further improve the proposal
precision. We will elaborate all the components of SPOP-net
in this section.

A. Pixelwise Localization Network

The proposed Scale-aware Pixel-wise Object Proposal
Network (SPOP-net) takes an image of any size as input and
predicts the location of the object w.r.t. each pixel in the
image. More concretely, for each pixel, SPOP-net predicts the
normalized coordinates of the bounding box of the object that
contains the pixel. The predictions from the background pixels
make no sense and will be ranked behind due to low objectness
scores they obtain, thus making no difference to the recall
performance of top-ranked proposals, which will be detailed
later. In this subsection, we first explain the architecture of
SPOP-net and then elaborate on how to train and apply the
SPOP-net.

1) Architecture: Our SPOP-net is built upon a pre-trained
DeepLab-LargeFOV segmentation network [17]. Its architec-
ture is shown in Table I. The receptive field of our localization
network in the last layer is 435×435. This large receptive field
enables SPOP-net to “see” a large region of the image in its
last layer and predict the object bounding boxes effectively.
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TABLE I

DETAILS OF DEEPLAB-LARGEFOV NETWORK ARCHITECTURE

2) Training: For each pixel, the pixel-wise localization
network aims to predict the bounding box coordinates
t = (xmin/w, ymin/h, xmax/w, ymax/h) of the object that
contains this pixel. Here (xmin, ymin) and (xmax, ymax) denote
the coordinates of the top-left and bottom-right corners of
the object bounding box containing the pixel; h and w
represent the height and the width of the image plane
respectively. Therefore, for a single object, all the pixels
inside this object are given the same ground-truth values
(xmin/w, ymin/h, xmax/w, ymax/h). We train the pixel-wise
localization network to minimize the following localization
error L that is proportional to the Euclidean distance between
the predicted coordinate vector ti and the ground-truth coordi-
nate vector t∗i for all the foreground pixels. The loss function
L is defined as

L =
∑

i

p∗
i ‖ti − t∗i ‖2, (1)

where ti is the predicted 4-d object coordinate vector, and p∗
i is

a binary variable indicating whether the pixel i is a foreground
one: it takes 1 if the pixel i is from a foreground object and
0 otherwise. Such a filtered loss (through p∗

i ) enables the
localization network to concentrate on localizing foreground
objects without being distracted by background pixels in the
training phase. In the practical implementation, as the final
layer has smaller size than the input image, we resize the
ground-truth coordinate map to the same small size as the
final layer.

However, due to the possible spatial displacement (e.g. two
exactly the same objects could appear at different locations in
an image), accurately predicting the absolute object bounding
box coordinates is difficult. It is because these two objects have
the same visual input for the model, but their locations the
model needs to learn to predict are totally different. To solve
this issue, for each pixel, we change its learning targets from
the absolute object bounding box coordinates to the offsets
from the pixel to the object bounding box. E.g. for object

bounding box coordinate xmin/w, we change the target from
xmin/w to (xmin − xself)/w, here xself is the x coordinate of
the pixel itself. Changing the coordinates to offsets can be
conveniently achieved by element-wisely summing the output
of the 2nd last layer and the spatial coordinate map (x or y
values of all the pixels themselves). Then the absolute object
bounding box coordinates can be used as learning targets for
the final layer. In this way, applying the absolute coordinates
learning targets to the final layer is equivalent to applying the
following object coordinate offsets to the 2nd last layer.

(
xmin − xself

w
,

ymin − yself

h
,

xmax − xself

w
,

ymax − yself

h

)

Then we can directly obtain the absolute object proposal
coordinates from the predictions of the final layer. After
obtaining the output map from the final layer having a smaller
size than the input image, all the subsequent procedures
(e.g. refinement, ranking and NMS) are only based on the
output map of smaller size. Because we just leverage pixel-
level prediction of proposals for having higher chance to hit
the ground-truth objects accurately instead of doing pixel-level
classification as DeepLab. If resizing the smaller output map
back into the original size, the subsequent refinement, ranking
and NMS steps will bring much higher computation burden
but not significant performance improvement.

B. Scale-Aware Localization

A fully trained pixel-wise localization network can predict
the coordinates of object bounding boxes w.r.t. each pixel
from an image. However, a single network model may not be
able to well handle all the annotated objects that have quite
diverse sizes and only offers inferior localization performance
for objects of small sizes. To verify this point, we conduct
the following preliminary experiments to evaluate the errors
of bounding box prediction for large and small objects, using
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Fig. 3. An image passes through several layers to obtain four maps in the second last layer. In the second last layer, two maps are element-wise summed
with spatial x coord map to produce the final prediction for the xmin and xmax of the corresponding objects for all the pixels, and the other two maps are
element-wise summed with spatial y coord map to produce the final prediction for the ymin and ymax of the corresponding objects for all the pixels. In this
way, the four maps in the second last layer in our fully trained network actually predict the four offsets between each pixel position and its corresponding
object location, which makes it easier for the network to predict the object coordinates in the final layer. Different colors in the ground-truth maps and spatial
coord maps represent different values. Note that we only show the foreground regions of spatial x and y maps for better view.

TABLE II

L2 ERRORS OF NORMALIZED COORDINATES PREDICTION FOR BOTH

LARGE (≥ 2,000 PIXELS) AND SMALL OBJECTS (< 2,000 PIXELS) IN

VOC 2007 TESTING SET, BASED ON THE NETWORK TRAINED ON

THE ANNOTATED OBJECTS OF ALL SIZES

a single pixel-wise localization network trained on the anno-
tated objects of all sizes. The evaluation results are shown
in Table II.

From Table II, one can observe that the network trained
on all the objects of different sizes produces an L2 error for
small objects that is about 3 to 6 times larger than the error for
large objects. This demonstrates the poor localization ability
of a single network model for small objects.

The difficulty of accurately localizing both large and small
objects using a single network arguably lies in handling the
highly diverse offsets of large and small objects. Apart from
this, another difficulty comes from the extremely unbalanced
training samples between the pixels from large and small
objects. Such imbalance leads to the fact that training error
of large objects dominates the training loss to minimize.

Also, we empirically verify the sample imbalance through
statistics on the pixel-level distribution of the annotations in
terms of the area of the object (see Figure 4) since our pixel-
wise localization network is trained on pixel-level annotations.

To improve the localization accuracy for small objects,
we propose a scale-aware localization strategy. Roughly, in the
scale-aware strategy, two localization networks are trained –
which share the same architecture – with two non-overlapped
subsets of the objects. The large-size network is only trained
on the pixels belonging to large objects and the small-size

Fig. 4. The distribution of all the pixels w.r.t. the area of the object each
pixel belongs to. It is shown that although the number of small objects is
large according to Figure 2, the number of pixels belonging to small objects
is still small, leading to the unbalanced pixel-level training samples.

network is only trained on the pixels belonging to small
objects. The loss function to be optimized for the large-size
and small-size network are shown in Eqn. (2) and Eqn. (3)
below respectively:

Ll =
∑

i

l∗i ‖ti − t∗i ‖2 (2)

Ls =
∑

i

s∗
i ‖ti − t∗i ‖2 (3)

where l∗i and s∗
i are binary indicators showing whether the

pixel i belongs to a large object or a small object. The
effectiveness of training such scale-aware networks is validated
by evaluating the L2 errors of small objects location prediction
with the small-size network. See Table III. During the testing
phase, the two networks work simultaneously to output their
own prediction for an image. Then, the predictions from two
networks are combined with an adaptive weighting scheme.

The weight is output by a network trained for classifying
large and small objects pixel-wisely and the weight is equal to
the confidence of the pixel belonging to a large object obtained
in the last layer of the network. Such a classification network
is termed as “confidence network”.
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Fig. 5. Illustration of the “confidence network” which bifurcates into two branches to perform foreground/background classification and large/small object
classification after all the layers of “DeepLab-LargeFOV” network. Both the sub-networks contain two convolution layers with 3 × 3 kernel size. The first
layer outputs 1,024 feature maps while the second (also the last) layer produces two maps showing the final confidence of their own task. In the ground-truth
map of the foreground/background classification branch, red pixels are in foreground objects while blue pixels are in background. In the ground-truth map
of the large/small object classification branch, red pixels are in large objects, blue pixels are in small objects and white pixels are background pixels thus are
not considered during training.

TABLE III

L2 ERRORS OF NORMALIZED COORDINATES PREDICTION FOR SMALL

OBJECTS (< 2,000 PIXELS) IN VOC 2007 TESTING SET, BASED ON
THE NETWORK TRAINED ONLY ON SMALL OBJECTS

The structure of the confidence network is illustrated
in Figure 5. Apart from the large/small classification branch,
the confidence network also outputs the objectness confidence
in another branch aiming to classify all the pixels into two
categories, i.e., foreground pixels and background pixels.

In the confidence network, the two branches share the
convolutional features in the lower layers. The last feature
maps shared are then fed into the two branches. The intuition
for dividing the confidence network into two branches at
the higher layer is that for different tasks, the low-level
features are usually common and can be shared [32], while
the semantically high-level features extracted by the higher
layers may be totally different for different tasks. For exam-
ple, the foreground/background classification task prefers the
common features that are insensitive to different sizes of
objects, but the large/small classification task aims to extract
the discriminative features between large and small objects.
The large receptive field (i.e. 435×435) in the last layer of the
“confidence network” provides a sufficient large view enabling
the prediction of both foreground/background and large/small
classifications.

The objective function to be optimized during training the
confidence network is a multi-task cross-entropy loss:

L =
∑

i

p∗
i log(pi) + (1 − p∗

i ) log(1 − pi)

+
∑

i

p∗
i (z∗

i log(zi ) + (1 − z∗
i ) log(1 − zi )). (4)

Here p∗
i and pi are the ground-truth label of the fore-

ground/background classification and the predicted confidence
of being a foreground pixel for pixel i , respectively. z∗

i
and zi are the ground-truth label of the large/small object
classification and the predicted confidence of being contained
in a large object for pixel i , respectively. Note that the second
term is only activated when p∗

i equals 1, indicating that the
pixel belongs to a foreground object. After the large object
confidence zi for the pixel i is obtained, the final predicted
coordinates of the object it belongs to are the weighted sum
of the predictions by the large-size and small-size networks as
follows.

ti = zi tl,i + (1 − zi )ts,i (5)

where ti,l and ti,s are the predictions by the large-size and the
small-size network respectively. Then we treat the predicted
object coordinates by each pixel as an initial proposal to be
passed to the later proposal refinement and non-maximum
suppression (NMS) steps to obtain the final object proposals.

C. Multi-Scale Inference

To further enhance the accuracy of small objects localiza-
tion, we propose to employ a multi-scale prediction strategy
in the testing phase. The motivation is quite straightforward:
by enlarging the challenging small object into a larger one,
the coordinates prediction error of the small object will be
scaled down, which is similar to zooming in on a small object
to improve the localization accuracy. At the enlarged scale, all
the proposals in the enlarged image will be mapped back to
their corresponding positions at the original scale.

Therefore, given a testing image, in addition to its original
scale, we resize it into a larger scale and run the prediction
process as well. Specifically, both on the original scale and
the enlarged scale, we simultaneously run the two localization
networks (i.e. large-size and small-size) and the confidence
network, and combine the both location predictions weighted
by the large object confidence zi of its own scale. As all the
feed-forward computation of the networks is independent and

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 18:56:46 UTC from IEEE Xplore.  Restrictions apply. 



JIE et al.: SPOP-nets 4531

Fig. 6. Overview of our approach. An image passes the confidence network to obtain the pixel-wise objectness confidences and large/small size confidences
(red color represents higher values, e.g., high objectness and high large size confidences). The image also passes two localization networks to obtain the predicted
pixel-wise large and small object coordinates (xmin, ymin, xmax, ymax), respectively. The feed-forward computation of the three networks are independent and
can be run in parallel. Then the final predicted object coordinates are the sum of the predictions by large-/small-size networks weighted by the large/small
size confidences. Using the objectness confidences as ranking scores, the final proposals are produced after refinement, ranking and NMS. For multi-scale
inference, all the above procedures are run for the enlarged input image as well. Then the proposals obtained by both the original and enlarged scales are
mixed in the ranking and NMS.

can be performed in parallel, the computation time cost can
remain relatively low.

D. Proposal Refinement

We then refine the two sets of proposals obtained in
both original and enlarged scales. An inherent weakness for
object localization by regressing the four coordinates with
CNN is that the objectness and coordinates ground-truths
only permit determining the most discriminative foreground
windows. Therefore, even though the windows decided by the
localization networks are likely to overlap with target objects,
it cannot be ensured that they are able to delineate object
boundaries well.

To take object boundaries into consideration, we utilize a
superpixel boundary based window refinement method, similar
to [33]. The main idea is to expand or shrink the proposals to
align the four sides of the proposals with the boundaries of the
superpixels better. The reason for using superpixels is that the
boundaries of superpixels are informative indicators of object
boundaries and superpixels can be generated efficiently with
off-the-shelf algorithms (e.g. SLIC [34]). Specifically, for each
proposal, we generate two versions of refined proposals, i.e.
the minimum bounding rectangle of all the superpixels entirely
inside this proposal and the minimum bounding rectangle of all
the superpixels entirely inside this proposal or straddling this
proposal (see Figure 7). As illustrated in Figure 7, expansion
and shrinkage offer two possible ways of getting close to
the ground-truth box for the proposals with different location
biases to the ground-truth. Therefore, we pass all the two
versions of refined proposals as well as the initial proposals
to the later proposal ranking and NMS processing.

Fig. 7. Illustration of proposal refinement using superpixel boundary based
expansion and shrinkage. Yellow boxes represent initial proposals; red boxes
and blue boxes are the corresponding refined proposals after shrinkage and
expansion respectively. In the left example, expansion finds a closer box to
the ground-truth, but in the right example, shrinkage helps the proposal get
close to the ground-truth.

In the stage of proposal ranking , we sort all the propos-
als (including the initial and the two refined ones in both
original and enlarged scale) by their objectness confidence pi .
Recall pi is the output from foreground/background classi-
fication branch of the confidence network. For each initial
proposal, its two versions of refined proposals are assigned
with the same objectness confidence pi as itself. Finally,
the standard non-maximum suppression (NMS) is employed
to remove the highly overlapped redundant proposals.

IV. EXPERIMENTS AND DISCUSSION

A. Experimental Setups

The proposed Scale-aware Pixel-wise Object Proposal Net-
work (SPOP-net) is trained on the SBD annotations [35]
of PASCAL VOC 2012 trainval set, which provides 11,355
images with fine segmentation masks annotations. We man-
ually label the objects containing more than 2,000 pixels as
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Fig. 8. Recall and average best overlap (ABO) comparison between different variants. S-scale, S-scale+SA, M-scale+SA, M-scale+SA+RF denote single-
scale, single scale with scale-awareness, multi-scales with scale-awareness, multi-scales with scale-aware and refinement, respectively. “SA” and “RF” denote
“scale-awareness” and “refinement”, respectively. (a) Recall vs # proposal (IoU=0.5). (b) Recall vs # proposal (IoU=0.7). (c) AR vs # proposal (0.5<IoU<1).
(d) ABO vs # proposal. (e) Recall vs IoU (100 proposals). (f) Recall vs IoU (500 proposals). (g) Recall vs IoU (1000 proposals).

large objects and those containing less than 2,000 pixels as
small ones. Considering the unbalanced pixel samples when
training the large-/small-size weighting branch, for each large
object, we randomly sample 100 pixels in it for training to
balance the number of training pixels belonging to large and
small objects. Both the “confidence network” and the two
localization networks are trained using the published DeepLab
code [17], which is based on the publicly available Deep
Learning platform Caffe [36]. The weights in the newly added
layers are all initialized with a zero-mean Gaussian distribution
with the standard deviation 0.01 and the biases are initialized
with 0. The initial learning rate is 0.001 for the pre-trained
layers in the DeepLab-LargeFOV network and 0.01 for the
newly-added layers. All of them are reduced by a scale of 10
after every 20 epochs. The mini-batch size is set as 8. We train
the network for about 60 epochs. The overlap threshold for
NMS in our experiments is set to 0.8 for a good trade-off
between the recall at low IoU thresholds (e.g. 0.5) and high
IoU thresholds (e.g. 0.8). The training images are all resized to
513*513. During testing, for original scale, all the images are
directly fed into the networks without any scaling; for enlarged
scale, all the images are enlarged by a factor of 2.

The proposed SPOP-net is then extensively evaluated on
PASCAL VOC 2007 testing set which is the most widely
used in comparison of object proposal algorithms. It con-
tains 4,952 images with annotated objects (including “hard”
objects) in bounding boxes. We are not able to evaluate
on PASCAL VOC 2012 testing set because the ground-
truths are not publicly released. Since the missed objects
can never be recovered in the post-classification stage in a

proposal-based object detection pipeline, object recall rate
is naturally regarded as the standard evaluation metric for
object proposal algorithms. Also, we evaluate the localization
quality measured by Average Best Overlap (ABO). In addition,
the object detection performance using our proposals in Fast-
Regions with CNN features (RCNN) [3] detection pipeline
is evaluated to validate the effectiveness of our proposals in
the object detection task. Finally, we conduct the generaliza-
tion ability evaluation by testing the recall rate on ILSVRC
2013 validation set using our network which is trained on
PASCAL VOC 2012.

B. Ablation Studies

We first study the effectiveness of the four components in
our method: pixel-wise localization network (basic setting),
scale-aware localization, multi-scale inference and proposal
refinement. Several simplified variants of the SPOP-net are
tested in terms of the object recall rate on PASCAL VOC
2007 testing set. Specifically, we use the prediction only at the
original scale without scale-awareness and proposal refinement
as our baseline, which is referred to as single scale. Without
scale-awareness, only one localization network is trained on
all of the foreground pixels including both large-size and
small-size ones. Then, we accumulatively add scale-awareness,
multi-scale inference, proposal refinement to the baseline to
see the benefits of each component. Please note that multi-
scale inference here indicates the prediction at two scales,
namely the original image scale and the 2-time enlarged scale.

Figure 8 shows the recall and average best overlap (ABO)
comparisons under different scenarios between the four
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Fig. 9. Distribution of the detected objects w.r.t. the object areas (measured
by number of contained pixels) on the PASCAL VOC 2007 testing set of the
four variants of the SPOP-net. The IoU threshold is 0.5. 2,000 proposals are
generated for each image.

variants, i.e. single scale, single scale with scale-awareness,
multi-scales with scale-awareness, multi-scales with scale-
awareness and refinement. The number of proposals of S-scale
and S-scale+SA are around 500 due to that most proposals
can be filtered after NMS as pixel-wise localization networks
generate highly overlapped proposals (see Figure 14). From
Figure 8(a), 8(b) and 8(c), 8(e), 8(f) and 8(g), we find that
both scale-awareness and multi-scale inference improve the
recall under both low IoU threshold (e.g. 0.5) and high IoU
threshold (e.g. 0.7). As for proposal refinement, it is found
that it harms the recall under low IoU thresholds (e.g. 0.5)
when the number of proposals is less than 500. The reason
probably lies in the large number of proposals after refinement,
which is 3 times as big as that before refinement. Although this
increases the opportunities of getting close to the ground-truths
which can boost the recall for a large number of proposals,
this also causes too many duplicate proposals to concentrate
on a small area, which lowers down the recall under loose IoU
criteria when only requiring a small number of proposals. For
average best overlap, it shows a similar trend to the recall from
Figure 8(d), suggesting the benefits of all three components in
terms of localization quality.

We then study the contributions of all the components for
different object areas. Figure 9 presents the distributions of
the detected objects of both the four variants of SPOP-net and
the ground-truths w.r.t the object areas. It is found that the
baseline variant, i.e. single scale without scare-awareness and
refinement, can hit most of big objects but performs poor for
small objects. Scare-aware weighted combination mechanism
and multi-scale inference help improve the recall for small
objects significantly, which shows the effectiveness of both
the proposed scare-aware localization strategy and multi-scale
inference.

To further verify the effectiveness of scale-awareness and
multi-scale inference in small objects localization, we break
up the SPOP-net into four building blocks, i.e. large-size
network and small-size network in original scale, and large-
size network and small-size network in enlarged scale, in order
to investigate their respective contributions to the final local-
ization. We evaluate the average best overlap (ABO) of
the four building blocks for the ground-truth objects with

Fig. 10. Average best overlap (ABO) versus ground-truth object area for the
four building blocks localization results: large-size network in original scale,
small-size network in original scale, large-size network in enlarged scale and
small-size network in enlarged scale. All the ABOs are computed given the
top 1,000 proposals per image.

different areas. Figure 10 shows the ABO versus object area
curves of the four building blocks. It can be seen that when
the object becomes larger, the large-size network in original
scale predicts more accurate localization results. The small-
size network in original scale achieves the highest ABO when
the object area is around 2,000, but it also performs poorly
for those too small objects. Fortunately, the small-size network
in enlarged scale covers this shortage, and gives the best
performance for very small objects due to the enlarged view
of small objects. As for the large-size network in enlarged
scale, it performs the best for those middle-size objects con-
taining 2,000 to 20,000 pixels, serving as the bridge between
the large-size network in original scale and the small-size
networks in both scales. The reason for the behavior of the
large-size network in enlarged scale is probably that when
the small objects are enlarged, they become “large objects”
such that it becomes easier for the large-size network to
predict, but original large objects become even larger which
cannot be covered by the receptive field, making it difficult to
precisely localize them. In both original scale and enlarged
scale, the result after scale-aware fusion can achieve the
maximal ABO among the two ABOs obtained by large-size
and small-size networks, validating the effectiveness of the
adaptive scale-aware fusion strategy.

By investigating the building blocks of the proposed
SPOP-net, it is found that they can complement each other
in localizing the objects with different areas and ensures the
SPOP-net to perform well for a wide range of object sizes.

C. Comparisons on Object Recall

We compare our SPOP-net with the following state-of-
the-art object proposal methods: BING [5], Edge Boxes [6],
Geodesic Object Proposal [21], MCG [11], Objectness [20],
Selective Search [8] and Region Proposal Network (RPN with
VGG-16) [13]. We first evaluate object recall on PASCAL
VOC 2007 testing set, which contains 4,952 images with
about 15,000 annotated objects. Proposals of most state-of-
the-art methods were provided by Hosang et al. [37] in a
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Fig. 11. Recall and average best overlap (ABO) comparison between our SPOP-net and other state-of-the-arts on PASCAL VOC 2007 testing set. (a) Recall
vs # proposal (IoU=0.5). (b) Recall vs # proposal (IoU=0.7). (c) AR vs # proposal (0.5<IoU<1). (d) ABO vs # proposal. (e) Recall vs IoU (100 proposals).
(f) Recall vs IoU (500 proposals). (g) Recall vs IoU (1000 proposals).

Fig. 12. Recall and average best overlap (ABO) comparison between our SPOP-net and other state-of-the-arts on MS COCO 2014 validation set. (a) Recall
with 100 proposals. (b) Recall with 500 proposals. (c) Recall with 1000 proposals. (d) Recall at IoU 0.5. (e) Recall at IoU 0.7. (f) ABO vs # proposal. (g)
AR vs # proposal. (h) AR vs # proposal (large). (i) AR vs # proposal (small).

standard format. As for DeepProposal approach, we directly
downloaded the pre-computed proposals from the official
website.5

Figure 11(a) and 11(b) show the recall when varying the
number of proposals for different IoU thresholds. As can

5https://github.com/aghodrati/deepproposal

be seen, under a loose 0.5 IoU threshold, RPN takes the
lead all the time for both a small and a large number of
proposals.DeepProposal 50 also performs well under low IoU
thresholds (e.g. 0.5). Given a more strict IoU threshold 0.7,
our SPOP-net almost keeps the best consistently. We also
plot the average recall (AR) versus the number of proposals
curves for all the methods in Figure 11(c). This is because
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Fig. 13. Average best overlap (ABO) versus ground-truth object area for
the SPOP-net and other state-of-the-art methods. All the ABO are computed
given the top 1,000 proposals per image.

AR summarizes proposal performance across IoU thresholds
and correlates well with object detection performance [37].
The proposed SPOP-net also takes the first place all the time
regarding the number of proposals. Figure 11(d) shows the
average best overlap (ABO) when changing the number of
proposals. The proposed SPOP-net shows good localization
quality, especially when the number of proposals is more
than 500. Figure 11(e), 11(f) and 11(g) demonstrate the recall
when the IoU threshold changes within the range [0.5, 1] for
different numbers of proposals. It is found that RPN performs
well with a small number of proposals when setting a low IoU
threshold (< 0.7). When increasing the number of proposals
from 100 to 1,000, our SPOP-net gradually shows its advan-
tage. Especially for the top 1,000 proposals, the SPOP-net
performs superiorly across a wide range of IoU thresh-
olds from 0.5 to 0.85, which have the strongest correlation
to object detection performance thus are typically desired in
practice [37].

Figure 13 shows the average best overlap (ABO) of the
proposed SPOP-net as well as several state-of-the-art methods
for the ground-truth objects with different areas. For most
object sizes, the SPOP-net shows outstanding performance.
Especially for small objects whose area is less than about
1,000, the SPOP-net takes the first place, achieving an ABO
higher than 0.5. RPN can achieve a good ABO around 0.7 for
the objects whose areas are more than 2,000 pixels, but can
hardly reach a higher ABO even if the object is large. This
may explain why the recall of RPN is very high when setting
a loose IoU threshold (e.g. 0.5) but decreases sharply with the
increasing of IoU threshold when it exceeds 0.7. The classic
low-level cues based methods (e.g. Selective Search, MCG,
GOP) perform very well for large objects but have inferior
performance for small ones compared with two CNN-based
methods (i.e. SPOP-net, RPN).

For better understanding of the keys of enabling the SPOP-
net to work well, we show the intermediate output maps of
both the localization and confidence networks for visualiza-
tion in Figure 14. For each image, we show its “objectness
confidence map”, “offsets map” pointing to the object center,
and its proposals. We argue that the first key is the reliable
objectness prediction as the proposals predicted by the pixels
obtaining low objectness confidence will be ranked behind.

Based on an accurate objectness confidence, for each ground-
truth object, each pixel inside it predicts its own location of this
object, as shown in the “offsets maps”, thus greatly increasing
the chances of precise localization. Another advantage of
this pixel-wise prediction is that most of predicted bounding
box locations from the pixels within the same object are
heavily overlapping, which can be easily filtered by NMS.
Normally only a few proposals are remained after NMS, thus
improving the recall of the top-ranked proposals. For small
objects, to overcome the inherent weakness that less chances
are available to propose the correct locations, a scale-aware
prediction is adopted by relying on an accurate estimation
of the object size (i.e. large or small) and combining the
predictions of two networks.

The detailed running speed of the SPOP-net as well as other
state-of-the-art methods is presented in Table IV. The detailed
setting of parameters for each method is as follows. We choose
the single color space (i.e. RGB) proposal computation for
BING, and the “Fast” version for selective search. For the
rest methods, we directly run their default codes. As can be
seen, window scoring methods and CNN-based methods are
much faster than segment grouping methods. Inference for
an image of PASCAL VOC size (e.g. 300*500) takes 1.03s
for our SPOP-net on a single TITAN X CPU. Specifically,
testing one network of the original scale and the enlarged
scale takes 0.11s and 0.23s on a single TITAN X GPU,
respectively. However, as the computation within different
CNNs of SPOP-net are independent of each other, training and
testing SPOP-net can be accelerated by parallel computation
over multiple GPUs. Although it is not one of the fastest
object proposal methods (compared to BING, RPN and Edge
Boxes), our approach is still competitive in speed among the
proposal generators. We do, however, require use of the library
Caffe [36] which is based on GPU computation for efficient
inference like all CNN based methods. To further reduce
the running time, some CNN speedup methods such as FFT,
batch parallelization, or truncated SVD could be used in the
future.

We also evaluate the proposed SPOP-net on MS COCO [38]
2014 validation set and the results are shown in Figure 12.
The SPOP-net model here is trained on MS COCO training
set which contains more than 80, 000 pixel-level annotated
images. To conduct fair comparisons with the state-of-the-
art segmentation annotations based approach, i.e., DeepMask,
we only evaluate on the first 5, 000 images. Note that we
directly used the public DeepProposal model to extract pro-
posals on MS COCO images. It is observed that DeepMask
performs well, especially for the cases with low IoU thresh-
olds (e.g. 0.5) and a few proposals (e.g. 100 proposals). The
performance of the proposed SPOP-net gradually increases
and SPOP-net demonstrates its superiority as the number
of proposals increases. Specifically, SPOP-net outperforms
DeepMask in terms of recall at IoU 0.5 (Figure 12(d)),
recall at IoU 0.7 (Figure 12(e)), ABO (Figure 12(f)) and
average recall (Figure 12(g)) when the number of proposals
is more than 500. Figure 12(h) and Figure 12(i) shows the
average recall of all the methods on large and small objects,
respectively. On can observe that SPOP-net performs best on
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Fig. 14. Example results of predicted “objectness map” (second column), “offsets to object center” after weighted combination (third column) and “object
proposals” (fourth column) for the input images (first column).

TABLE IV

TIME COST OF THE STATE-OF-THE-ARTS AND OUR METHOD

detecting small objects in terms of AR, which clearly validates
the superiority of SPOP-net in small objects localization.

D. Object Detection Performance

We conduct experiments analyzing object proposals for use
with object detectors to evaluate the effects of proposals on

the detection quality. We utilize the standard Fast-RCNN [3]
framework as the benchmark. We choose the publicly released
VGG 16-layer [39] detector trained on VOC 2007 trainval
set in all the evaluation experiments. The proposals of the
proposed SPOP-net, Selective Search, Edge Boxes, MCG and
RPN are evaluated. Please note that RPN itself integrates pro-
posal generation and detection in a unified framework, called
Faster-RCNN. To be fair, we do not adopt this unified detector
for object detection with RPN proposals in our evaluation.
This is because this unified detector has a weights sharing
mechanism in 13 layers which are used for both proposal
generation and object detection. These layers are trained on
the class-specific annotations with object category information
that is not employed in training other methods. For SPOP-net,
Selective Search, Edge Boxes and MCG, we select the top
1,000 proposals to pass through the object detectors for
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TABLE V

OBJECT DETECTION AVERAGE PRECISION FOR ALL THE 20 CATEGORIES AS WELL AS THE MEAN AVERAGE PRECISION (mAP) ON THE PASCAL VOC
2007 TESTING SET USING THE PUBLICLY AVAILABLE FAST-RCNN DETECTOR TRAINED ON VOC 2007 TRAINVAL SET

Fig. 15. Recall and average best overlap (ABO) comparison between our SPOP-net and other state-of-the-art methods on ILSVRC 2013 validation set. (a)
Recall vs IoU (100 proposals). (b) Recall vs IoU (1000 proposals). (c) AR vs # proposal (0.5<IoU<1). (d) ABO vs # proposal.

post-classification. For the RPN method, considering that it
only needs a small number of proposals to achieve high recall,
and more proposals do not bring too many improvements to
the recall but introduce more false positives, we conduct an
extra setting which uses the top 300 proposals for detection,
which is also claimed by [13].

The detection mean average precision (mAP) as well as the
average precision of 20 categories is presented in Table V.
It can be seen that the proposed SPOP-net wins on 11 cate-
gories among the 20 categories of PASCAL VOC 2007 and
also achieves the best mAP 70.2%. Using 1,000 RPN pro-
posals for detection, 68.7% mAP can be obtained. With only
300 proposals, RPN achieves a better mAP 69.5% than 1,000
proposals. This verifies the good performance of RPN when
generating a small number of proposals.

E. Generalization to Unseen Categories

The high recall rate which our approach achieves on the
PASCAL VOC 2007 testing set does not guarantee it to have
learned the generic objectness notion or be able to predict
the object proposals for the images containing novel objects
in unseen categories. This is because it is possible that the
model is highly tuned to the 20 categories of PASCAL VOC.
To investigate whether it is capable of predicting the proposals

for the unseen categories beyond training, we evaluate our
approach on the ImageNet ILSVRC 2013 validation set which
contains more than 20,000 images with around 50,000 anno-
tated objects in 200 categories.

From Figure 15, the overall trend of the SPOP-net remains
consistent with that on the PASCAL VOC 2007. Specifi-
cally, with a small number of proposals (e.g. 100 proposals),
the SPOP-net does not perform as well as MCG, RPN and
Edge Boxes, but shows its superiority when the number of
proposals reaches 1,000. See Figure 15(b). As for average
recall (AR) and average best overlap (ABO), the SPOP-net
is also one of the best methods across a broad range of
proposal numbers. It is worth mentioning that RPN does not
perform as well as on PASCAL VOC 2007. An obvious
drop is seen under all the evaluation scenarios from Fig-
ure 15 compared to Figure 11. This may result from the
category information employed when training the layers in the
RPN network shared with class-specific detectors. Such class-
awareness enables RPN to fit the 20 categories of PASCAL
VOC 2007 better but affects its generalization ability to unseen
categories.

Based on the high recall rate the SPOP-net remains
when evaluated on ILSVRC 2013, no significant overfit-
ting towards the PASCAL VOC categories is observed.
In other words, the proposed approach has learned a generic

Authorized licensed use limited to: SUN YAT-SEN UNIVERSITY. Downloaded on February 22,2021 at 18:56:46 UTC from IEEE Xplore.  Restrictions apply. 



4538 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 25, NO. 10, OCTOBER 2016

notion of objectness and can generalize well to the unseen
categories.

V. SUMMARY AND CONCLUSIONS

In this paper, we developed an effective scale-aware pixel-
wise localization network for object proposal generation. The
network fully exploits the available pixel-wise segmentation
annotations and predicts the proposals pixel-wisely. Each
proposal combines two proposals predicted by two networks
specialized for different sizes respectively. The combination
follows a weighting mechanism utilizing the weighting con-
fidence produced by a large-/small-size object classification
model. This strategy is shown to enhance the accuracy of
localization on small objects. Significant improvements over
the state-of-the-art methods were achieved by the proposed
SPOP-net on the PASCAL VOC 2007 testing set. The pro-
posals of the SPOP-net used in Fast-RCNN detector also
provide the highest mAP, benefiting from the high recall rate
of the proposed model. In the future, we plan to extend
our method to deal with both object proposal generation and
bounding box regression step to achieve better localization
performance.
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