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Abstract— Recognizing objects from simultaneously sensed
photometric (RGB) and depth channels is a fundamental yet
practical problem in many machine vision applications, such as
robot grasping and autonomous driving. In this paper, we address
this problem by developing a cross-modal attentional context
(CMAC) learning framework, which enables the full exploitation
of the context information from both RGB and depth data.
Compared to existing RGB-D object detection frameworks, our
approach has several appealing properties. First, it consists of
an attention-based global context model for exploiting adaptive
contextual information and incorporating this information into
a region-based CNN (e.g., fast RCNN) framework to achieve
improved object detection performance. Second, our CMAC
framework further contains a fine-grained object part attention
module to harness multiple discriminative object parts inside
each possible object region for superior local feature represen-
tation. While greatly improving the accuracy of RGB-D object
detection, the effective cross-modal information fusion as well as
attentional context modeling in our proposed model provide an
interpretable visualization scheme. Experimental results demon-
strate that the proposed method significantly improves upon the
state of the art on all public benchmarks.

Index Terms— RGB-D object detection, attentional context
modeling, cross modal feature, convolutional neural network.

I. INTRODUCTION

RGB-D object detection attempts to localize and classify
objects within an image with depth information. It is one

of the core technologies in the field of robotics application
and can be beneficial to many intelligent tasks, including pose
estimation [1], [2], content-based image retrieval [3] and robot
task planning [4]. In recent years, the successful application of
deep convolutional neural networks has pushed this research
into a new phase and achieved very good results.
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Most CNN-based RGB-D object detection frameworks are
extended from RCNN-based object detectors [5]–[7] for RGB
images. R-CNN-Depth [8] is the first deep learning frame-
work for RGB-D object detection that extends the R-CNN
system [5] to take advantage of depth information by incorpo-
rating two parallel network streams for both RGB and depth
modalities. This two-stream pipeline later became the basis
for many visual perception tasks in RGB-D images [9]–[12].
In this framework, the features from the RGB and depth
modalities are computed independently and concatenated after
applying fully connected layers for final proposal classifica-
tion. However, this pipeline has its own limitations: (1) Inde-
pendent feature computation and simple feature concatenation
ignore the correlation between the two modalities. (2) Only
information inside the object proposal is used for object
classification, which neglects the auxiliary role of context
information outside the bounding box in object classification.

In this paper, we propose a Cross Modal Attentional Context
(CMAC) learning framework for RGB-D object detection that
incorporates the consistency and complementary information
between two diverse modalities (RGB and depth), as well as an
attentional model for global context mining and discriminative
object part discovery. To exploit the correlation between RGB
and depth modalities, the CMAC model employs a cross-
modal feature fusion component to fuse the features extracted
from the output feature maps of the two fully convolutional
networks (with different input sources). Instead of directly
applying fused features to classification and object location
refinement, our proposed CMAC model further learns atten-
tional context and explores discriminative object parts based
on the fused features. We believe that both the attentional
global context and the discriminative parts attended inside each
possible object region (object proposal) are crucial for accurate
RGB-D object detection.

To capture the global context, our model employs a recur-
rent attention model that consists of multiple stacked Long
Short-Term Memory (LSTM) units. The recurrent neural net-
work is optimized to infer relevant regions for each given
region proposal. As shown in Figure 1, the regions that are
considered helpful for classification of the object proposal
are highlighted. As can be seen, our proposed CMAC model
can identify an adaptive global context for different object
proposals (i.e., the regions of the keyboard, parts of the table
around the target monitor as well as the other monitor are
highlighted when the input region proposal contains a monitor.
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Fig. 1. Example visualization results for global context and object part attention generated by our proposed CMAC model. For global context, information
from relevant regions (the highlighted regions) of the object proposals is obtained through a recurrent attentional model. For local context, multiple parallel
spatial transformers are utilized to exploit information from the discriminative parts (green rectangles) of the object proposals. Red rectangles indicate the
object proposals.

When the input region proposal contains a chair, the regions
including parts of the table and other chairs are assigned
higher weights in the final classification.). Moreover, inspired
by the fact that humans tend to quickly capture distinguishable
parts for more accurate object classification judgment when
observing objects with occluded regions, we propose to further
incorporate a fine-grained object part attention module in
our network framework. Considering the flexible attention
mechanism and the excellent spatial manipulation ability of
Spatial Transform Networks (STNs), we adopt multiple STNs
in parallel to examine the discriminative parts located inside a
specific object proposal for capturing local context. As illus-
trated in Figure 1, the CMAC model is able to successfully
locate the most discriminative location that can differentiate
an object’s category (i.e., the main screen and the base of
the monitors, as well as the back and legs of the chairs).
Acquiring such fine-grained object parts provides enhanced
feature representations for region proposals.

In summary, the main contributions of the proposed CMAC
model can be listed as follows:

- We propose a novel Cross Modal Attentional Con-
text (CMAC) deep learning framework that effectively
incorporates the correlated information between different
modalities and successfully identifies useful contextual
information both locally and globally for RGB-D object
detection.

- An attention-based global context module, based on an
LSTM network, is utilized to recurrently generate con-
textual information from a global view for each object
proposal.

- Multiple spatial transform networks are adopted in par-
allel to localize discriminative object parts for accurate
object recognition.

- Extensive experiments on the SUNRGBD and
NYUv2 datasets well demonstrate the effectiveness
of the proposed CMAC model, which outperforms
the state-of-the-art method [10] by 3.7% and 3.2%,
respectively, in terms of mAP.

II. RELATED WORK

A. Object Detection in RGB-D Images

Object detection in RGB-D images has attracted increased
attention because of the rapid development of affordable
depth sensors and their diverse application scenarios. Many
successful algorithms have been proposed to effectively exploit
information from RGB-D data. References [13] and [14]
took advantage of hand-designed features such as SIFT and
multiple shape features in the depth channel for RGB-D
object recognition. Schwarz et al. [11] utilized two-stream
CNNs pre-trained on ImageNet to extract features from RGB-
D images. While most work mainly focuses on the RGB
modality, some recent work has been dedicated to improving
the object detection performance by taking depth information
into consideration. Gupta et al. [8] proposed a geocentric
embedding to convert each single-channel depth map into
a three-channel depth image (HHA image), in which they
encoded each pixel with three channels of information, i.e., the
height above the ground, the horizontal disparity and the angle
with respect to gravity. They also introduced a generalized
method for the R-CNN detector that can be applied to RGB-D
images; they used large CNNs pre-trained on RGB images to
extract features from HHA data. To learn rich representations
for the depth modality, [10] transferred supervisions from
labeled RGB images to unlabeled depth images. In this paper,
we follow [8] and encode depth information into HHA images
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for improved feature learning and take the model in [10] as
our compared baseline model.

Another core issue of RGB-D object detection is how to
merge the features from different sources. Existing fusion
strategies can be divided into two streams: (1) Early
fusion [13], [15], [16], in which the depth channel is being
treated as an extra channel to RGB images and is concate-
nated with the RGB channels for feature extraction. (2) Late
fusion [8]–[10], [17], where features are separately learned for
each modality and are concatenated at later stages for object
classification. Our model is similar to the late fusion approach,
but instead of directly concatenating features for classification,
we apply the attention model to the fused features to learn a
better global context and discriminative object parts to achieve
more accurate object recognition.

B. Context Information in Object Detection

Context information has been applied in many methods
to enhance the performance of object detection [18]–[24].
For instance, [24] exploited context from information about
the entire scene for object detection and localization. Refer-
ence [21] explored contextual relationships between regions
in an unsupervised manner, where objects are detected using
a discriminative approach. Spatial support and geographic
information are used as context clues in [20]. Context models
have also been applied to deep-learning-based object detec-
tors. Reference [25] proposed a group recursive learning
approach to refine object proposals by incorporating seman-
tic and spatial layout correlations of surrounding proposals.
Chu and Cai [26] formulated a fully connected conditional
random field (CRF) to incorporate the local appearance and the
contextual information in terms of relationships among objects
and the global scene based on contextual features generated by
a convolutional neural network. Inside-Outside net (ION) [27]
introduced spatial recurrent networks (RNNs) to integrate
the contextual information outside the region of interest
while utilizing skip pooling to extract fine-grained information
from multiple low-level convolutional layers. Although our
proposed model also explores global contextual information
through recurrent networks, it explicitly learn to attend the
most relevant regions of the object proposal by generating a
weight map for each proposal. The weight map can well reveal
the contextual region that corresponds to the final classification
result. One the other hand, instead of directly extracting local
features from the whole object bounding box, our model can
achieve better object feature representations by recurrently
discovering the most discriminative object parts inside the
object proposal and performing part-level feature fusion.

C. Recurrent Attention Models

Recurrent attentional models have been widely incorporated
in deep-learning-based computer vision tasks [28]–[31] to
achieve better performance. Bahdanau et al. [28] introduced
recurrent attention to neural machine translation, which allows
the model to adaptively attend to the most relevant part
of a sentence. Reference [30] adopted visual attention to
dynamically select a sequence of regions and only processed

the selected regions for efficient computation. A recent work
in [31] used an LSTM-based attention model to learn a
description of static images. More recently, an attention mech-
anism has also been applied to vision tasks for videos. For
instance, [32] extended an attention model for video descrip-
tion and employed a temporal attention mechanism to model
the dynamic temporal structure of videos. Reference [33]
optimized the attention model to attend to the relevant parts
within a single frame and attached higher importance to them
while performing action recognition.

The work that is most relevant to our proposed method is
the attentive context proposed in [29], which also incorporated
a recurrent attention model to exploit global contextual infor-
mation. However, the attention model used in [29] generated
a static attentive location map for all object proposals. Instead
of utilizing a fixed attentive context, our model generates
an attentional context feature adaptive to the input region
proposals. Furthermore, we employ a fine-grained object part
attention module to harness multiple discriminative object
parts inside each object proposal for achieving a superior local
feature representation. Experimental analysis in Sec. IV-C
demonstrates that our method is more robust to background
and inter-class noise.

III. FRAMEWORK

An overview of our framework is illustrated in Fig. 2.
Our RGB-D object detection system, which is based on
cross modal attentional context learning, is composed of
four components, including fully convolutional networks
based feature extraction, cross-modal feature fusion, attention-
based global context modeling and fine-grained object part
attention. We term this network Cross-Modal Attentional
Context (CMAC) network. Specifically, given an RGB-D
image, we first employ Multiscale Combinatorial Group-
ing (MCG) [34] to generate a number of object proposals
from RGB information and encode the original depth value
to the three-channel HHA representation, as proposed in [8].
Following the benchmark object detection framework of Fast
R-CNN [6], our CMAC model takes as input an RGB image,
an HHA image and corresponding object proposals to generate
class labels as well as a refined bounding box for each object
proposal.

As shown in Fig. 2, the feature extraction module is built on
two separate fully convolutional sub-networks, including the
VGG16 model [35] for RGB modality and AlexNet model [36]
for depth modality. The output of the last convolutional layer is
being treated as our initial feature for object detection, therein
including D convolutional maps. The two fully convolutional
sub-networks take as input the RGB image and the HHA
image to generate the corresponding feature cube. Region-of-
Interest (RoI) pooling operations are performed on the two
feature cubes to obtain both global (whole image) and local
features (object proposal) of the two modalities before being
fed to a cross-modal feature fusion module. Moreover, both
the fused global feature and the fused local feature are fed to a
global context modeling module to obtain an attentional global
context feature for the corresponding object proposal, while



1594 IEEE TRANSACTIONS ON IMAGE PROCESSING, VOL. 28, NO. 4, APRIL 2019

Fig. 2. The network architecture of our proposed cross-modal attentional context (CMAC) learning framework. The input consists of one RGB image and one
HHA image (geocentric encoding of the depth image). Our network framework is composed of four components: convolutional feature extraction, cross-modal
feature fusion, attention-based global context modeling and fine-grained object part attention.

the fused local feature itself is also treated as an input for the
fine-grained object part attention, which generates an embed-
ded local feature. Finally, the concatenation of the global
context feature and the embedded local feature are employed
for final object detection, while local feature embedding is
applied for further bounding box regression.

A. Cross-Modal Feature Fusion

It has been widely verified that the RGB modality and depth
modality are complementary, the combination of which can
help to boost the RGB-D object detection performance [8],
[10]. In this paper, we exploit the features extracted from
the two modalities for both global context modeling and
local proposal feature description. Specifically, we design a
simple yet effective sub-network to fuse features extracted
from both modalities. For each object proposal, we extract
a fixed-size feature representation using ROI pooling [6] in
both modalities, denoted as Fl_rgb and Fl_depth. We also
apply a pooling operation to the output feature map of the
last convolution layer of the two fully convolutional networks
to generate fixed-size feature cubes, denoted as Fg_rgb and
Fg_depth, respectively. The feature fusion between RGB and
depth modality can be represented by

Fl_ f used = concat(Fl_rgb, Fl_depth) (1)

Fg_ f used = concat(Fg_rgb, Fg_depth) (2)

where Fl_ f used and Fg_ f used are the global context feature
and local object proposal feature after fusion, respectively,
and concat(·) indicates the concatenation operation of feature
representations along the channel axis.

In contrast to [8], [10], and [37], which apply two indepen-
dent CNNs to separately extract features from both modalities
and directly perform simple concatenation for final classifi-
cation, our cross-modal feature fusion operation is treated as
a feature generation step for further global context modeling
and local feature embedding before final classification. In the

experiment section, we verify that our proposed cross-modal
feature representation can help to produce more effective
local and global context information, greatly improving the
performance of the final classification.

B. Attention-Based Global Context Modeling

It is well known that contextual representation is crucial for
accurate visual recognition [27], [29], [38]–[41]. Instead of
directly obtaining fixed context information to assist in object
detection [29], [39], we focus on exploiting adaptive context
information for each object proposal. Specifically, we design
a soft attention model based on multi-layered RNNs with
LSTM units to spatially weight the features and generate
an adaptive global context feature for each object proposal.
Average pooling and max pooling operations over the feature
map of the whole image can be considered as special cases of
our method.

The attentional context model takes as input the concatena-
tion of the global feature cube and that of the local feature
cube before being fed to a 1 × 1 convolutional layer for
feature embedding. The dimensions of the embedded global
and local feature are denoted as K×K×D (20×20×512 in our
experiments) and S × S × D (7×7×512 in our experiments),
respectively. Based on these embedded feature cubes, the RNN
model learns an attentional map of size K × K to determine the
effectiveness of the contextual region that may be beneficial
to the object detection.

Inspired by the LSTM-based soft attention model proposed
in [33], we apply an LSTM network to generate a contextual
attention map at every time step conditioned on the previous
hidden state, the globally embedded feature vector as well as
the local feature. Specifically, at each time-step t , we extract
K 2 D-dimensional global feature vectors as well as S2 local
object proposal feature vectors. As in [33], we refer to these
feature vectors as global feature slices and local feature slices,
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TABLE I

DETECTION RESULTS FROM DIFFERENT METHODS ON SUNRGBD
AND NYUV2. AC-CNN* INDICATES OUR IMPLEMENTATION OF THE

RGB-D VERSION OF AC-CNN [29]. G AND L DENOTE OUR

PROPOSED MODEL INCORPORATED WITH A SINGLE LSTM
MODULE (G) OR STN MODULE (L), RESPECTIVELY.
(W/O FUSION) AND (W/ FUSION) DENOTE WITHOUT

AND WITH MULTI-MODAL CONTEXT

FUSION, RESPECTIVELY

TABLE II

COMPARISON OF EXPLOITING GLOBAL CONTEXT USING DIFFERENT
METHODS ON SUNRGBD AND NYUV2

respectively, denoted as{
Gt = [

Gt,1, . . . , Gt,K 2
]

Gt,i ∈ R
D

Lt = [
Lt,1, . . . , Lt,S2

]
Lt,i ∈ R

D (3)

Each vertical column of Gt and Lt denotes the feature
representation (receptive field) in the input image. We follow
the implementation of the LSTM network in [42], which is
formulated as ⎛

⎜⎜⎝
it

ft

ot

gt

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

σ
σ
σ
tanh

⎞
⎟⎟⎠ T

⎛
⎝ ht−1

xt

zt

⎞
⎠, (4)

ct = ft � ct−1 + i � gt (5)

ht = ot � tanh(ct ) (6)

where it , ft , ct , ot , and ht are the input gate, forget gate, cell
state, output gate and hidden state of the LSTM, respectively;
xt is the global context feature vector input to the LSTM at
time step t; the vector z ∈ R

D is the local feature embedding of
the object proposal with the global average pooling operation;
T ∈ R

(2D+d)×4d denotes a simple affine transformation with
trainable parameters, where d is the dimensionality of it , ft ,
ct and ht ; and σ and � denote the logistic sigmoid activation
and element-wise multiplication, respectively.

At each time step t , our LSTM model learns to predict a
weight map αt+1 of size K × K , where its value corresponds
to the spatial attention that should be paid when performing
proposal classification. The weight map αi is computed by a

multilayer perception φ conditioned on the previous hidden
state ht−1. The spatial weight of αt at location i can thus be
computed as follows:

eti = φ(ht−1) (7)

αt i = ex p(eti)∑K×K
k=1 ex p(etk)

(8)

Based on the weight map, the global context feature vector x
at time step t is computed as an average of the feature slices
weighted according to αt , formulated as

xt =
K 2∑
i=1

αt,i Fg_ f used,i (9)

where Fg_ f used,i is the i th global feature slice. Because the
relevant regions are given higher weights, the global feature
xt will be dominated by features from these regions and hence
provide more useful contextual information for more accurate
object detection.

During the initialization stage, we follow the same strategy
proposed in [43] for faster convergence. Specifically, we ini-
tialize the cell state ct and the hidden state ht of the LSTM
network as

c0 = finit, c

⎛
⎝ 1

K 2

K 2∑
i=1

Fg_ f used,i

⎞
⎠ (10)

h0 = finit, h

⎛
⎝ 1

K 2

K 2∑
i=1

Fg_ f used,i

⎞
⎠ (11)

where finit, c and finit, h are two multi-layer perceptions. The
two initial values are applied to infer the initial weights α1
for the initialization of the global context feature x1.

As shown in Fig. 2, the output of our LSTM model is a
D-dimensional global context feature, which is further fed
to two fully connected layers to produce the final feature
representation, denoted as FG .

C. Fine-Grained Object Part Attention

Because the local salient parts inside a specific object
proposal play an important guiding role in judging the classifi-
cation of an object (especially for partially occluded objects),
we further propose to employ multiple STNs [44] in parallel
to infer discriminative object parts for each object proposal.
The spatial transformer is a differential module that learns to
spatially transform the input feature maps U to the output
feature maps V . A spatial transformer is applied in the
following three steps. First, a localization network is employed
to predict the affine transformation matrix Aθ to be applied
to the input feature map. Second, Aθ is being applied to
create a sampling grid in U by the grid generator. Finally,
a sampler is adopted to produce the output maps sampled
from the regions of input maps at the sampling grid. As shown
in Figure 3, we train each transformer to automatically attend
to discriminative object parts inside an object proposal. During
training, we fix the scaling factor to 0.5 and only accept scaling
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Fig. 3. Illustration of the STN module. The STN module takes the feature of
the object proposal as input and attends to the most discriminative parts. The
feature from these parts will subsequently serve as an enhanced local feature
in object classification and bounding box regression.

and translating in each spatial transformer. Thus, Aθ is given
by

Aθ =
[

0.5 0 tx

0 0.5 ty

]
(12)

where θ = [tx , ty] are the translation parameters that are
predicted based on the localization network.

Taking the local context feature map Fl_ f used ∈ R
D×S×S

as input, each transformer in our object part attention module
transforms and samples the input map to the output map q ∈
R

D×S×S. After normalization, the outputs of each transformer
are concatenated with the local context feature to form a mid-
level feature representation for an object proposal, defined as

Fmid = concat (Fl_ f used , qi, . . . , qN ). (13)

where qi is the output of the ith transformer and N is the
number of spatial transformers.

As shown in Figure 2, we use a 1 × 1 convolution layer
after re-scaling to reduce the dimensions of Fmid from S ×
S × (N × D) to S × S × D, which is then fed to two fully
connected layers to infer the final feature representation for
the object proposal, denoted as FL .

D. Training Objective

Denote p = (p0, . . . , pL) as the predicted discrete proba-
bility distribution (per ROI) over C+1 categories and t∗ as the
predicted bounding-box regression offsets. Given the obtained
local and global context features FL and FG , p and t∗ can be
computed as follows:

p = Softmax ( fcls (concat (FL, FG ))) (14)

t∗ = floc (FL ) (15)

where Sof tmax(·) indicates the softmax operation and fcls

and floc are two fully connected layers with C + 1 units and
4 × C units, respectively.

Note that we only incorporate local contextual informa-
tion for bounding-box regression. Finally, we minimize an
objective function following the multi-task loss given in Fast-
RCNN [6], which is defined as

L(p, u, tu , v) = Lcls (p, u) + [u ≥ 1]Lloc(t
u, v) (16)

where u is the ground-truth label, v is the regression target,
Lcls is the log loss for ground-truth class u, and Lloc is the

smooth L1 loss proposed in [6]. [u ≥ 1] evaluates to 1 when
u ≥ 1 and 0 otherwise. By convention, the background class
is labeled as u = 0.

IV. EXPERIMENTAL RESULTS

A. Experimental Settings

1) Datasets and Evaluation Metrics: We evaluate our model
on two RGB-D datasets: SUNRGBD [45] and NYUv2 [46].
The SUNRGBD and NYUv2 datasets contain 10335 and
1449 RGB-D images, respectively, and are divided into train
and test subsets. We adopt Average Precision (AP) and mean
of Average Precision (mAP) following the PASCAL challenge
protocols as our evaluation metrics.

2) Implementation Details: In our experiments, we imple-
ment our model based on Fast R-CNN [6], an open-source
framework for traditional RGB object detection built on the
Caffe platform [47]. We utilize the network architecture from
Gupta et al. [10] as our basic CNN network structure for
convolutional feature map extraction. All the newly added
fully connected and convolutional layers are randomly ini-
tialized with a zero-mean Gaussian distribution with standard
deviations of 0.01 and 0.001. The recurrent attention model
consists of 4 stacked LSTM units with shared parameters. All
the parameters of the LSTM units are initialized based on the
xavier algorithm [48].

We apply Stochastic Gradient Decent (SGD) to fine tune our
model. Each SGD mini-batch is composed of 128 randomly
sampled object proposals from 2 randomly chosen images.
In each mini-batch, we select 25% of the ROIs as foreground
from object proposals that have intersection over union (IoU)
overlap with a ground-truth bounding box of at least 0.5. The
remaining ROIs are sampled from object proposals that have
a maximum IoU with ground truth in the interval [0.1, 0.5)
and act as background with ground truth label u = 0. During
training, images are horizontally flipped with a probability
of 0.5 for data augmentation, and no other augmentation is
used. We run SGD for approximately 10 epochs on the training
set to fine tune the network parameters. The momentum is
set to 0.9, and the learning rate is initialized to 0.001 and
decreased by 10 every 4 epochs. It takes approximately
1.5 days to train our model on a single NVIDIA GeForce
GTX TITAN X GPU with 12 GB of memory.

It costs approximately 10 GB of GPU memory to train
our model. The average training time for each iteration is
approximately 1.23 seconds. However, the testing process is
particularly efficient and takes approximately 0.58 seconds
(excluding object proposal extraction) to process one image.

B. Performance Comparisons

1) RGB-D Datasets: We compare our proposed method
against recent state-of-the-art RGB-D object detection meth-
ods, including rich image and depth feature-based RGB-D
object detection [8] and the supervision-transfer-based
model [10]. Moreover, to better validate the superiority of
the attention-based global context and fine-grained object
part attention on RGB-D datasets, we also implement an
RGB-D version (denoted as AC-CNN*) of the AC-CNN model
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Fig. 4. Illustration of the attentional weight maps generated by the attention-based global context modeling module. The top rows are the input images and
region proposals. The middle and bottom rows are the attentional weight maps generated by our model without context fusion and those with context fusion,
respectively. The bottom two rows show that our model can perceive the most relevant regions to the given object proposal and that more useful regions can
be acquired through context fusion. A detailed discussion can be found in section IV-D.

TABLE III

DETECTION RESULTS ON SUNRGBD. AC-CNN* INDICATES OUR IMPLEMENTATION OF THE RGB-D VERSION OF AC-CNN [29].
(W/O FUSION) AND (W/ FUSION) DENOTE WITHOUT AND WITH MULTI-MODAL CONTEXT FUSION, RESPECTIVELY

TABLE IV

DETECTION RESULTS ON NYUV2. AC-CNN* INDICATES OUR IMPLEMENTATION OF THE RGB-D VERSION OF AC-CNN [29].
(W/O FUSION) AND (W/ FUSION) DENOTE WITHOUT AND WITH MULTI-MODAL CONTEXT FUSION, RESPECTIVELY

proposed in [29] for comparison. AC-CNN follows a similar
idea to our proposed method but incorporates fixed global
and local attentive contexts to assist in improving the object
detection performance. In the implementation, we apply the
Fast RCNN [6] framework based on AlexNet [36] to the depth
modality for proposal classification and bounding-box position
regression. The final results are obtained by averaging the
results from the RGB modality and depth modality. For fair
comparison, we also apply the same depth modality processing
as in AC-CNN* to our model; we call this custom model
RGB-D detection without cross-modal fusion (denoted as w/o
fusion).

Table III and Table IV illustrate the object detection
results of our model, AC-CNN*, and the other two state-of-
the-art RGB-D object detection models on the SUNRGBD
and NYUv2 datasets. As shown in the table, our proposed
method obtains state-of-the-art mAP scores of 47.5% and
52.3% on SUNRGBD and NYUv2, which outperforms the ST
model [10] by 3.7% and 3.2%, respectively. The improvements
validate the effectiveness of our model in RGB-D object detec-
tion by incorporating the proposed attention-based global con-
text and fine-grained attentional object parts learned from the
fused cross-modal context. Furthermore, our model (Ours (w/o
fusion)) gains 1.5% and 1.7% improvements in mAP scores
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TABLE V

COMPARISON OF DIFFERENT LSTM SETTINGS UTILIZED IN THE
ATTENTION-BASED GLOBAL CONTEXT SUB-MODULE. THE

EXPERIMENTS ARE CONDUCTED ON SUNRGBD. (2 × LSTM)
DENOTES THAT THERE ARE 2 STACKED LSTM UNITS IN

THE GLOBAL CONTEXTUALIZED SUB-NETWORK

TABLE VI

COMPARISON OF DIFFERENT STN SETTINGS UTILIZED IN FINE-GRAINED
OBJECT PART ATTENTION SUB-MODULE. THE EXPERIMENTS ARE

CONDUCTED ON SUNRGBD. (2 × STN) INDICATES THAT THERE

ARE 2 PARALLEL SPATIAL TRANSFORMERS IN THE LOCAL
CONTEXTUALIZE SUB-NETWORK

over AC-CNN* on the SUNRGBD and NYUv2 datasets,
respectively, and achieve better detection results on most of
the categories.

2) RGB Dataset: To compare our model with the AC-CNN
model [29] in a more equitable way, we remove the depth
modality from our model and perform an extra evaluation
on PASCAL VOC 2007, which contains 9963 RGB images.
Specifically, we implement a variant of our model (denoted
as Ours*) that performs global context modeling and object
part attention only on the RGB modality without incorporating
information from the depth modality. As shown in Table VII.
Our model outperforms the baseline FRCN [6] and
AC-CNN [29] by 3.6% and 1.2% in terms of mAP scores,
respectively. The improvement on the RGB dataset as well
as the favorable results achieved for RGB-D object detection
well demonstrate the superiority of the proposed attention-
based global context and fine-grained object part attention
over the fixed global context and multi-scale local context
proposed in [29]. Table VIII provides the comparisons of the
proposed method with several state-of-the-art methods [27],
[49]–[52] on PASCAL VOC 2012. It can be observed that our
model obtains an mAP score of 76.7%, which outperforms the
baseline model by 2.9%. Our model also achieves competitive
results compared with the state-of-the-art methods, which
validates the effectiveness of the proposed method.

C. Ablation Studies

In this subsection, we show the effectiveness and necessity
of each component in our proposed model and also demon-
strate the effectiveness of the network design.

1) Contribution of Each Component in CMAC Model: As
described in Section III, our proposed CMAC model consists

of three newly added sub-networks on the top of deep feature
representation, including cross-modal feature fusion, attention-
based global context modeling and fine-grained object part
attention, which are employed to incorporate the strong cor-
relation between different modalities and capture the global
and local contextual information, respectively. We investigate
the contributions of each component by gradually applying
each sub-network to the object detection. Table I shows
that 2.5% and 1.8% improvements in mAP scores over the
baseline model are obtained using only fine-grained object
part attention. Similar improvements of 2.4% and 2.2% on
SUNRGBD and NYUv2 can be observed when only incorpo-
rating attention-based global context modeling. The better per-
formance achieved by exploiting both global context features
and discriminative object parts evidences the complementarity
of the two sub-networks. Furthermore, incorporating cross-
modal feature fusion into our detection framework brings an
extra performance increase of 0.6% and 0.4% on SUNRGBD
and NYUv2, respectively. The above experimental results and
analysis well demonstrate the effectiveness of each component
in our proposed CMAC framework.

2) Comparison of Diverse Global Context Modeling: To
validate the effectiveness of our attention-based global context,
which is generated based on a recurrent model, we compare
our model with two variants: the global average pooling
method in which the global contextual information is produced
by applying the average pooling operation to the extracted
feature map, and AC-CNN, which utilizes an attention-based
recurrent model to generate the fixed global context. We con-
duct experiments on the SUNRGBD dataset, and the results
are listed in Table II. No local context is used during these
experiments. It can be observed that our model outperforms the
global averaging pooling method and AC-CNN by 1.9% and
1.5%, respectively. Simply averaging the features of all regions
may introduce both background and inter-class noise, which
may deteriorate the object detection performance. Although
background noise can be overcome by AC-CNN, which gener-
ates a fixed attention map for global context feature extraction
and benefits the proposal classification, AC-CNN still suffers
from a decreased performance caused by inter-class noise (e.g.,
regions that are beneficial for desk classification might provide
noisy information to garbage_bin classification). Note that
our attention map for global context weighting is generated
according to the diverse contents of each ROI feature and can
be optimized to attend to the most effective regions related
to the input content. The results shown in Table II verify
that our model performs better in mitigating both background
and inter-class noise by incorporating global context and thus
greatly enhances the accuracy of object detection.

3) Effectiveness of LSTM Settings: In our proposed CMAC
model, we have employed a recurrent model to exploit the
attentional global context, in which multiple stacked LSTM
units are utilized to generate the attentional weight map in
an iterative manner. To investigate the effectiveness of differ-
ent LSTM settings, we implement several variants, whereby
the recurrent model is constructed with different numbers
(2 to 5) of LSTM units. The experimental results are listed
in Table V. As shown in the table, the mAP metric increases



LI et al.: CMAC LEARNING FOR RGB-D OBJECT DETECTION 1599

Fig. 5. Comparison of detection results produced by ST [10] (top row), AC-CNN [29] (middle row) and our model (bottom row). The red and green
rectangles indicate the ground-truth bounding box and the predicted results, respectively.

TABLE VII

DETECTION RESULTS ON VOC 2007. OURS* DENOTES A VARIANT OF OUR MODEL IN WHICH

WE INCORPORATE ONLY RGB INFORMATION FOR OBJECT DETECTION

by 0.6% and 0.8% when the number of stacked LSTM units is
increased from 2 to 3 and 4, respectively. When this number
reaches or exceeds 5, no significant performance boosts are
achieved, indicating that our model can obtain better context
information through recurrent iterations and will converge
quickly. We believe that good performance can be obtained
in complicated images through more recurrent iterations.

4) Effectiveness of STN Settings: In the proposed method,
we adopt several parallel multiple transform networks (STNs)
to attend to discriminative object parts inside an object pro-
posal. To investigate the most effective STN setting, we imple-
ment several variants whereby the fine-grained object parts
are inferred from different numbers (2 to 4) of spatial trans-
formers. As shown in Table VI, the detection performance
increases from 43.8% (baseline) to 45.7% and 46.3% with
1 and 2 spatial transformers, respectively, which indicates
that STNs are able to mine discriminative object parts to
enhance the local feature representation. However, increasing
the number of spatial transformers does not always bring about
a better performance. We observe a 3% decrease in mAP when
increasing the number of spatial transformers from 2 to 3,
indicating that the STNs may start to enroll confusing object
parts after most of the discriminative parts have been detected.

D. Visualization

In this subsection, we present some visual comparisons of
the RGB-D object detection results as well as some visual

TABLE VIII

PASCAL VOC 2012 TEST DETECTION RESULTS. 07+12+S:
07 TRAINVAL + 12TRAINVAL + SEGMENTATION LABELS,

07++12: 07 TRAINVAL + 07 TEST + 12 TRAINVAL

effects of the attentional weight maps generated by our global
context modeling component. Figure 5 shows some detection
results of the ST [10] model, the AC-CNN [29] model and
our model. It can be observed that our model performs best
in detecting small and occluded objects (e.g., monitor, box,
garbage_bin and the occluded chair). Furthermore, as shown
in the third column, our proposed method is also more robust
to appearance-similar instances because of the fusion of the
geometry context (e.g., the pillow with similar texture to
the bed). Figure 4 demonstrates the attentional weight maps
generated by our model without (middle row) and with (bot-
tom row) context fusion. Obviously, our attentional model is
able to perceive regions most relevant to the specific object
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proposal, i.e., a lamp is likely to be placed on top of a
night stand near a bed, and a night stand is also likely to
be placed on the floor near a bed and often co-occurs with a
lamp. Moreover, our model obtains more accurate attentional
weight maps by fusing information from both RGB and
depth modalities since the depth image can provide geometric
information. For example, our model is capable of attending to
the chairs near the target chair, as they share similar geometric
structures. The last column in Fig. 4 shows that our model will
attend to the background regions when the proposal does not
contain objects, which helps in making correct classifications.

V. CONCLUSION

In this paper, we have introduced an approach to effectively
learn the cross-modal attentive context for RGBD object
detection. In our model, the contextual representations from
different sources (i.e., RGB and depth modalities) are fused
in the cross-modal feature fusion module. Based on the fused
local and global feature, a recurrent attention model including
several stacked LSTM units is employed to capture a global
context that is closely related to the object proposal. Further-
more, our model adopts several parallel spatial transformers,
which learn to attend to discriminative parts inside each object
proposal, to generate the enhanced local context information.
Extensive experiments and state-of-the-art detection results on
SUNRGBD and NYUv2 well demonstrate the effectiveness of
our model in exploiting contextual information.
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