
Dynamical And-Or Graph Learning for Object Shape
Modeling and Detection

Xiaolong Wang
Sun Yat-Sen University

Guangzhou, P.R. China 510006
dragonwxl123@gmail.com

Liang Lin∗

Sun Yat-Sen University
Guangzhou, P.R. China 510006

linliang@ieee.org

Abstract

This paper studies a novel discriminative part-based model to represent and rec-
ognize object shapes with an “And-Or graph”. We define this model consist-
ing of three layers: the leaf-nodes with collaborative edges for localizing local
parts, the or-nodes specifying the switch of leaf-nodes, and the root-node encod-
ing the global verification. A discriminative learning algorithm, extended from
the CCCP [23], is proposed to train the model in a dynamical manner: the model
structure (e.g., the configuration of the leaf-nodes associated with the or-nodes) is
automatically determined with optimizing the multi-layer parameters during the
iteration. The advantages of our method are two-fold. (i) The And-Or graph
model enables us to handle well large intra-class variance and background clutters
for object shape detection from images. (ii) The proposed learning algorithm is
able to obtain the And-Or graph representation without requiring elaborate super-
vision and initialization. We validate the proposed method on several challenging
databases (e.g., INRIA-Horse, ETHZ-Shape, and UIUC-People), and it outper-
forms the state-of-the-arts approaches.

1 Introduction
Part-based and hierarchical representations have been widely studied in computer vision, and lead
to some elegant frameworks for complex object detection and recognition. However, most of the
methods address only the hierarchical decomposition by tree-structure models [5, 25], and oversim-
plify the reconfigurability (i.e. structural switch) in hierarchy, which is the key to handle the large
intra-class variance in object detection. In addition, the interactions of parts are often omitted in
learning and detection. And-Or graph models are recently explored in [26, 27] to hierarchically
model object categories via “and-nodes” and “or-nodes” that represent, respectively, compositions
of parts and structural variation of parts. Their main limitation is that the learning process is strongly
supervised and the model structure needs to be manually annotated.

The key contribution of this work is a novel And-Or graph model, whose parameters and structure
can be jointly learned in a weakly supervised manner. We achieve the superior performance on the
task of detecting and localizing shapes from cluttered backgrounds, compared to the state-of-the-
art approaches. As Fig. 3(a) illustrates, the proposed And-Or graph model consists of three layers
described as follows.

The leaf-nodes in the bottom layer represent a batch of local classifiers of contour fragments. We
provide a partial matching scheme that can recognize the accurate part of the contour, to deal with

∗Corresponding author is Liang Lin. This work was supported by National Natural Science Foundation of
China (no. 61173082), Fundamental Research Funds for the Central Universities (no. 2010620003162041),
and the Guangdong Natural Science Foundation (no.S2011010001378).This work was also partially funded by
SYSU-Sugon high performance computing typical application project.

1

the problem that the true contours of objects are often connected to background clutters due to
unreliable edge extraction.

The or-nodes in the middle layer are “switch” variables specifying the activation of their children
leaf-nodes. We utilize the or-nodes accounting for alternate ways of composition, rather than just
defining multi-layer compositional detectors, which is shown to better handle the intra-class variance
and inconsistency caused by unreliable edge detection. Each or-node is used to select one contour
from the candidates detected via the associated leaf-nodes in the bottom layer. Moreover, during
detection, location displacement is allowed for each or-node to tackle the part deformation.

The root-node (i.e. the and-node) in the top layer is a global classifier capturing the holistic defor-
mation of the object. The contours selected via the or-nodes are further verified as a whole, in order
to make the detection robust against the background clutters.

The collaborative edges between leaf-nodes are defined by the probabilistic co-occurrence of local
classifiers, which relax the conditional independence assumption commonly used in previous tree
structure models. Concretely, our model allows nearby contours to interact with each other.

The key problem of training our And-Or graph model is automatic structure determination. We
propose a novel learning algorithm, namely dynamic CCCP , extended from the concave-convex
procedure (CCCP) [23, 22] by embedding the structural reconfiguration. It iterates to dynamically
determine the production of leaf-nodes associated with the or-nodes, which is often simplified by
manually fixing in previous methods [25, 16]. The other structure attributes (e.g., the layout of
or-nodes and the activation of leaf-nodes) are implicitly inferred with the latent variables.

2 Related Work
Remarkable progress has been made in shape-based object detection [6, 10, 9, 11, 19]. By em-
ploying some shape descriptors and matching schemes, many works represent and recognize object
shapes as a loose collection of local contours. For example, Ferrari et al. [6] used a codebook of
PAS (pairwise adjacent segments) to localize object of interest; Maji et al. [11] proposed a maximum
margin hough voting for hypothesis regions combining with intersection kernel SVM(IKSVM) for
verification; Yang and Latecki [19] constructed shape models in a fully connected graph form with
partially-supervised learning, and detected objects via a Particle Filters (PF) framework.

Recently, the tree structure latent models [25, 5] have provided significant improvements on object
detection. Based on these methods, Srinivasan et al. [16] trained the descriptive contour-based de-
tector by using the latent-SVM learning; Song et al. [15] integrated the context information with the
learning, namely Context-SVM. Schnitzspan et al. [14] further combined the latent discriminative
learning with conditional random fields using multiple features.

Knowledge representation with And-Or graph was first introduced for modeling visual patterns by
Zhu and Mumford [27]. Its general idea, i.e. using configurable graph structures with And, Or
nodes, has been applied in object and scene parsing [26, 18, 24] and action classification [20].

3 And-Or Graph Representation for Object Shape
The And-Or Graph model is defined as G = (V, E), where V represents three types of nodes and
E the graph edges. As Fig. 3(a) illustrates, the square on the top is the root-node representing
the complete object instances. The dashed circles derived from the root are z or-nodes arranged
in a layout of b1 × b2 blocks, representing the object parts. Each or-node comprises an unfixed
number of leaf-nodes (denoted by the solid circles on the bottom); the leaf-nodes are allowed to be
dynamically created and removed during the learning. For simplicity, we set the maximum number
m of leaf-nodes affiliated to one or-node, and the parameters of non-existing leaf-nodes to zero.
Then the maximum number of all nodes in the model is 1 + n = 1 + z + z × m. We use i = 0
indexing the root node, i = 1, ..., z the or-nodes and j = z + 1, ..., n the leaf-nodes. We also define
that j ∈ ch(i) indexes the child nodes of node i. The horizontal graph edges (i.e., collaborative
edges) are defined between the leaf-nodes that are associated with different or-nodes, in order to
encode the compatibility of object parts. The definitions of G are presented as follows.

Leaf-node: Each leaf-node Lj , j = z + 1, ..., n is a local classifier of contours, whose placement is
decided by its parent or-node (the localized block). Suppose a contour fragment c on the edge map
X is captured by the block located at pi = (pxi , p

y
i), as the input of classifier. We denote ϕl(pi, c) as

2

the feature vector using the Shape Context descriptor [3]. For any classifier, only the part of c fallen
into the block will be taken into account, and we set ϕl(pi, c) = 0 if c is entirely out. The response
of classifier Lj at location pi of the edge map X is defined as:

RLj (X, pi) = max
c∈X

ωl
j · ϕl(pi, c), (1)

where ωl
j is a parameter vector, which is set to zero if the corresponding leaf-node Lj is nonexistent.

Then we can detect the contour from edge map X via the classifier, cj = argmaxc∈Xωl
j · ϕl(pi, c).

Or-node: Each or-node Ui, i = 1, ..., z is proposed to specify a proper contour from a set of candi-
dates detected via its children leaf-nodes. Note that we can also consider the or-node activating one
leaf-node. The or-nodes are allowed to perturb slightly with respect to the root. For each or-node
Ui, we define the deformation feature as ϕs(p0, pi) = (dx, dy, dx2, dy2), where (dx, dy) is the dis-
placement of the or-node position pi to the expected position p0 determined by the root-node. Then
the cost of locating Ui at pi is:

Costi(p0, pi) = −ωs
i · ϕs(p0, pi), (2)

where ωs
i is a 4-dimensional parameter vector corresponding to ϕs(p0, pi). In our method, each or-

node contains at most m leaf-nodes, among which one is to be activated during inference. For each
leaf-node Lj associated with Ui, we introduce an indicator variable vj ∈ {0, 1} representing whether
it is activated or not. Then we derive the auxiliary “switch” vector for Ui, vi = (vj1 , vj2 , ..., vjm),
where ||vi|| = 1. Thus, the response of the or-node Ui is defined as,

RUi(X, p0, pi, vi) =
∑

j∈ch(i)

RLj (X, pi) · vj + Costi(p0, pi). (3)

Collaborative Edge: For any pair of leaf-nodes (Lj , Lj′) respectively associated with two dif-
ferent or-nodes, we define the collaborative edge between them according to their contextual co-
occurrence. That is, how likely it is that the object contains contours detected via the two leaf-nodes.
The response of the pairwise potentials is parameterized as,

RE(V) =
n∑

j=z+1

∑
j′∈neigh(j)

ωe
(j,j′) · vj · vj′ , (4)

where neigh(j) is defined as the neighbor leaf-nodes from the other or-node adjacent (in spatial
direction) to Lj , and V is a joint vector for each vi: V = (v1, ..., vz) = (vz+1, ..., vn). ωe

(j,j′)

indicates the compatibility between Lj and Lj′ .

Root-node: The root-node represents a global classifier to verify the ensemble of contour fragments
Cr = {c1, ..., cz} proposed by the or-nodes. The response of the root-node is parameterized as,

RT (C
r) = ωr · ϕr(Cr), (5)

where ϕr(Cr) is the feature vector of Cr and ωr the corresponding parameter vector.

Therefore, the overall response of the And-Or graph is:

RG(X,P, V) =

a∑
i=1

RUi(X, p0, pi, vi) +RE(V) +RT (C
r)

=

z∑
i=1

[
∑

j∈ch(i)

ωl
j · ϕl(pi, cj) · vj − ωs

i · ϕs(p0, pi)] +

n∑
j=z+1

∑
j′∈neigh(j)

ωe
(j,j′) · vj · vj′ + ωr · ϕr(Cr), (6)

where P = (p0, p1, ..., pz) is a vector of the positions of or-nodes. For better understanding, we
refer H = (P, V) as the latent variables during inference, where P implies the deformation of
parts represented by the or-nodes and V implies the discrete distribution of leaf-nodes (i.e., which
leaf-nodes are activated for detection). The Eq.(6) can be further simplified as :

RG(X,H) = ω · ϕ(X,H), (7)

where ω includes the complete parameters of And-Or graph, and ϕ(X,H) is the feature vector,
ω = (ωl

z+1, ..., ω
l
n,−ωs

1, ...,−ωs
z, ω

e
(z+1,z+1+m), ..., ω

e
(n−m,n), ω

r). (8)

ϕ(X,H) = (ϕl(p1, cz+1) · vz+1, · · · , ϕl(pz, cn) · vn,
ϕs(p0, p1), · · · , ϕs(p0, pz), vz+1 · vz+1+m, ..., vn−m · vn, ϕr(Cr)). (9)

3

(a) (b) (c)

… … … … … …

Figure 1: Illustration of dynamical structure learning. Parts of the model, two or-nodes (U1, U6), are
visualized in three intermediate steps. (a) The initial structure, i.e., the regular layout of an object.
Two new structures are dynamically generated during iteration. (b) A leaf-node associated with U1

is removed. (c) A new leaf-node is created and assigned to U6.

4 Inference
The inference task is to localize the optimal contour fragments within the detection window, which
is slidden at all scales and positions of the edge map X . Assuming the root-node is located at p0,
the object shape is localized by maximizing RG(X,H) defined in (6):

S(p0, X) = max
H

RG(X,H). (10)

The inference procedure integrates the bottom-up testing and top-down verification:

Bottom-up testing: For each or-node Ui, its children leaf-nodes (i.e. the local classifiers) are uti-
lized to detect contour fragments within the edge map X . Assume that leaf-node Lj , j ∈ ch(i)
associated with Ui is activated, vj = 1, and the optimal contour fragment cj is localized by maxi-
mizing the response in Eq.(3), where the optimal location p∗i,j is also determined. Then we generate
a set of candidates for each or-node, {cj , p∗i,j}, each of which is one detected contour fragments via
the leaf-nodes. These sets of candidates will be passed to the top-down step where the leaf-node
activation vi for Ui can be further validated. We calculate the response for the bottom-up step, as,

Rbot(V) =
z∑

i=1

RUi(X, p0, p
∗
i , vi), (11)

where V = {vi} denotes a hypothesis of leaf-node activation for all or-nodes. In practice, we can
further prune the candidate contours by setting a threshold on Rbot(V). Thus, given the V = {vi},
we can select an ensemble of contours Cr = {c1, ..., cz}, each of which is detected by an activated
leaf-node, Lj , vj = 1.

Top-down verification: Given the ensemble of contours Cr, we then apply the global classifier
at the root-node to verify Cr by Eq. (5), as well as the accumulated pairwise potentials on the
collaborative edges defined in Eq.(4).

By incorporating the bottom-up and top-down steps, we obtain the response of And-Or graph model
by Eq.(6). The final detection is acquired by selecting the maximum score in Eq.(10).

5 Discriminative Learning for And-Or Graph
We formulate the learning of And-Or graph model as a joint optimization task for model struc-
ture and parameters, which can be solved by an iterative method extended from the CCCP frame-
work [22]. This algorithm iterates to determine the And-Or graph structure in a dynamical manner:
given the inferred latent variables H = (P, V) in each step, the leaf-nodes can be automatically
created or removed to generate a new structural configuration. To be specific, a new leaf-node is
encouraged to be created as the local detector for contours that cannot be handled by the current
model(Fig. 1(c)); a leaf-node is encourage to be removed if it has similar discriminative ability as
other ones(Fig. 1(b)). We thus call this procedure dynamical CCCP (dCCCP).

5.1 Optimization Formulation
Suppose a set of positive and negative training samples (X1, y1),...,(XN , yN) are given, where X is
the edge map, y = ±1 is the label to indicate positive and negative samples. We assume the samples
indexed from 1 to K are the positive samples, and the feature vector for each sample (X, y) as,

4

ϕ(X, y,H) =

{
ϕ(X,H) if y = +1
0 if y = −1

, (12)

where H is the latent variables. Thus, Eq.(10) can be rewritten as a discriminative function,

Sω(X) = argmaxy,H(ω · ϕ(X, y,H)). (13)

The optimization of this function can be solved by using structural SVM with latent variables,

min
ω

1

2
∥ω∥2 +D

N∑
k=1

[max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y,H))−max
H

(ω · ϕ(Xk, yk, H))], (14)

where D is a penalty parameter(set as 0.005 empirically), and L(yk, y,H) is the loss function. We
define that L(yk, y,H) = 0 if yk = y, “1” if yk ̸= y in our method.

The optimization target in Equation(14) is non-convex. The CCCP framework [23] was recently
utilized in [22, 25] to provide a local optimum solution by iteratively solving the latent variables
H and the model parameter ω. However, the CCCP does not address the or-nodes in hierarchy,
i.e., assuming the configuration of structure is fixed. In the following, we propose the dCCCP by
embedding a structural reconfiguration step.

5.2 Optimization with dynamic CCCP
Following the original CCCP framework, we convert the function in Eq. (14) into a convex and
concave form as,

min
ω

[
1

2
∥ω∥2 +D

N∑
k=1

max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y,H))]− [D

N∑
k=1

max
H

(ω · ϕ(Xk, yk, H))] (15)

= min
ω

[f(ω)− g(ω)], (16)

where f(ω) represents the first two terms, and g(ω) represents the last term in (15).

The original CCCP includes two iterative steps: (I) fixing the model parameters, estimate the la-
tent variables H∗ for each positive samples; (II) compute the model parameters by the traditional
structural SVM method. In our method, besides the inferred H∗, we need to further determine
the graph configuration, i.e. the production of leaf-nodes associated with or-nodes, to obtain the
complete structure. Thus, we insert one step between two original ones to perform the structure
reconfiguration. The three iterative steps are presented as follows.

(I) For optimization, we first find a hyperplane qt to upper bound the concave part −g(ω) in Eq.(16),

−g(ω) ≤ −g(ωt) + (ω − ωt) · qt,∀ω. (17)

where ωt includes the model parameters obtained in the previous iteration. We construct qt by
calculating the optimal latent variables H∗

k = argmaxH(ωt ·ϕ(Xk, yk,H)). Since ϕ(Xk, yk,H) =
0 when yk = −1, we only take the positive training samples into account during computation. Then
the hyperplane is constructed as qt = −D

∑N
k=1 ϕ(Xk, yk,H

∗
k).

(II) In this step, we adjust the model structure by reconfiguring the leaf-nodes. In our model, each
leaf-node is mapped to several feature dimensions of the vector ϕ(X, y,H∗). Thus, the process
of reconfiguration is equivalent to reorganizing the feature vector ϕ(X, y,H∗). Accordingly, the
hyperplane qt would change with ϕ(X, y,H∗), and would lead to non-convergence of learning.
Therefore, we operate on ϕ(X, y,H∗) guided by the Principal Component Analysis(PCA). That is,
we allow the adjustment only with the non-principal components (dimensions) of ϕ(X, y,H∗), in
terms of preserving the significant information of ϕ(X, y,H∗) [8]. As a result, qt is assumed to be
unaltered. This step of model reconfiguration can be then divided into two sub-steps.

(i) Feature refactoring guided by PCA. Given ϕ(Xk, yk,H
∗
k) of all positive samples, we apply

PCA on them,

ϕ(Xk, yk,H
∗
k) ≈ u+

K∑
i=1

βk,iei, (18)

where K is the number of the eigenvectors, ei the eigenvector with its parameter βk,i. We set K a
large number so that ||ϕ(Xk, yk,H

∗
k)− (u+

∑K
i=1 βk,iei)||2 < σ, ∀k. For the jth bin of the feature

5

(1, 2, 3, 4, 5, 6, 7, 8, 9, 10)

(a)

(c) (b)

Figure 2: A toy example for structural clustering. We consider 4 samples, X1, . . . , X4, for train-
ing the structure of Ui. (a) shows the feature vectors ϕ of the samples associated with Ui, and the
intensity of the feature bin indicates the feature value. The red and green bounding boxes on the
vectors indicate the non-principal features representing the detected contour fragments via two dif-
ferent leaf-nodes. (b) illustrates the clustering performed with ϕ′. The vector ⟨ϕ6, ϕ8, ϕ9⟩ of X2 is
grouped from the right cluster to the left one. (c) shows the adjusted feature vectors according to the
clustering. Note that clustering would result in structural reconfiguration, as we discuss in the text.
This figure is encouraged to be view in electronic version.

vector, we consider it non-principal only if ei,j < δ and uj < δ for all ei and u, (σ = 2.0, δ = 0.001
in experiments).

For each or-node Ui, a set of detected contour fragments, {c1i , c2i , ..., cKi }, are obtained with the
given H∗

k of all positive samples. The feature vectors for these contours that are generated by
the leaf-nodes, {ϕl(p1i , c

1
i), ..., ϕ

l(pKi , cKi)}, are mapped to different parts of the complete feature
vector, {ϕ(X1, y1,H

∗
1), ..., ϕ(XK , yK ,H∗

K)}. More specifically, once we select the jth bin for the
all feature vectors ϕl, it can be either principal or not in different vectors ϕ. For all feature vector ϕl,
we select the non-principal bins to form a new vector. We thus refactor the feature vectors of these
contours as {ϕ′(p1i , c

1
i), ..., ϕ

′(pKi , cKi)}.

(ii) Structural reconfiguration by clustering. To trigger the structural reconfiguration, for each or-
node Ui, we perform the clustering for detected contour fragments represented by the newly formed
feature vectors. We first group the contours detected by the same leaf-node into the same cluster
as a temporary partition. Then the re-clustering is performed by applying the ISODATA algorithm
and the Euclidean distance. And the close contours are grouped into the same cluster. According
to the new partition, we can re-organize the feature vectors, i.e. represent the similar contour with
the same bins in the complete feature vector ϕ. Please recall that the vector of one contour is part
of ϕ. We present a toy example for illustration in Fig. 2. The selected feature vector (non-principal)
ϕ′(p2i , c

2
i) = ⟨ϕ6, ϕ8, ϕ9⟩ of X2 is grouped from one cluster to another; by comparing (a) with (c)

we can observe that ⟨ϕ6, ϕ8, ϕ9⟩ is moved to ⟨ϕ1, ϕ3, ϕ4⟩.
With the re-organization of feature vectors, we can accordingly reconfigure the leaf-nodes corre-
sponding to the clusters of contours. There are two typical states.

• New leaf-nodes are created once more clusters are generated than previous. Their parame-
ters can be learned based on the feature vectors of contours within the clusters.

• One leaf-node is removed when the feature bins related to it are zero, which implies the
contours detected by the leaf-node are grouped to another cluster.

In practice, we constrain the extent of structural reconfiguration, i.e., only few leaf-nodes can be
created or removed for each or-node per iteration. After the structural reconfiguration, we denote
all the feature vectors ϕ(Xk, yk,H

∗
k) are adjusted to ϕd(Xk, yk,H

∗
k). Then the new hyperplane is

generated as qdt = −D
∑N

k=1 ϕ
d(Xk, yk, H

∗
k).

(III) Given the newly generated model structures represented by the feature vectors ϕd(Xk, yk,H
∗
k),

we can learn the model parameters by solving ωt+1 = argminω[f(ω) + ω · qdt]. By substituting
−g(ω) with the upper bound hyperplane qdt , the optimization task in Eq. (15) can be rewritten as,

min
ω

1

2
∥ω∥2 +D

N∑
k=1

[max
y,H

(ω · ϕ(Xk, y,H) + L(yk, y,H))− ω · ϕd(Xk, yk, H
∗
k)]. (19)

This is a standard structural SVM problem, whose solution is presented as,

6

and-node

or-node

leaf-node

(a) (b)

1 3 5 7 9

0.35

0.4

0.45

0.5

0.55

0.6

0.65

Iteration

A
P

UIUC human

AOT

AOG

(c)

Figure 3: The trained And-Or graph model with the UIUC-People dataset. (a) visualizes the three
layer model, where the images on the top imply the verification via the root-node. (b) exhibits the
leaf-nodes associated with the or-nodes, U1, . . . , U8; a practical detection with the activated leaf-
nodes are highlighted by red. (c) shows the average precisions (AP) results generated by the And-Or
tree (AOT) model and the And-Or graph (AOG) model.

ω∗ = D
∑
k,y,H

α∗
k,y,H∆ϕ(Xk, y,H), (20)

where ∆ϕ(Xk, y,H) = ϕd(Xk, yk,H
∗
k) − ϕ(Xk, y,H). We calculate α∗ by maximizing the dual

function:

max
α

∑
k,y,H

αk,y,HL(yk, y,H)− D

2

∑
k,k′

∑
y,H,y′,H′

αk,y,Hαk′,y′,H′∆ϕ(Xk, y,H)∆ϕ(Xk′ , y′, H ′). (21)

It is a dual problem in standard SVM, which can be solved by applying the cutting plane method [1]
and Sequential Minimal Optimization [13]. Thus, we obtain the updated parameters ωt+1, and
continue the 3-step iteration until the function in Eq.(16) converges.

5.3 Initialization
At the beginning of learning, the And-Or graph model can be initialized as follows. For each training
sample (whose contours have been extracted), we partition it into a regular layout of several blocks,
each of which corresponds to one or-node. The contours fallen into the block are treated as the
input for learning. Once there are more than two contours in one block, we select the one with
largest length. Then the leaf-nodes are generated by clustering the selected contours without any
constraints, and we can thus obtain the initial feature vector ϕd for each sample.

6 Experiments
We evaluate our method for object shape detection, using three benchmark datasets: the UIUC-
People [17], the ETHZ-Shape [7] and the INRIA-Horse [7].

Implementation setting. We fix the number of or-nodes in the And-Or model as 8 for the UIUC-
People dataset, and 6 in other experiments. The initial layout is a regular partition (e.g. 4× 2 blocks
for the UIUC-People dataset and 2 × 3 for others). There are at most m = 4 leaf-nodes for each
or-node. For positive samples, we extract their clutter-free object contours; for negative samples,
we compute their edge maps by using the Pb edge detector [12] with an edge link method. The
convergence of our learning algorithm take 6 ∼ 9 iterations. During detection, the edge maps of
test images are extracted as for negative training samples, within which the object is searched at 6
different scales, 2 per octave. For each contour as the input to the leaf-node, we sample 20 points
and compute the Shape Context descriptor for each point; the descriptor is quantized with 6 polar
angles and 2 radial bins. We adopt the testing criterion defined in the PASCAL VOC challenge: a
detection is counted as correct if the intersection over union with the groundtruth is at least 50%.

Experiment I. The UIUC-People dataset contains 593 images (346 for training, 247 for testing).
Most of the images contain one person playing badminton. Fig. 3(b) shows the trained And-Or
model(AOG) in that each of the 8 or-nodes associates with 2 ∼ 4 leaf-nodes. To evaluate the benefit
from the collaborative edges, we degenerate our model to the And-Or Tree (AOT) by removing the
collaborative edges. As Fig. 3(c) illustrates, the average precisions (AP) of detection by applying
AOG and AOT are 56.20%and 53.84% respectively. Then we compare our model with the state-
of-the-art detectors in [18, 2, 4, 5], some of which used manually labeled models. Following the

7

Accuracy
Our AOG 0.680
Our AOT 0.660
Wang et al. [18] 0.668
Andriluka et al. [2] 0.506
Felz et al. [5] 0.486
Bourdev et al. [4] 0.458

(a)

Applelogos Bottles Giraffes Mugs Swans Average
Our method 0.910 0.926 0.803 0.885 0.968 0.898
Ma et al. [10] 0.881 0.920 0.756 0.868 0.959 0.877
Srinivasan et al. [16] 0.845 0.916 0.787 0.888 0.922 0.872
Maji et al. [11] 0.869 0.724 0.742 0.806 0.716 0.771
Felz et al. [5] 0.891 0.950 0.608 0.721 0.391 0.712
Lu et al. [9] 0.844 0.641 0.617 0.643 0.798 0.709

(b)

Table 1: (a) Comparisons of detection accuracies on the UIUC-People dataset. (b) Comparisons of
average precision (AP) on the ETHZ-Shape dataset.

metric mentioned in [18], to calculate the detection accuracy, we only consider the detection with
the highest score on an image for all the methods. As Table. 1a reports, our methods outperforms
other approaches.

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

FPPI

R
e

ca
ll

INRIA Horse s

IKSVM

M2HT+IKSVM [11]

KAS [7]

TPS−RPM [6]

Voting with grps + verif [21]

Our AOG

Our AOT

(a) (b)

(c) (d)

Figure 4: (a)Experimental results with the recall-FPPI measurement on the INRIA-Horse database.
(b),(c) and (d) shows a few object shape detections by applying our method on the three datasets,
and the false positives are annotated by blue frames.

Experiment II. The INRIA-Horse dataset consists of 170 horse images and 170 images without
horses. Among them, 50 positive examples and 80 negative examples are used for training and
remaining 210 images for testing. Fig. 4 reports the plots of false positives per image (FPPI) vs.
recall. It is shown that our system substantially outperforms the recent methods: the AOG and AOT
models achieve detection rates of 89.6% and 88.0% at 1.0 FPPI, respectively; in contrast, the results
of competing methods are: 87.3% in [21], 85.27% in [11], 80.77% in [7], and 73.75% in [6].

Experiment III. We test our method with more object categories on the ETHZ-Shape dataset: Ap-
plelogos, Bottles, Giraffes, Mugs and Swans. For each category (including 32 ∼ 87 images), half of
the images are randomly selected as positive examples, and 70 ∼ 90 negative examples are obtained
from the other categories as well as backgrounds. The trained model for each category is tested
on the remaining images. Table 1b reports the results evaluated by the mean average precision.
Compared with the current methods [11, 16, 5, 9, 10], our model achieves very competitive results.

A few results are visualized in Fig.4(b),(c) and (d) for experiment I, II, and III respectively.

7 Conclusion
This paper proposes a discriminative contour-based object model with the And-Or graph represen-
tation. This model can be trained in a dynamical manner that the model structure is automatically
determined during iterations as well as the parameters. Our method achieves the state-of-art of
object shape detection on challenging datasets.

8

References

[1] Y. Altun, I. Tsochantaridis, and T. Hofmann, Hidden markov support vector machines, In ICML,
2003. 7

[2] M. Andriluka, S. Roth, and B. Schiele, Pictorial structures revisited: People detection and artic-
ulated pose estimation, In CVPR, 2009. 7, 8

[3] S. Belongie, J. Malik, and J. Puzicha, Shape Matching and Object Recognition using Shape
Contexts, IEEE TPAMI, 24(1): 705-522, 2002. 3

[4] L. Bourdev, S. Maji, T. Brox, and J. Malik, Detecting people using mutually consistent poselet
activations, In ECCV, 2010. 7, 8

[5] P. F. Felzenszwalb, R. B. Girshick, D. McAllester, and D. Ramanan, Object Detection with
Discriminatively Trained Part-based Models, IEEE TPAMI, 2010. 1, 2, 7, 8

[6] V. Ferrari, F. Jurie, and C. Schmid, From Images to Shape Models for Object Detection, Int’l J.
of Computer Vision, 2009. 2, 8

[7] V. Ferrari, L. Fevrier, F. Jerie, and C. Schmid, Groups of Adjacent Contour Segments for Object
Detection, IEEE TPAMI, 30(1): 36-51, 2008. 7, 8

[8] N. Kambhatla and T. K. Leen, Dimension Reduction by Local Principal Component Analysis,
Neural Computation, 9: 1493-1516, 1997. 5

[9] C. Lu, L. J. Latecki, N. Adluru, X. Yang, and H. Ling, Shape Guided Contour Grouping with
Particle Filters, In ICCV, 2009. 2, 8

[10] T. Ma and L. J. Latecki, From Partial Shape Matching through Local Deformation to Robust
Global Shape Similarity for Object Detection, In CVPR, 2011. 2, 8

[11] S. Maji and J. Malik, Object Detection using a Max-Margin Hough Transform, In CVPR, 2009.
2, 8

[12] D. R. Martin, C. C. Fowlkes, and J. Malik, Learning to detect natural image boundaries using
local brightness, color, and texture cues, IEEET PAMI, 26(5): 530-549, 2004. 7

[13] J. C. Platt, Using analytic qp and sparseness to speed training of support vector machines, In
Advances in Neural Information Processing Systems, pages 557-563, 1998. 7

[14] P. Schnitzspan, M. Fritz, S. Roth, and B. Schiele, Discriminative structure learning of hierar-
chical representations for object detection, In CVPR, 2009. 2

[15] Z. Song, Q. Chen, Z. Huang, Y. Hua, and S. Yan, Contextualizing Object Detection and Clas-
sification, In CVPR, 2010. 2

[16] P. Srinivasan, Q. Zhu, and J. Shi, Many-to-one Contour Matching for Describing and Discrim-
inating Object Shape, In CVPR, 2010. 2, 8

[17] D. Tran and D. Forsyth, Improved human parsing with a full relational model, In ECCV, 2010.
7

[18] Y. Wang, D. Tran, and Z. Liao, Learning Hierarchical Poselets for Human Parsing, In CVPR,
2011. 2, 7, 8

[19] X. Yang and L. J. Latecki, Weakly Supervised Shape Based Object Detection with Particle
Filter, In ECCV, 2010. 2

[20] B. Yao, A. Khosla, and L. Fei-Fei, Classifying Actions and Measuring Action Similarity by
Modeling the Mutual Context of Objects and Human Poses, In ICML, 2011. 2

[21] P. Yarlagadda, A. Monroy and B. Ommer, Voting by Grouping Dependent Parts, In ECCV,
2010. 8

[22] C.-N. J. Yu and T. Joachims, Learning structural svms with latent variables, In ICML, 2009. 2,
4, 5

[23] A. Yuille and A. Rangarajan, The concave-convex procedure(cccp), In NIPS, pages 1033-1040,
2001. 1, 2, 5

[24] Y.B. Zhao and S.C. Zhu, Image Parsing via Stochastic Scene Grammar, In NIPS, 2011. 2
[25] L. Zhu, Y. Chen, A. Yuille, and W. Freeman, Latent Hierarchical Structural Learning for Object

Detection, In CVPR, 2010. 1, 2, 5
[26] L. Zhu, Y. Chen, Y. Lu, C. Lin, and A. Yuille, Max Margin AND/OR Graph Learning for

Parsing the Human Body, In CVPR, 2008. 1, 2
[27] S.C. Zhu and D. Mumford, A stochastic grammar of images, Foundations and Trends in Com-

puter Graphics and Vision, 2(4): 259-362, 2006. 1, 2

9

