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We present a novel method to obtain high quality skeletons of binary shapes. The obtained

skeletons are connected and one pixel thick. They do not require any pruning or any other post-

processing. The computation is composed of two major parts. First, a small set of salient contour

points is computed. We use Discrete Curve Evolution, but any other robust method could be
used. Second, particle ¯lters are used to obtain the skeleton. The main idea is that the particles

walk along the skeletal paths between pairs of the salient points. We provide experimental

results that clearly demonstrate that the proposed method signi¯cantly outperforms other well-

known methods for skeleton computation. Moreover, we propose an extension of our method to
computing skeletons of gray level images and provide promising experimental results.

Keywords: Skeleton; skeletonization; skeletal path; particle ¯lter.

1. Introduction

The skeleton is important for object representation and recognition in di®erent areas,

such as image retrieval and computer graphics, character recognition, image pro-

cessing, and the analysis of biomedical images.8 The skeleton is an abstraction of

objects that at the same time contains both shape features and topological structures

of the original object. Therefore, many researchers have worked on matching skel-

eton structures represented by graphs or trees.3,5,27,30 However, as the skeleton is

sensitive to the noise and deformation of the boundary, which may seriously disturb

the topology of the skeleton graph, these methods cannot work on complex shapes or

shapes with obvious noise.

We list now properties of the ideal skeleton.

(1) it should preserve the topology of the original object.

(2) it should be stable under deformations.

(3) it should be invariant under Euclidean transformations such as rotations and

translations.

(4) the position of the skeleton should be accurate.

(5) it should be composed of 1D arcs (i.e. one-pixel wide in digital images).

(6) it should represent signi¯cant visual parts of objects.

Properties (4) and (5) mean that the skeleton should contain the centers of

maximal disks, and nothing more than the centers of maximal disks. Many typical

methods cannot guarantee the property (4), such as the methods using thinning29 or

Active Contour model.21 Property (6) means that there should be skeleton branches

in every signi¯cant object part and that there should be no spurious branches that do

not correspond to any object parts (which are usually due to noise).

Since most of the existing skeleton computation methods are not able to produce

skeletons that satisfy property 6, skeleton pruning is applied. Its goal is to remove

spurious branches. Clearly, a pruned skeleton should still have properties (1)�(6).

Ogniewicz and Kübler24 presented a few signi¯cant measures for pruning complex

Voronoi skeletons without disconnecting the skeletons, but it may lead to topology

violation. The method in Ref. 26 has di±culty in distinguishing noise from low

frequency shape information on boundaries. The skeleton generated in Ref. 9 cannot
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guarantee the property of the connectivity, as shown in the experimental results in

Fig. 1(a). The skeleton computed by our method is shown in Fig. 1(b).

The method introduced by Bai et al.4 can obtain excellent skeletons which contain

most of the properties of ideal skeletons, but it cannot guarantee that the skeleton is

one-pixel wide and it need the postprocessing. Compared to it, our method produces

one-pixel thick skeletons without skeleton pruning.

Particle ¯lters estimate the posterior probability density over the state space of a

dynamic system. The key idea of this technique is to represent probability densities

by sets of samples. By sampling in proportion to likelihood, particle ¯lters focus the

computational resources on regions with high likelihood, where good approximations

are most important. Over the last few years, particle ¯lters have been applied with

great success to a variety of state estimation problems including visual tracking,

speech recognition, mobile robot localization, robot map building, people tracking,

and fault detection. Moreover, Adluru et al. have used particle ¯lters in contour

grouping.1 The proposed method is the ¯rst one that utilizes particle ¯lters in

computing skeletons.

The proposed method ¯rst utilizes the Discrete Curve Evolution (DCE)16,17 to

simplify the contour, and to obtain a small set of salient points as vertices of the

simpli¯ed polygon, but other approaches which produce stable salient points could

also be used. The basic idea of the DCE is simple. In every evolutional step of DCE, a

pair of consecutive line segments s1; s2 is replaced by a single line segment joining the

endpoints of s1 [ s2. The order of the substitution is determined by the relevance

measure K given by:

KðS1;S2Þ ¼
�ðS1;S2ÞlðS1ÞlðS2Þ

lðS1ÞlðS2Þ
ð1Þ

where line segments s1; s2 are the polygon sides incident to a vertex v, �ðs1; s2Þ is the
turn angle at the common vertex of segments s1; s2; l is the length function nor-

malized by the total length of a polygonal curve C. The higher value of Kðs1; s2Þ, the
larger is the contribution of the arc s1 [ s2 to the shape. During the evolution, we will

¯rst remove the arcs with the smallest contribution. In Fig. 2, we show some results

(a) (b)

Fig. 1. (a) Skeleton computed by the method in Ref. 8, (b) by the proposed method.
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to illustrate that each convex vertex of the DCE simpli¯ed polygon is guaranteed to

be a skeleton endpoint.

We bene¯t from a geometric relation between the skeletal path and the contour,

which is a key observation that motivates our approach: the endpoints of signi¯cant

skeleton branches coincide with convex salient contour points. We illustrate the main

ideas of the proposed method in Fig. 3. Let a and b be two salient contour points.

They divide the contour into two parts C ¼ C1 [ C2 marked with red and blue

colors, respectively. The skeleton path pða; bÞ from a to b is composed of centers of

maximal disks that are tangent both to C1 and to C2. We use a particle ¯lter to

compute the path pða; bÞ. The condition that the maximal disks are tangent to two

contour parts makes our skeleton insensitive to noise and contour deformations. The

computation with particle ¯lters assures that the skeleton paths are connected, vary

smoothly, and are one pixel thick.

The ¯nal skeleton consists of the skeleton paths between all pairs of salient points.

For a given set of salient contour points, we obtain an excellent skeleton without any

pruning process. We use DCE to generate salient points, since it is proved in

Bai et al.,4 each DCE computed convex salient point is guaranteed to be a skeleton

endpoint.

(a) (b)

(c) (d)

Fig. 2. Hierarchical skeleton of elephant obtained by pruning the input skeleton (left) with respect to

contour segments obtained by the Discrete Curve Evolution (DCE). The outer (red) polylines show the
corresponding DCE simpli¯ed contours.

4 Y. Tang et al.
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As in our case the target function is nonlinear, the Dynamic Programming (DP),

which can only solve the linear function, will carry contour noise to the skeleton.

Compared to DP, the particle ¯lter can get rid of the noise and local solutions. It can

allow branching and carrying multiple solutions. Therefore, we use a particle ¯lter to

¯nd the skeleton path between any pair of the salient points instead of DP. Particle

¯lters are also known as Sequential Monte-Carlo (SMC) methods, which have the

ability to carry multiple hypotheses, and are widely used to track multiple targets with

cluttered background in image sequences. The ¯rst application of particle ¯lters in

Computer Vision is in the tracking of object contours,13,14 Tracking of tracking of

motion boundaries is used for motion estimation in Ref. 7. The ¯rst application of

particle ¯lters to static images is presented inRef. 25where particle ¯lters are applied to

perform inference over a spatial chain of edge pixels rather than over a temporal chain.

An extension of SMC that performs inferences on arbitrarily structured graphical

models has been proposed in Refs. 15, 28 and applied to an edge linking task in Ref. 15.

The rest of the paper is organized as follows: our approach to computing skeleton

paths is introduced in Sec. 2. The construction of the whole skeleton is presented in

Sec. 3. The experimental results are shown in Sec. 4. Finally, the conclusion is

presented in Sec. 6.

2. Computing Skeleton Paths with a Particle Filter

Let a and b be two convex, salient contour points. As stated in the introduction, we

use DCE polygon simpli¯cation to compute the salient points, since all convex

vertices of the DCE simpli¯ed polygon are guaranteed to be skeleton endpoints. The

way to obtain the endpoints is not limited to using DCE, and there are some other

Fig. 3. In green a single skeleton path pða; bÞ from a to b computed by our algorithm. The salient points a

and b divide the contour into two parts C ¼ C1 [ C2 marked with red and blue colors, respectively. pða; bÞ
is composed of centers of maximal disks that are tangent both to C1 and to C2.

Skeletonization with Particle Filters 5

May 18, 2010 10:20:10am WSPC/115-IJPRAI 00807 ISSN: 0218-0014 1st Reading

1

3

5

7

9

11

13

15

17

19

21

23

25

27

29

31

33

35

37

39

41



methods for computing the salient points on the contour that is ¯t for the proposed

method, such as visual curvature.18 Our goal is to obtain a skeleton path from a to b.

We use xj
1:t to denote a sequence of skeleton points of particle j at time step t,

i.e. xj
1:t ¼ xj

1; . . . ;x
j
t . Then xj

t is the current endpoint of the particle j at the step t.

Let Nðxj
tÞ represent the set of 8-nearest neighbors of all skeleton points of particle j.

We initialize with n particles, each equal to a, and the initial weights of the

particles are 1=n. At each iteration, we consider eight possible continuations of

particle xj
1:t�1 as the 8-nearest neighbors of x

j
t�1. (Here we bene¯t from the fact that

a digital image is a discrete structure.) We obtain an eight extensions of particle

xk
1:t ¼ fxj

1:t�1;x
k
t g for each of the eight neighbors xk

t 2 Nðxj
t�1Þ. The index k of

particle xk
1:t may be di®erent from j, since particle j has eight extensions cor-

responding to the eight neighbors Nðxj
t�1Þ of xj

t�1.

Now we derive a particle ¯lter algorithm that is particularly suitable for com-

putation in digital images. Our goal is to estimate the posterior pðx1:tjz1:tÞ over all
potential skeleton paths in a given shape. Our observations z1:t ¼ fz1; z2; . . . ; ztg
represent distances to the shape contour (a detailed de¯nition follows below). Each

particle represents a particular skeleton path. We will follow the framework of a

particle ¯lter algorithm called sampling importance resampling (SIR) ¯lter,10 which

can be summarized as follows:

(1) Prediction by Sampling: The next generation of particles fxk
1:tgk is obtained from

the generation fxj
1:tgj�1 by sampling from a proposal distribution � (de¯ned below).

We use prior boosting in prediction by sampling.12 It allows us to capture multi-

modal likelihood regions in the posterior. In prior boosting we sample more than one

follower for each particle so that di®erent followers can capture di®erent modes of the

proposal. As described above, the fact that we work in digital images naturally

suggests the eight followers be the eight neighbors of the latest pixel in each particle

sequence. Thus, we increase the number of particles from N to 8N, which is then

reduced back to N in the resampling step (3).

(2) Importance Weighting: An importance weight is assigned to each particle

according to the importance sampling principle wk
t ¼ pðx k

1:tjz1:tÞ
�ðx k

1:tjz1:tÞ
. The weights account

for the fact that the proposal distribution is usually not equal to the target distri-

bution pðx1:tjz1:tÞ.
(3) Resampling: Particles are drawn with replacement proportional to their

importance weights. The weight of each of the eight new particles is de¯ned as:

wk
t ¼ pðxk

1:tjz1:tÞ
�ðxk

1:tjz1:tÞ
¼ �pðztjxk

1:t; z1:t�1Þpðxk
t jxj

t�1Þ
�ðxtjxj

1:t�1; z1:tÞ
pðxj

1:t�1jz1:t�1Þ
�ðxj

1:t�1jz1:t�1Þ

/ pðztjxk
t Þpðxk

t jxj
t�1Þ

�ðxtjxj
1:t�1; z1:tÞ

wj
t�1; ð2Þ

where wj
t�1 is the weight of particle xj

t�1 and � ¼ 1=pðztjz1:t�1Þ is a normalization

factor resulting from Bayes rule that is equal for all particles. Now we make an

6 Y. Tang et al.
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important assumption that the proposal distribution �ðxtjxj
1:t�1; z1:tÞ is uniform.

This is justi¯ed in our context by the fact that each point is a pixel that has eight

neighbors, and continuation to each of the eight neighbors is equally probable.

Therefore, we obtain

wk
t / pðztjxk

t Þpðxk
t jxj

t�1Þwj
t�1 ð3Þ

The conditional probabilities in Eq. (3) are de¯ned below based on digital top-

ology of paths in digital images pðxk
t jxj

t�1Þ and on geometric properties of skeletons

pðztjxk
t Þ.

The conditional probability of the new particle xk
1:t generated by extending the jth

particle is given by:

pðxk
t jxj

1:t�1Þ ¼
1; if xk

t 2 Nðxj
t�1Þ �Nðxj

1:t�1Þ
0:01; else

�
ð4Þ

The main contribution of this probability is to avoid visiting the same pixels

again, since we do not want the particle path to go backward, which would create a

loop in the skeleton path or perturb it. Hence, we assign very low probability to the

neighbors of xj
t�1 that already belong to the sequence of particle xj

1:t�1.

In order to calculate pðztjxk
t Þ, we recall that the contour is divided into two parts

C1 and C2. Let d1, d2 represent the minimum distance from the point xk
t to each of

the parts, which for a correct skeleton paths both should be equal to the radius of the

maximal disk centered at xk
t . In particular, we should have d1 ¼ d2. Thus, our

observation zt is composed of two distances d1; d2 from the contour parts C1 and C2.

Figure 4 illustrates our computation of pðztjxk
t Þ. Consider two di®erent points P1 and

P2 as candidates for the skeleton point xk
t . It is obvious that P1 is more likely to be

the center of a maximal disk with respect to the contour parts C1 and C2 than P2,

since D 0 ¼ jd 0
1 � d 0

2j is smaller than D ¼ jd1 � d2j.Therefore, we assume that the

Fig. 4. Point P1 is more likely to be a skeleton point than point P2.
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observation density is a Gaussian function of the di®erence d1 � d2:

pðztjxk
t Þ ¼

1ffiffiffiffiffiffi
2�

p
�
e

�ðd1�d2Þ2
2�2 ð5Þ

The outline of the derived particle ¯lter algorithm is as follows:

From the \old" sample set fðxj
t�1;w

j
t�1Þ : j ¼ 1; . . . ;Ng at the time step t� 1,

construct a new sample set fðxj
t ;w

j
tÞ : j ¼ 1; . . . ;Ng for step t.

For j ¼ 1 to N iterate steps (1)�(3):

(1) Prediction by Sampling:

For each particle j, we extend it to eight particles by xk
1:t ¼ fxj

1:t�1;x
k
t g, where

xk
t 2 Nðxj

t�1Þ.
(2) Importance Weighting:

Compute the weights wk
t ¼ pðztjxk

t Þpðxk
t jxj

t�1Þwj
t�1 and normalize the weights so

that
P

k w
k
t ¼ 1.

(3) Subsampling:

Draw N particles from the current set of 8N particles with probabilities

proportional to their weights.

Finally, the particle with the highest weights is selected, which represents a

skeleton path. There are two important di®erences in comparison to the standard

sampling importance resampling (SIR) ¯lter. First, our prediction by sampling

considers all possible extensions to the eight neighbors , this is why our proposal

distribution is uniform. Second, since our prediction by sampling increases the

number of particles to 8N , we replaced resampling with subsampling in order to

reduce the number of particles to N. We modi¯ed the residual resampling to obtain

the residual subsampling.

Figure 3 shows an example of one skeleton path generated by the above algorithm.

The blue and red parts represent the two di®erent parts C1, C2 of the contour

separately, which are divided by the two vertices. The green line is the skeleton path

generated by our algorithm. The skeleton path is in the middle of the two contour

parts, which is the main property of an excellent skeleton. The skeleton path does not

have any redundant branches and it is insensitive to boundary noise. These properties

follow from the fact that the observation density pðztjxk
t Þ is computed with respect to

the contour partitions C1 and C2 induced by two salient points. The conditional

probability pðxk
t jxj

t�1Þ is responsible for computing smooth paths that are one pixel

thick. The statistical framework of particle ¯lter assures that the local noise on pixel

level does not distort the skeleton paths.

3. Combining Skeleton Paths to form a Complete Skeleton

The skeleton is the union of paths between all the endpoints. There are two steps

to combine all the skeleton paths into one image. The ¯rst step is generating all

the paths between all the endpoints based on the method introduced in Sec. 2.

8 Y. Tang et al.
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The second step is combining all the paths together to obtain the skeleton. For

example, the skeleton of the heart in Fig. 5(a) is the union of the skeleton path of

Figs. 5(b)�5(d).

4. Experiments

In this section, we evaluate the proposed method in two parts: (1) we show that the

skeleton is stable to the noise and deformation and (2) we compare it to other

methods. Actually, in the ¯eld of computing skeleton, there is no quantitative way to

de¯ne whether the results are good or not. If the skeleton can ¯t the six properties

described in the introduction, the skeleton is good. From all of the results listed

below, we can state that the proposed approach can generate excellent skeletons

which satisfy the six properties. Besides, according to the comparison experiments,

the proposed method can obtain much better skeleton than many other approaches.

4.1. Test on noisy images

The results in Fig. 6 show that the proposed method is insensitive to even substantial

noise in contours. For each shape, there is one image without noise and one image

with substantial noise. The similarity of the obtained skeletons illustrates the

stability of the proposed method. In particular, there are no branches generated by

the boundary noise, and the skeletons still preserve the topological and geometric

structure of the objects. Other methods cannot obtain stable skeletons on noisy

images. Most of them will have extra branches or distorted skeletons.

The extraordinary stability of our skeletons in the presence of large inner-class

shape variations is demonstrated in Fig. 7.

Although the objects di®er signi¯cantly from each other, the obtained pruned

skeletons have the same global structure. Moreover, the thin tails of the camels

remained in the skeleton, which cannot be achieved by most of the other pruning

methods, since they may shorten or disconnect the skeleton. The ¯nal DCE simpli-

¯ed polygons are also shown overlaid on the shapes with red segments.

(a) (b) (c) (d)

Fig. 5. The skeleton in (a) is constructed by combining the paths in (b)�(d) together. These are all

possible skeleton paths between the three DCE vertices, which are the skeleton endpoints.

Skeletonization with Particle Filters 9
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Fig. 6. For each shape, there is one image without noise and one image with substantial noise. The

obtained skeletons are very similar.

Fig. 7. The results on some shapes from the MPEG-7 database illustrate extraordinary stability of our

skeletons in the presence of large shape variances. The red lines illustrate the DCE polygons.

10 Y. Tang et al.
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4.2. Comparison to to other methods

We compare our method to the ¯xed topology method,11 which also starts with a

small set of salient points. However, the ¯xed topology skeleton requires that the

skeleton junction points are estimated. We do not need to estimate the junction

points. Two example results of the ¯xed topology method11 are shown in Figs. 8(a)

and 8(c). As can be clearly seen, the obtained skeleton is not positioned accurately in

that many skeleton points are not centers of maximal disks. In contrast, as shown in

Figs. 8(b) and 8(d) all of our skeleton points are the centers of maximal disks, and

therefore they are exactly symmetrical to the shape boundary. In addition, observe

the presence of phantom horizontal skeleton branches in Fig. 8(c). They do not

re°ect any real structural information. Due to the stability of DCE, the proposed

method does not introduce any phantom branches.

Figure 9 shows a comparison of our approach (b) with the method proposed by

Ogniewicz and Kübler24 (a), which has inaccurate, half-shortened branches that are

not related to any obvious boundary features. Other experimental results of the

proposed method prove that it is able to completely eliminate all the unimportant

branches and still preserve the main structure. Our method does not su®er from the

shortening of main skeleton branches and it preserves the topology of the skeleton.

Moreover, the obtained skeletons seem to be in accordance with human perception,

as it satis¯es the six properties of the skeleton.

The method introduced by Bai et al.4 can obtain excellent skeletons which contain

most of the properties of ideal skeletons, but it cannot guarantee that the skeleton is

one-pixel wide, which is illustrated in Fig. 10(a). As shown in Fig. 10(b), our method

produces one-pixel wide skeletons.

(a) (b) (c) (d)

Fig. 8. Comparison between (a) the ¯xed topology skeleton,14 (c) and (b, d) our skeleton. The red lines

illustrate the DCE polygons.
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5. Extension to Gray Images

In this section, we show that our method has a potential to be extended to gray-scale

images. For skeletonization for gray images, the major di±culty is to obtain the

object's boundary. We applied our framework on top of the Skeleton Strength Map

(SSM) computed by the approaches.19,20 SSM is calculated from Euclidean distance

transform of the edge maps, which can be considered as probabilistic map for the

skeleton points. The value at each pixel of SSM denote the con¯dence to be a skeleton

point. Di®erent from skeletonization for binary images, here we use the values of

SSM as the observation density pðztjxk
t Þ in Eq. (5). Using strength maps for particle

¯lters is not new, as it has been successfully applied in contour tracing.23,25 Figure 11

shows a few example results by our methods. The endpoints for skeletal paths are

selected manually, as the complete boundary cannot often be obtained from clutter

(a) (b)

Fig. 10. Comparison between pruning result in Ref. 4 in (a) and our results in (b).

(a) (b)

Fig. 9. Comparison between pruning result in Ref. 24 in (a) and our results in (b).

12 Y. Tang et al.
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images. However, our experimental results still make sense, since manual initializa-

tion for contour grouping or segmentation has been widely used.1,25,23

6. Conclusion

In this paper, we establish a novel framework for skeleton computation that com-

bines the geometric method of Discrete Curve Evolution with the statistical method

of particle ¯lters. The obtained skeletons do not have redundant skeleton branches

and retain all the necessary visual branches. The experimental results demonstrate

high stability of the obtained skeletons even for objects with extremely noisy con-

tours, which is the key property required to measure the shape similarity of objects

using their skeletons. Moreover, this method can guarantee the skeleton is one-pixel

wide. The proposed particle ¯lter framework easily extends to computing skeletons of

gray level images when applied to SSM.

In future, we will extend the proposed approach to generate the skeleton for the

shape with holes and 3D shapes, as the particle ¯lter can deal with the condition that

the path between two endpoints is not unique.
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Fig. 11. The results on gray images. (a) the original gray images, (b) the edge maps, (c) the SSMs based

on (b), and (d) the results.
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