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Abstract— Taxi demand prediction has recently attracted
increasing research interest due to its huge potential application
in large-scale intelligent transportation systems. However, most of
the previous methods only considered the taxi demand prediction
in origin regions, but neglected the modeling of the specific
situation of the destination passengers. We believe it is suboptimal
to preallocate the taxi into each region-based solely on the taxi
origin demand. In this paper, we present a challenging and worth-
exploring task, called taxi origin-destination demand prediction,
which aims at predicting the taxi demand between all-region
pairs in a future time interval. Its main challenges come from
how to effectively capture the diverse contextual information
to learn the demand patterns. We address this problem with
a novel contextualized spatial–temporal network (CSTN), which
consists of three components for the modeling of local spatial
context (LSC), temporal evolution context (TEC), and global
correlation context (GCC), respectively. First, an LSC module
utilizes two convolution neural networks to learn the local spatial
dependencies of taxi, demand respectively, from the origin view
and the destination view. Second, a TEC module incorporates
the local spatial features of taxi demand and the meteorological
information to a Convolutional Long Short-term Memory Net-
work (ConvLSTM) for the analysis of taxi demand evolution.
Finally, a GCC module is applied to model the correlation
between all regions by computing a global correlation feature as
a weighted sum of all regional features, with the weights being
calculated as the similarity between the corresponding region
pairs. The extensive experiments and evaluations on a large-
scale dataset well demonstrate the superiority of our CSTN over
other compared methods for the taxi origin-destination demand
prediction.

Index Terms— Taxi demand prediction, origin-destination, con-
text, deep learning, spatial-temporal modeling.

I. INTRODUCTION

TAXI as one of the most common travel modes for urban
residents, has greatly penetrated into people’s daily life.

Online taxicab requesting platforms, such as Didi Chuxing,1
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Uber2 and Grab,3 have recently experienced rapid expansion
due to the convenience it brings to our daily travel. However,
this huge industry still suffers from some inefficient opera-
tions [1] (i.e, long passenger waiting time [2] and excessive
vacant trips [3]). The main problem stems from the mismatch
between supply and demand caused by inaccurate taxi demand
prediction, which results in a large number of taxis gathering
in some busy areas and causing oversupply, while in other
remote areas the distribution of taxis was extremely sparse.
The solution to this issue involves taxi demand prediction,
which estimates the future taxi demand and helps to allocate
the taxis to each region in advance.

As a crucial task in intelligent transportation systems (ITS),
taxi demand prediction has attracted a wide range of research
interest and achieved notable successes [6], [7], [12]–[14].
However, most of the existing methods only model the demand
of the taxi at the departure place and estimate the requests
for taxis in all regions or some specific locations, ignoring
the influence of the passenger destination. We believe the
information of passengers’ destinations is critical for the taxi
preallocation systems. Without considering the distribution of
passengers destinations, the taxi preallocation systems deploy
the taxis in advance based solely on the predicted taxi origin
demand, which may suffer from the following issues:

• Limited by the city management rules (such as the driving
restriction policy4 in Beijing), some drivers are only
allowed to drive in some specified regions. If a taxi driver
is assigned to a region where most passengers are to go
to a place where the driver is restricted, he/she cannot
take orders, which may result in waste of resources.

• Some drivers prefer to carry passengers in their familiar
regions. Meanwhile, some drivers are unwilling to take
the short trip orders for little profit. If the destinations
of most passengers in the driver’s preallocated region are
out of his/her operating regions or too close to the pickup
locations, the driver may reject those requests.

• If a driver is dispatched to a region where most passen-
gers will travel to his/her unfamiliar regions, the driver
may spend more time to carry the passengers to their
destination, even though guided by GPS navigation. This
will reduce the taxi market operating efficiency and the
levels of passenger satisfaction.

2https://www.uber.com
3https://www.grab.com/
4http://zhengce.beijing.gov.cn/library/192/33/50/438650/1552930/
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TABLE I

COMPARISON OF THE DEFINITION AND SCOPE
OF VARIOUS RELATED TASKS

In literature, some works [8]–[10] have been proposed to esti-
mate the traffic flow or demand between some well-designed
positions, such as highway toll booths, subway and bus
stations. However, taxi passengers can be anywhere and these
traffic flow estimation system for limited positions may not be
suitable for citywide taxi preallocation. Therefore it becomes
desirable to predict the taxi demand between every two regions
and optimize the taxi allocation mechanism.

In this paper, we propose a challenging taxi origin-
destination demand prediction task, which aims to predict
the future taxi demands between any two regions. If the taxi
origin demand and the destinations of passengers are well
predicted, we can preallocate the taxi more efficiently to meet
the passengers’ requests and simultaneously avoid all above
issues. The key challenges of the proposed task lie in how
to capture the diverse spatial-temporal contextual information
to learn the demand patterns. For example, some regions
that are spatially adjacent usually have the similar demand
patterns (e.g, the number of taxi requests and the demand
trends), which is called as local spatial context (LSC) in
our work. Moreover, even though two regions are spatially
distant, the demand patterns may still have some relevance,
if they share similar functionality (e.g., both of them are
residential districts). We call this relationship between two
far-apart regions as global correlation context (GCC). Finally,
taxi demand is a time-varying process and its evolution is
related to various factors, such as its current states and the
ever-changing meteorology, which is formulated as temporal
evolution context (TEC).

Recently, deep neural networks have facilitated great
advances in context modeling [15]–[17]. Inspired by this,
we address the problem of taxi origin-destination demand
prediction with a novel Contextualized Spatial-Temporal Net-
work (CSTN), which well integrates the local spatial context,
temporal evolution context, and global correlation context
into a unified framework. Specifically, our proposed network
consists of three components, including a LSC module, a TEC
module and a GCC module, respectively for the three types of
context modeling. Firstly, a LSC module utilizes two convo-
lution neural networks to learn the local spatial dependencies
of taxi demand respectively from the origin view and the
destination view. The output of the two networks would be
combined to generate the final local spatial feature, which
involves the hybrid information of taxi demand patterns from
different views. Secondly, a TEC module incorporates both the

local spatial features of taxi demand and the meteorological
information to a CNN-LSTM network [18] (convolutional
long short-term memory network) for the analysis of taxi
demand evolution. Thirdly, to capture the correlation between
the far-apart regions, the GCC module computes the similarity
between any two regions and generates the global correlation
feature of each region by summing the features of all regions
with the similarity weights. In this way, each region contains
the information of all regions and it is mainly relevant to the
regions that have high similarities with it. Finally, we integrate
the local spatial-temporal feature generated by TEC module
and the global correlation feature generated by GCC module
to predict the future taxi origin-destination demand.

The main contributions of this work are three-fold:

• We extend the existing taxi demand prediction to the task
of taxi original-destination demand prediction, which is
more worth-exploring for intelligent transportation sys-
tems. To the best of our knowledge, we are the first to
study the interregional taxi demand prediction.

• We propose a novel Contextualized Spatial-Temporal
Network to address this task, which well integrates the
local spatial context, temporal evolution context and
global correlation context into a unified framework.

• Extensive experiments on a large-scale benchmark of
taxi original-destination demand prediction demonstrate
that our approach outperforms existing state-of-the-art
methods by a margin.

The rest of the paper is organized as follows. We firstly
review some related works in Section II and define the taxi
original-destination demand problem with some notations in
Section III. We then introduce the proposed Contextualized
Spatial-Temporal Network in Section IV and conduct extensive
experiments in Section V. Finally we conclude this paper in
Section VI.

II. RELATED WORKS

In this paper, we utilize deep neural networks to forecast the
interregional taxi demand, which is closely related to the taxi
demand prediction and origin-destination estimation. We will
thoroughly review the relevant works of these two categories
of researches in the following subsections.

A. Taxi Demand Prediction

Due to its huge potential application in ITS, taxi demand
prediction has been extensively studied [19]–[23]. Moreira-
Matias et al. [12] proposed to aggregate the GPS signals
into histogram time series and applied them to predict the
demand with a Poisson Model and an AutoRegressive Moving
Average model. Yuan et al. [24] presented a recommender to
provide taxi drivers accurate locations to pick up passengers
quickly with historical GPS trajectories of taxicabs. Li et al.
[25] forecast the spatio-temporal variations of passengers at
the given hotspot with an improved ARIMA-based predic-
tion model. All above methods require the taxi trajectories.
The trajectory-free prediction has recently attracted increasing
attention. A pioneer work was proposed by Tong et al. [6],
in which they utilized the taxi-calling records from some
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online taxicab requesting platforms to predict the taxi demand
with a unified linear regression model.

Recently, the success of deep learning on various computer
vision tasks [26]–[32] motivates researchers to adopt the
deep neural network to handle this task. Wang et al. [33]
designed a neural network framework using context data from
multiple sources to predict the gap between taxi supply and
demand. Xu et al. [23] proposed a sequence learning model
that can predict future taxi requests in each area of a city
based on the recent demand and other relevant information.
Yao et al. [7] proposed a Deep Multi-View Spatial-Temporal
Network framework to model both spatial and temporal rela-
tions of taxi demand. Rodrigues et al. [34] combined time-
series and textual data to forecast the taxi demand in event
areas with two hybrid deep learning architectures. Recently,
Zhou et al. [11] built an attention-based neural network to
predict the passenger pickup/dropoff demand on each region,
but they were still not applicable to taxi demand prediction
between region pairs.

All the above methods only forecast the taxi demand per
unit time in each region or at some specific locations. In con-
trast, our method attempts to predict interregional taxi demand,
which can help taxi preallocation systems to allocate the taxis
more efficiently. Moreover, our proposed CSTN explicitly
captures the local spatial context, temporal evolution context
and global correlation context in one united framework to infer
more accurate taxi demand patterns.

B. Origin-Destination Estimation

Origin-Destination Estimation [35]–[37] aims to estimate
the flow between the endpoints of the studied traffic network,
given the flow count and other observations of several
traffic links. Existing research works on this task can be
divided into two categories, including static estimation and
dynamic estimation. The static approaches [38], [39] consider
the traffic flow as time-independent and estimate the aver-
age demand, which are suitable for long-time transportation
planning and design purpose. On the other hand, dynamic
approaches [40], [41] estimate the time-variant flow between
each origin and destination, which can be used for short
time route guidance and dynamic traffic assignment. These
works generally take as input the flow count of some links
collected from well-designed positions (e.g., highway toll
booths, the intersection of main street, express road, subway
and bus stations) and some prior information (e.g. the pro-
portion of different origin-destination pair). When considering
a huge number of positions, the OD matrix would become
high-dimensional and hard to be computed. Some previous
studies [10], [42] attempted to resolve this issue through
dimension reduction technology.

However, these methods are designed to estimate the traffic
flow between some specific positions and are not effective
for citywide taxi preallocation, as taxi passengers can be
located in any area. In contrast, our method divides a city into
multiple regions and forecasts the taxi demand between these
regions.

Fig. 1. (a) Illustration of the region partition on a city. We partition a city
into a grid map based on the longitude and latitude. Here is the example
of the Manhattan in New York City. (b) Visualization of the taxi demand
from origin view by mapping the passengers’ pick-up locations back to the
geo-coordinates on Google map. The sub-figure with title “R(i,j)” is the taxi
demand from all regions to the region R(i, j) during 8:00-8:30 am, May. 8,
2014.

III. PRELIMINARIES

In this section, we first define some notations and then for-
mulate the taxi origin-destination demand prediction problem
based on these notations.

A. Region Partition

In this work, we focus on the taxi origin-destination demand
prediction between regions, rather than the specific positions.
There are many ways to divide a city into multiple regions in
terms of different granularities and semantic meanings, such
as road network [43] and zip code tabular [13]. Inspired by the
previous works [4], [7], we partition a city into H×W non-
overlapping grid map based on the longitude and latitude. Each
rectangular grid represents a different geographical region in
the city. The region on the i th row and j th column of the
grid map is denoted as R(i, j) in the following sections.
Figure 1(a) illustrates the partitioned regions of the Manhattan
in New York City. With this simple partition method, the raw
taxi request records could be directly transformed into matrix
or tensor, which is the most common format of input data of
the deep neural networks.

B. Taxi Origin-Destination Demand

In taxi calling industry, the taxicab companies or online
platforms, such as Didi Chuxing and Uber, would receive a
large number of taxi requests from passengers every second.
Each raw taxi request contains the origin location, destina-
tion location, timestamp and other information (e.g., user
identification and phone number) of the passengers. In our
work, the taxi origin-destination demand is defined as the
total number of taxi requests from the origin region to the
destination region in each time interval.

We denote the taxi origin-destination demand in time inter-
val t as a 3D matrix Xt ∈ RN×H×W , where H and W
are the height and width of the city grid map respectively.
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Fig. 2. Influence of meteorological conditions on taxi demand. We show
the taxi demand from region(5, 2) to region (7, 2) of New York City in two
time periods: Feb 4-7 (Red) and Feb 11-14 (Blue) in 2014. We can see that
the heavy snow sharply reduces the taxi demand compared to the same day
of the adjacent week.

N is the total number of the regions in city and it is equal
to H · W . Specifically, Xt (d, io, jo), in which the destination
index d is equal to W · id + jd , is the demand from origin
region R(io, jo) to destination region R(id , jd), The value of
Xt (d, io, jo) can be measured from the taxi request records in
time interval t . In particular, the dth channel of Xt , denoted
as Xt (d) ∈ RH×W , is the taxi demand from all regions to
region R(id , jd). Figure 1(b) shows some channels of Xt by
mapping the passengers’ pick-up locations back to the geo-
coordinate on Google map. The taxi origin demand, denoted
as Ot ∈ RH×W , can be easily calculated by

∑N−1
d=0 Xt (d).

C. Taxi Origin-Destination Demand Prediction

The taxi origin-destination demand prediction problem in
our work aims to predict the taxi origin-destination demand
Xt in time interval t , given the data until time interval t − 1.
As shown in Figure 2, the taxi demand is seriously affected
by the meteorological conditions, so we also incorporate
the historical meteorological data to handle this task and
we denote the meteorological data in time interval i as Mi .
The collection and preprocessing of taxi demand data and
meteorological data are described in Section V-A. Therefore,
our final goal is to predict Xt with the historical demand data
{Xi |i = t −n +1, . . . , t} and meteorological data {Mi |i = t −
n+1, . . . , t}, where n is the sequence length of time intervals.

IV. THE PROPOSED METHOD

In this section, we propose a novel Contextualized Spatial-
Temporal Network (CSTN) for taxi origin-destination demand
prediction. As shown in Figure 3, our network consists of
three components for three types of context modeling respec-
tively. First, the LSC module utilizes two convolutional neural
networks to learn the local spatial context of taxi demand
from origin view and destination view. Second, the TEC
module incorporates both the local spatial features of taxi
demand and the meteorological information to a ConvLSTM
for the analysis of taxi demand evolution. Third, the GCC
module generates the global correlation feature of each region
by summing the features of all regions with the calculated
similarity weights.

A. Local Spatial Context Modeling

Generally, the taxi demand is usually related to local spatial
location, and the spatially adjacent regions may have the
similar demand patterns. For instance, people tend to depart

from residence regions and head to employment regions in
the morning rush hours. In this case, most of the residence
regions in city suburb have high origin demands, while most
of the working area in city center have high destination
demands. Vice versa in the evening rush hours. Recently, Yao
et al. [7] modeled the local spatial context of taxi origin
demand with convolutional layers, but they neglected the
context of destination demand.

In this work, our proposed LSC module simultaneously
captures the local spatial context of taxi demand from both the
origin view and destination view. As described in Section III,
each channel of the OD matrix X i is the taxi demand from
all origin regions to the corresponding region, thus we define
the convolution operations on Xi as origin view modeling.
To model the local spatial context from destination view,
we generate a DO matrix XT

i from X i with the transformation
process described in Figure 4. Specifically, we first reshape X i

to be a 2D matrix and then conduct the common transposition
operation. Finally, the transpose matrix is reorganize to be a
3D tensor XT

i . Each channel of XT
i is the taxi demand from

the corresponding region to all destination regions.
As shown in the bottom of Figure 3, our LSC module is

implemented by a Two-View ConvNet, which takes Xi and XT
i

as input to respectively capture the local spatial context from
different views. The origin view CNN contains K convolu-
tional layers. Each convolutional layer has 16 filters of kernel
size of 3 × 3, followed by a Rectified Linear Unit (ReLU).
To maintain the same resolution in space, the strides of all
convolutional layers are set to 1 and no pooling layers are
adopted in the network. The destination view CNN has the
same network structure with the origin view CNN. In time
interval t , the origin view CNN takes Xi as input and its
output feature Fo

i only contains the local spatial context of
origin view. Meanwhile, the destination view CNN takes XT

i
as input and its output feature Fd

i only contains the local
spatial context of destination view. To capture the integrated
local spatial context, we finally fuse these two features using
a convolutional layer with 32 filters. The whole pipeline of
our LSC module can be expressed as:

Fo
i = CNN(Xi , wo),

Fd
i = CNN(XT

i , wd),

Fl
i = Conv(Fo

i ⊕ Fd
i , wod), (1)

where wo and wd are the parameters of the origin view
CNN and destination view CNN respectively. wod denotes the
parameters of the fusion convolutional layer and ⊕ denotes
the feature concatenation operation. Fl

i is the final local spatial
feature, which contains the local spatial context of taxi demand
from both the origin view and the destination view.

B. Temporal Evolution Context Modeling

Taxi demand is a time-varying process and it is usually
affected by diverse complicated factors. Besides its own inter-
nal states, the meteorological conditions also impact the future
demand. For instance, a sustained snowfall may seriously
weaken the travel willingness of residents and cause a decrease
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Fig. 3. The architecture of the proposed Contextualized Spatial-Temporal Network (CSTN) for taxi origin-destination demand prediction. Xi denotes the
OD matrix in time interval i , while XT

i is the DO matrix called in our work. Mi is the meteorological data. Clt is the channel number of feature Flt and Cs
is the channel number of Fs . N is the total number of the regions. “

⊕
” denotes feature concatenation and “

⊗
” refers to the dot product operation. CSTN

consists of three components for three types of context modeling respectively. The LSC module feeds Xi and XT
i into a Two-View ConvNet to respectively

learn the local spatial context from the origin view and destination view and then combines the output of the two ConvNet. The TEC module recurrently takes
the local feature Fl

i generated by LSC and the meteorological data Mi to learn the temporal evolution context of the taxi demand with a ConvLSTM. The
GCC module computes the similarity between all regions and generates the global correlation feature of each region by summing the features of all regions
with the similarity weights.

Fig. 4. Illustration of the generation process of DO matrix from OD matrix.
N is the total number of regions and it is equal to H×W . T denotes the matrix
transposition. Each channel of the OD matrix Xi is the taxi demand from all
origin regions to the corresponding region. XT

i is called the DO matrix in
our work and each channel denotes the taxi demand from the corresponding
region to all destination regions.

in taxi demand, as shown in Figure 2. Therefore, we incor-
porate the historical demand feature and the ever-changing
meteorological conditions to grasp the evolving tendency of
taxi demand along the temporal dimension.

Fully Connected Long Short-term Memory Network
(FC-LSTM) [44] has been proven to be powerful for tem-
poral context modeling, but it fails to preserve the local
spatial context captured by the aforementioned Two-View
ConvNet. In this work, we model the temporal evolution
context of taxi demand with an advanced Convolutional LSTM
(ConvLSTM) [18]. Compared with FC-LSTM, ConvLSTM
can preserve the structural locality of input feature, with the
convolutional structures in both the input-to-state and state-to-
state connections. Moreover, it can effectively accumulate the
previous sequential information by maintaining a memory cell.
Specifically, at iteration k, given the input Xk , the ConvLSTM
updates its memory cell ck with an input gate ik and a
forget gate f k , and controls its hidden state hk with an output

gate ok . Its formulation can be expressed as follows:

ik = σ (wxi ∗ Xk + whi ∗ hk−1 + wci ◦ ck−1 + bi )

f k = σ
(
wx f ∗ Xk + wh f ∗ hk−1 + wc f ◦ ck−1 + b f

)
ck = f i ◦ ck−1 + ii ◦ tanh (wxc ∗ Xk + whc ∗ hk−1 + bc)

ok = σ (wxo ∗ Xk + who ∗ hk−1 + wco ◦ ck + b0)

hk = ok ◦ tanh (ck) (2)

where ◦ denotes the Hadamard product, and σ is the logistic
sigmoid function. Symbol ∗ denotes the convolutional operator
and wαβ (α ∈ {x, h, c} , β ∈ {i, f, o, c}) are the parameters of
convolutional layers in ConvLSTM.

We aim to predict the taxi demand X t with the historical
demand and the meteorological conditions of previous n time
intervals. For the meteorological data Mi , we encode it with a
Multiple Layer Perceptron (MLP), which is implemented by
three stacked fully-connected layers with 64, 16 and 8 neurons
respectively. Then we copy the output feature of the MLP
H · W times and construct a 3D meteorological feature
Fm

i ∈ R8×H×W . We combine Fl
i and Fm

i with a convolutional
layer, which is expressed as:

Flm
i = Conv(Fl

i ⊕ Fm
i , wlm ), (3)

where ⊕ is the feature concatenation operation and wlm

denotes the parameters of the convolutional layer with 32 fil-
ters. Flm

i is the local spatial feature that integrates the meteo-
rological information.

We feed the features Flm
t−n+1, Flm

t−n+2, . . . , Flm
t into the

ConvLSTM sequentially. At iteration i , the ConvLSTM takes
Flm

t−n+i as input and accumulates the previous sequential infor-
mation to the memory cell ci with Eq.(2). After n iteration,
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the hidden state of ConvLSTM is denoted as hn . We generate
the local spatial-temporal feature Flt by feeding hn into a
convolutional layer with Clt filters, which is expressed as:

Flt = Conv(hn, wlt ), (4)

where wlt is the parameters of the convolutional layer and Flt

encodes the temporal evolution context of the taxi demand.

C. Global Correlation Context Modeling

In the above two modules, the ConvNets and ConvLSTM
only capture and maintain the local context of taxi demand.
However, the taxi demand distribution is also related to the
attribute of the regions, e.g., most of the residential regions
in different areas of the city may have high taxi demands in
the morning rush hours. Therefore, even if the two regions
are far apart in distance, they may still have similar taxi
demand patterns as long as the attributes of the two regions are
consistent. We call this kind of correlation as global correlation
context.

Inspired by the recent work [45], we capture the global
correlation between all regions with a global feature fusion
operation. Specifically, we generate the global correlation
feature of each region as a weighted sum of all regional
features, with the weights being calculated as the similarity
between the corresponding region pairs. In this way, each
region contains the information of all regions and it is mainly
relevant to the regions of high similarities with it.

We detail each step of our GCC module as follows. Firstly,
we feed Flt into a convolutional layer with Cs filters to
generate an embedded feature Fs and then reshape it into a
2D matrix, which can be expressed as:

Fs = Conv(Flt , ws),

Fs : RCs×H×W → RCs×N , (5)

where N is equal to H · W and ws is the convolutional para-
meters. Each column of Fs stands for the feature of a region.
We further calculate the similarity matrix S ∈ RN×N as a
dot-product operation between Fs ∈ RCs×N and its transposed
matrix FT

s ∈ RN×Cs , and perform the Softmax operation on
each column of S, which is expressed as:

S = Softmax(FT
s ⊗ Fs), (6)

where ⊗ denotes the dot product operation. Si, j is the nor-
malized similarity weight between the two regions with index
i and index j .

After obtaining the similarity matrix S, we compute the
global correlation feature of each region by summing the
features of all regions with the calculated similarity weights.
We implement this process with a dot-product operation.
We reshape Flt to dimension Clt × N and then dot-product
Flt and S to compute the global feature Fg , which is further
reshaped to dimension Clt × H × W . The entire process can
be expressed as :

Flt : RClt ×H×W → RClt ×N ,

Fg = Flt ⊗ S,

Fg : RClt ×N → RClt ×H×W (7)

The feature Fg ∈ RClt ×H×W encodes the global correlation
context, but lacks of structural locality, which would cause
performance degradation. Therefore, we generate a new fea-
ture Fltg by concatenating Flt and Fg . The feature Fltg is
thus incorporated with hybrid information of the local spatial
context, temporal evolution context and global correlation
context.

Finally, we predict the taxi origin-destination demand in
time interval t , denoted as X̂t+1 ∈ RN×H×W , by feeding Fltg

into a linear regression, which can be formulated as:

X̂t+1 = tanh(T (Fltg)), (8)

where T is the linear regression implemented by a convo-
lutional layer with N filters and the hyperbolic tangent tan
ensures the output values are between −1 and 1.5

D. Implementation Details

We implement our Contextualized Spatial-Temporal
Network with Tensorflow [46]. In LSC module, the layer
number K is set to 3, which means each ConvNet consists of
three convolutional layers. In TEC module, all convolutional
layers in ConvLSTM have 32 filters and the channel number
Clt of feature Flt is set to 75. In GCC module, the channel
number Cs of feature Fs is set to 64. For the whole model,
the filter parameters of all convolutional layers and the fully-
connected layers are initialized by Glorot and Bengio [47].
The size of a minibatch is set to 64. The learning rate is
initially set to 10−4 and multiplied by 0.1 every 200 epochs.
We optimize our network in an end-to-end manner via Adam
optimization [48] by minimizing the Euclidean loss between
the ground truth and the predicted result. It takes 7 hours to
train our network for 700 epochs with an NVIDIA K80 GPU.

V. EXPERIMENTS

In this section, we first build a large scale benchmark of taxi
origin-destination demand prediction. We then introduce the
evaluation metrics of this task and further compare our pro-
posed method with several state-of-the-art methods. Finally,
we conduct extensive component analysis to demonstrate the
effectiveness of each module of our model.

A. NYC-TOD Dataset

To the best of our knowledge, there are no public datasets
for the citywide taxi origin-destination demand prediction.
To evaluate the performances of all compared methods and
further promote the relevant research, we also create the first
benchmark for this task, denoted as NYC-TOD. It is com-
posed of two data categories, including taxi origin-destination
demand data and meteorological data of the New York City
in 2014. We choose the data of the last sixty days as the testing
set, and all data before that as the training set.

5When training, we use Min-Max linear normalization method to scale the
origin-destination demand matrices into the range [−1, 1]. We re-scale the
predicted values back to the normal values and then compare with the ground
truth while performing evaluation.
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Fig. 5. The temporal distribution of the taxi demand in our NYC-TOD
dataset. We create this dataset with 132 million taxi trip records, more than
ten million per month.

1) Taxi Origin-Destination Demand Data: New York
City (NYC) is one of the most prosperous cities in the
world and its taxi industry is extremely developed. The origin
and destination locations of most NYC taxi trips are in the
Manhattan borough [49], therefore we choose the Manhattan
as the study area in our work. As discussed in Section III,
we first divide the Manhattan into a 15×5 grid map based on
the longitude and latitude. Each grid represents a geographical
region with a size of about 0.75km × 0.75km. The detailed
partitioned regions of Manhattan are shown in Figure 1.

We use the NYC yellow taxi trip records in 2014 to con-
struct our taxi origin-destination demand prediction dataset.
These data were collected by the New York City Taxi and
Limousine Commission (NYCTLC6). Each raw trip record
contains the timestamp and the geo-coordinates of origin and
destination locations. After excluding the trips, of which origin
or destination locations aren’t in the Manhattan borough,
we get 132 million taxi trip records. Finally, we can generate
the taxi origin-destination demand matrix in each time interval
by calculating the number of taxi trips between all regions
according to the timestamps and geo-coordinates of taxi trip
records. Each time interval is set to half an hour in this dataset.
The total number of taxi demands in each day are summarized
in Figure 5, which shows that more than ten million taxi
requests are made in NYC per month. The spatial distribution
of taxi demand is shown in Figure 1(b) and we can observe that
most taxi demands gather in the city center and traffic hubs.

2) Meteorological Data: We collect the NYC meteorolog-
ical data in each time interval from Wunderground,7 which
is a well-known meteorological information provider. As the
meteorological conditions of all regions are quite similar
in the same time interval, we treat the meteorological data
observed at the Central Park Station as that of the whole
Manhattan borough. We consider the effect of temperature,
windchill, humidity, visibility, wind speed, precipitation and
weather conditions in our study. The categories of weather
condition and the range of other six meteorological indicators

6http://www.nyc.gov/html/tlc/html/about/trip_record_data.shtml
7https://www.wunderground.com/

TABLE II

AN OVERVIEW OF METEOROLOGICAL DATA ON NYC-TOD DATASET

are shown in Table II. Further, the weather condition is
digitized with One-Hot Encoding [50], while the other six
numeric indicators are scaled into the range [0,1] with Min-
Max linear normalization. Finally, the meteorological data in
time interval t can be denoted as a vector Mt ∈ R29.

B. Evaluation Metric

Following the previous works [4], [7], we adopt the Mean
Average Percentage Error (MAPE) and Rooted Mean Square
Error (RMSE) as the metrics to evaluate the performance of
all methods, which are defined as:

M AP E = 1

z

z∑
t=1

�X̂t − Xt�
Xt

,

RM SE =
√√√√1

z

z∑
t=1

�X̂ t − Xt�2, (9)

where z is the total number of testing samples, X̂t and X t

are the predicted taxi demand and the corresponding ground
truth in time interval t respectively. As described in section IV,
the input and output of our proposed network are normalized
into the range [−1, 1] during training, so when evaluating,
we re-scale the predicted values back to the normal values
and then compare them with the ground truth.

In our experiment, we not only evaluate the performance
of the task of taxi origin-destination demand prediction, but
also consider the task of taxi origin demand prediction.
As described in Section III, the predicted origin demand Ôt

can be calculated from X̂t by
∑N−1

d=0 X̂ t (d). For convenience
in the following section, the MAPE and RMSE of the former
task are denoted as OD-MAPE and OD-RMSE, while these
two metrics of the latter task are denoted as O-MAPE and
O-RMSE. When evaluating, we follow the previous work [7]
to filter the origin-destination pairs or the origin regions with
ground truth less than 5 in each time interval since such low
taxi demand is always ignorable in real-world applications.

C. Comparison With the State-of-the-Art

We compare the performance of our proposed method
with the following basic and advanced methods. We tune the
parameters of all methods and report their best performance.

• Historical Average (HA): Historical Average predicts the
future demand by averaging the historical demands. There
are two implemented methods: (1) HA-All averages the
historical demands in the same time intervals of every
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TABLE III

PERFORMANCE OF DIFFERENT METHODS
ON THE WHOLE NYC-TOD TESTING SET

day on the whole training set; (2) HA-Rec averages the
taxi demands of previous n time intervals.

• Linear Regression: We implement two typical linear
regression methods: Ordinary Least Squares Regression
(OLSR [51]) and Lasso Regression [52] with �1-norm
regularization. They take the concatenation of the demand
matrices of previous n time intervals as input and predict
the taxi demand between any two regions.

• XGBoost [53]: XGBoost is a powerful boosting trees
based method. Similar with OLSR and Lasso, XGBoost
concatenates the demand matrices of previous n time
intervals and takes them to forecast the taxi OD demand.

• Multiple Layer Perceptron (MLP): A neural network
consists of four fully connected layers with 128, 128,
64 and 75 neurons respectively. The MLP forecasts the
every channel of Xt by taking the corresponding channels
of demand matrices of previous n time intervals as input.

• ST-ResNet [4]: ST-ResNet is a deep learning based
method that predicts the future traffic inflow and outflow.
We utilize its released code8 to predict the taxi origin-
destination demand.

• ConvLSTM [18]: ConvLSTM is our LSC module + TEC
module. Specifically, the LSC module in this network
only contains the origin view ConvNet and takes Xi as
input to learn the local spatial context.

1) Performance on the Whole Testing Set: We first conduct
the comparison of our proposed method with other meth-
ods on the whole NYC-TOD testing set. The results of all
methods are summarized in Table III and it can be observed
that our method outperforms other competed methods by a
margin. Specifically, our method achieves the lowest MAPE
and RMSE on the task of taxi origin-destination demand
prediction. Moreover, for the taxi origin demand prediction,
our method achieves 7.1% and 5.6% relative performance
improvements over O-MAPE and O-RMSE, compared to the
existing best-performing method ConvLSTM. Figure 7 shows
the taxi origin-destination demands and taxi origin demands
predicted by our CSTN. We can observe that our method is
robust to forecast the taxi demands of different scale.

Despite some competed methods (such as MLP, ST-ResNet
and ConvLSTM) also adopt deep learning techniques to pre-
dict the taxi demand, they perform worse than our CSTN.

8https://github.com/lucktroy/DeepST/tree/master/scripts/papers/AAAI17

TABLE IV

PERFORMANCE OF DIFFERENT METHODS
ON THE HIGH-DEMAND REGIONS

Fig. 6. The MAPE of different methods for taxi origin-destination demand
prediction on different days of the week. Our method consistently outperforms
the other methods in all days of the week.

The main reasons are that MLP fails to capture the local spatial
context and ST-ResNet does not explicitly learn temporal
evolution context, while ConvLSTM does not model the global
correlation context. Compared with these methods, our method
integrates the above various context into a unified framework
to predict the taxi demand in future time intervals.

2) Performance on the High-Demand Regions: As shown
in Figure 1(b), the spatial distribution of taxi demand is not
uniform and most of the taxi demands are gathered in some
regions, therefore the taxicab companies may give priority to
meet the taxi demand of these regions. In this section, we
evaluate the performance of all compared methods on the
high-demand regions. We first measure the taxi origin demand
of each region on the whole training set of NYC-TOD and
then choose twenty regions with the highest demands. These
regions cover about 70% of the taxi demand in Manhattan.
We only evaluate the origin-destination demand between these
regions and the origin demand within these regions. As shown
in Table IV, our method achieves the best performance in com-
parison to other methods on high-demand regions. Specifically,
our method outperforms ConvLSTM by about 1% over the
MAPE metric for two types of taxi demand prediction.

3) Performance on Different Days: We compare the perfor-
mance of all methods on different days of the week in this
section. We will exclude the result of HA-All and HA-Rec in
the following experiment as they are of very poor performance.
Here we only report their performance over the OD-MAPE
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Fig. 7. Visualization of the estimated taxi interregional demands (left) and origin demands (right) within one week (Nov 3-9, 2014). For each subfigure,
the top row is the result of regions with high demands, while the bottom two rows are the result of regions with middle and low demands respectively. The
red lines are our predicted result and the blue lines are the ground truth.

TABLE V

THE MAPE OF DIFFERENT METHODS FOR TAXI ORIGIN-DESTINATION

DEMAND PREDICTION ON WEEKDAYS AND WEEKENDS

metric, and the similar phenomenon also occurs over the
O-MAPE. As shown in Figure 6, our method consistently
outperforms other competed methods in all days of the week.
Furthermore, we also average the performance of all methods
on weekdays and weekends. The results are summarized in
Table V and our method still achieves the best performance.
We can observe that the performances of three shallow meth-
ods on weekdays and weekends are comparable. In contrast,
the performance of four deep learning based methods on
weekdays is better than that on weekends. Yao et al. [7]
also found this phenomenon and one main reason is that the
taxi demand patterns are less regular on weekends. We can
conclude that the deep learning based methods have more
capacity to capture the regular patterns on weekdays while
learning the inconspicuous patterns on weekends.

D. Component Analysis

1) Influence of Different Context: Our full model consists
of three components for three types of context modeling.
To explore the influence of different context on taxi demand
prediction, we implement the following variants of our model
with different components:

• LSC Net: This network only contains the LSC module
and it directly concatenates the local spatial features of
each time interval to predict the future taxi demand with
a convolutional layer.

• LSC+TEC Net: This network contains the LSC module
and TEC module, but without the GCC module. It feeds

TABLE VI

COMPARISON OF TAXI DEMAND PREDICTION WITH DIFFERENT CONTEXT

the last hidden state of the TEC module into a convolu-
tional layer to predict the taxi demand.

• LSC+TEC+GCC Net: As the full version of CSTN,
this network integrates the local spatial context, temporal
evolution context and global correlation context to predict
the taxi demand.

As shown in Table VI, the LSC Net achieves an OD-MAPE
of 28.54% and an O-MAPE of 20.80%. It outperforms the
ST-ResNet which has more convolutional layers, as our LSC
module adequately captures the local spatial context with the
Two-View ConvNet. When explicitly modeling the temporal
evolution context of taxi demand with LSTM, the LSC+TEC
Net gets an OD-MAPE of 27.80% and an O-MAPE of 19.41%,
achieving an obvious performance improvement compared to
the LSC Net. After integrating the global correlation context
with the GCC module, the LSC+TEC+GCC Net can further
decrease the OD-MAPE to 27.27% and OD-MAPE to 18.48%,
with 2.5% relative performance improvement on average. The
experimental result shows that our network can achieve notable
performance improvement by modeling these context, which
also indicates the effectiveness of these context for the task of
taxi demand prediction.

2) Effectiveness of the Two-View ConvNet in the LSC
Module: As described in Section IV-A, we use a Two-View
ConvNet to model the local spatial context from origin view
and destination view. To validate the effectiveness of the
Two-View ConvNet, we train a variant of LSC Net that
only takes OD matrix X i as input to learn the local spatial
context from origin view. As shown in Table VII, only
with origin view ConvNet, the LSC Net performs so poorly.
After adding the destination view, the performance will be
improved with 0.5% and 2.03% over metrics OD-MAPE and
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TABLE VII

EFFECTIVENESS OF THE TWO-VIEW CONVNET IN THE LSC MODULE

TABLE VIII

INFLUENCE OF LOCAL AND GLOBAL CONTEXT

FOR TAXI DEMAND PREDICTION

TABLE IX

COMPARISON OF THE TAXI DEMAND PREDICTION WITH
OR WITHOUT METEOROLOGY

O-MAPE respectively. The experimental result shows that the
destination view context is also beneficial for taxi demand
and our LSC module can capture the local spatial context
effectively.

3) Influence of Local and Global Context: As described in
Section IV-C, we forecast the taxi demand with the concatena-
tion of local feature Flt and global feature Fg . To analyze how
these two features contribute to the performance, we train other
two variants of CSTN to predict the taxi demand only with Flt

or Fg . As shown in Table VIII, the performance of the local
feature Flt is better than that of the global feature Fg , which
indicates the local feature is more efficient for this task. When
combining the local and global feature for the final prediction,
our method achieves the best performance, which shows that
the local context and global context are complementary for
the taxi demand prediction.

4) Influence of Meteorology: In this section, we will explore
the influence of meteorology on taxi demand prediction.
We train another LSC+TEC Net and CSTN without consider-
ing the meteorology. As shown in table IX, without taking
the meteorological data into consideration, the LSC+TEC
Net and CSTN respectively get an O-MAPE of 20.03%
and 19.72%. In contrast, when predicting the taxi demand
with meteorological data, the LSC+TEC Net and CSTN can
decrease the O-MAPE to 19.41% and 18.48%, with 3.1% and
6.23% relative performance improvement. Moreover, we also
verify the relevance of each variable in meteorological data for
the taxi demand prediction by filtering it when inferring. When
exploring the effect of weather condition, we set it to the type
Unknown for all time intervals. For each of the other numeric
indicators, it is set to its mean value of the whole training set.
The changes in performance are shown in table X and we can
see that the OD-MAPE and O-MAPE are incremental to some

TABLE X

THE INCREMENTAL ERROR
WHEN FILTERING EACH VARIABLE IN METEOROLOGICAL DATA

TABLE XI

COMPARISON OF THE TAXI DEMAND PREDICTION WITH DIFFERENT

SEQUENCE LENGTH OF THE TIME INTERVALS

TABLE XII

COMPARISON OF RUNNING TIMES OF DEEP MODELS
ON AN NVIDIA 1080 GPU

extent when filtering the meteorological data variables. These
experiments show that the meteorological information can help
to improve the performance of taxi demand prediction.

5) Influence of Sequence Length: As described in
Section IV, we can implement our model with different
sequence length n of time intervals. To explore the influence
of sequence length, we train our model with different n.
As shown in table XI, the OD-MAPE and O-MAPE gradu-
ally decrease as the sequence length increases. Our method
achieves the best performance with five time intervals
(2.5 hours) and longer sequence hardly results in obvious
performance improvement. One potential reason is that the
future taxi demand is more relevant to the short-term tendency.
Therefore, feeding too long time sequence into the network no
longer helps to boost the performance and we finally set the
sequence length n to 5 in all experiments.

E. Further Discussion

1) Runtime Efficiency: In this subsection, we compare the
running times of different methods for taxi origin-destination
demand prediction. As shown in Table XII, all deep learning
based methods can achieve practical runtime efficiencies on
an NVIDIA 1080 GPU. Specifically, our CSTN only costs
1.187 ms to predict the taxi demand of next time interval,
which is totally acceptable in the industrial community. As for
the traditional methods (such as Lasso, OLSR and XGBoost)
of CPU implementation, we evaluate their running times
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Fig. 8. The architecture of the L-CSTN for long-term taxi demand prediction.
Compared with the original CSTN, L-CSTN forecasts the taxi demand of the
multiple time intervals in the future with extra m decoding ConvLSTM units.

TABLE XIII

PERFORMANCE OF THE LONG-TERM TAXI DEMAND PREDICTION

on Intel Xeon 2.40GHz E5-2620 CPU. Lasso and OLSR
can conduct a prediction within 0.381 ms, while XGBoost
requires 5.666 ms for each inference, as it processes the
prediction of each region pair independently. In summary, all
compared methods can perform in real-time and the runtime
efficiency is not the bottleneck of this task, thus we should pay
more attention to improving the accuracy of the taxi demand
prediction.

2) Long-Term Taxi Demand Prediction: In this subsection,
we extend our CSTN to predict the long-term taxi demand.
Here, we take the historical demand data {Xi |i = t −n, . . . , t}
and meteorological data {Mi |i = t − n + 1, . . . , t} to forecast
the future demand {X̂i |i = t + 1, . . . , t + m}, where n and m
are set to 5 and 6 respectively in our experiment. The long-
term prediction version of CSTN is denoted as L-CSTN and
its architecture is shown in Figure 8. L-CSTN first encodes
the historical data with LSC module and generates the feature
Flt with TEC module. Then, Flt is fed into m decoding
ConvLSTM units and each of them is followed by a GCC
module to predict the taxi demand. The performance of long-
term taxi demand prediction is shown in Table XIII. Our
L-CSTN achieves an OD-MAPE of 28.63% and an O-MAPE
of 20.50% for the demand X̂t+2. As the predicted time
intervals increase, the performance gradually drops. For the
demand X̂t+6, despite its OD-MAPE and D-MAPE increase to
30.86% and 24.85%, this estimated result is still very practical
for taxi preallocation.

3) Different Region Partition Manners: In this subsection,
we explore the performance of different region partition
manners. Geographical coordinate (longitude and latitude) is
widely used to generate rectangular regions [4], [7], [54], while
land use homogeneity is another good foundation of region
partition. According to the Pluto (Primary Land Use Tax Lot

Fig. 9. Illustration of the region partition of NYC on the basis of Zip Code
Tabular (ZCT) and land use homogeneity.

TABLE XIV

THE OD-MAPE OF DIFFERENT REGION PARTITION MANNERS

Output dataset9), we visualize the land types of each building
block of the Manhattan borough in Figure 9 and find there may
exist multiple categories of land in a local region. Inspired by
the previous work [13], we first generate multiple areas on
the basis of the Zip Code Tabular (ZCT) and then manually
adjust their spaces with the land use homogeneity. The final
44 regions with different shapes are shown in Figure 9 and
each region has relatively consistent land use homogeneity.
In this case, the historical taxi origin-destination demand X t

in time interval t is organized as a 2D matrix with a dimension
of 44×44 and Xt (i, j) denotes the demand from origin region i
to destination region j . We reconstruct the NYC-TOD Dataset
with the new region coordinates and retrain the compared
methods. Specifically, since X t lacks the spatial information,
our CSTN utilizes a CNN with four convolutional layers to
encode the X t and then feed the feature to the TEC module.

The OD-MAPE of four deep learning based methods of
different region partition manners is shown in Table XIV.

9https://www1.nyc.gov/site/planning/data-maps/open-data/dwn-pluto-
mappluto.page
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We can observe that convincing performance can be achieved
by the manner “ZCT + Land Use Homogeneity”, but it is still
slightly worse than the manner “Geographical Coordinate”.
The main reason is that the data organization format Xt ∈
RN×N of “ZCT + Land Use Homogeneity” cannot well
preserve the local spatial information of the taxi demand,
where N is the total number of regions. How to boost the
performance with the local spatial information and land use
homogeneity is worth exploring in the future works.

VI. CONCLUSION

In this paper, we introduce a more worth-exploring task, taxi
origin-destination demand prediction, which aims at predicting
the taxi demand between all regions in the future time inter-
vals. We argue that the information of passengers destinations
is also critical for the taxi preallocation systems, since some
factors (e.g. the city management rules and the individual
preference of drivers) may affect the supply amount of avail-
able taxi between two regions as mentioned in Section I.
Therefore, it’s essential to combine the predicted taxi OD
demand and the aforementioned external factors to optimize
the taxi preallocation scheme.

We address this problem with a Contextualized Spatial-
Temporal Network (CSTN), which integrates local spatial
context, temporal evolution context and global correlation
context in one united framework. By learning the taxi demand
patterns from historical data, the proposed CSTN can make
taxi demand predictions for all regions pairs. 132 million taxi
trip records of New York City is used to train and evaluate
our model. Experimental results show that our model achieves
an OD-MAPE of 24.93% and an O-MAPE of 12.92%, out-
performing other state-of-the-art methods on both tasks of taxi
OD demand prediction and origin demand prediction. Further,
we extend our CSTN to predict the long-term taxi demand and
our method achieves very practical performance.

How to divide a city into different regions is still an
open problem. In the future work, we will explore a better
region partition manner, with which the spatial information
and land use homogeneity information can be efficiently used
simultaneously. Meanwhile, our work can be extended by
adding more information to the network, such as the periodic
taxi demand and the Point of Interest (POI) in each region,
which may help to further boost the performance. Finally,
we will cooperate with some taxicab requesting platforms and
optimize their taxi preallocation systems with the prediction
OD demand and the aforementioned external factors. Such
systems are expected to decrease the inefficient operations of
the taxi industry.
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