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ABSTRACT
To force convolutional networks to explore more discriminative
evidence throughout spatial regions, this paper presents a novel
CamDrop to improve the conventional dropout in two aspects. First,
by considering the intensity of class activation mapping (CAM) all
around, CamDrop selectively abandons some specific spatial re-
gions in predominating visual patterns at each iteration. In many
classification tasks, CamDrop demonstrates its effectiveness and
achieves considerable improvements on robust predictions for ad-
versarial examples. Second, although dropout is a widely adopted
technique that has been applied to regularize large models, the im-
provement in performance always attributes to better preventing
DNN from overfitting. Here we give a new explanation of dropout
from the perspective of optimization that it makes the upper bound
of the magnitude of gradients much tighter, which leads to a more
stable behavior of the gradients and effectively avoids neurons
falling into the saturation region of the nonlinear activation, even
when using high learning rates. Extensive experiments have been
performed to prove the above two strengths of CamDrop.

CCS CONCEPTS
• Computing methodologies → Neural networks; Regular-
ization.
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1 INTRODUCTION
Recently, with massive data and increasing proliferation of machine
learning, especially deep learning, remarkable performance has
been achieved for solving a variety of visual recognition tasks[13–
15]. While deep neural networks have brought superior perfor-
mance, the lack of interpretability makes their predictions hard to
be convinced, also leaving potential safety hazards. For example,
an autonomous driving vision system can cause major accidents
due to its poor generalization capabilities. From the detection of
adversarial examples, it is crucial to building a more robust system
to strengthen the representation power.

Actually, the underlying meaning of "robust" is that the represen-
tations extracted by DNN can represent more reasonable high-level
semantics or detailed spatial information rather than only identify-
ing the most discriminative part, and could be more transferable
to a new domain. More specifically, we expect all contributing fea-
tures for the target category in the image can be highlighted when
applying existing interpretable visualization techniques, like class
activation mapping (CAM)[48] and relevant works[27–29, 31]. This
inspires us to design a mechanism that intentionally hides some
specific spatial regions in dominant visual patterns at each iteration
dependent on the CAM of inputs. To achieve this goal, we intro-
duce a structured dropout CamDrop, which can be considered as a
generalization of recent structured dropout formulations[9, 21, 38].
With the guidance of CAM, CamDrop can force the network to
proactively explore other neglected parts autonomously instead of
relying on external data.

After giving an intuitive explanation of the viability of this model,
we focus our attention on other possibilities that can also make
the CamDrop work. As a regularization method, dropout[35] is
used as a practical tool to regularize deep neural networks in large
vision models. The popular belief is that the improvement gains of
dropout stem from preventing the models from overfitting during
training or avoiding the so-called "co-adaptation" among the hidden
nodes. However, it is strange that using dropout throughout training
(including at very beginning) performs better than only applying at
the end of training stage that is overfitting on the training set indeed.
It also fails to explain why dropout even increases the correlation
between nodes, as shown in [12].

Considering that dropout participating throughout the course of
training is more robust, it is natural to doubt that such effects may
benefit from better optimization. We find out that CamDrop makes
the upper bound of the magnitude of gradients much tighter. This
ensures that the magnitude of gradients is more controllable after
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applying CamDrop and prevent neurons quickly falling into the
saturation area of nonlinear activation even for the use of a larger
range of learning rates. In fact, the degree of influence depends
on how much such dropout variant decreases the L1-norm of the
partial derivative of the output probability vector with respect to
the layer parameters. We provide both theoretical and experimental
justification.

Our Contributions. (1) We propose a new type of dropout vari-
ant, called CamDrop, which forces models to seek multiple relevant
parts for a specific category rather than the most discriminative one
only. Our experiments demonstrate that the proposed CamDrop is
superior to the dropout in different datasets in terms of both accu-
racy and visualization. Adding CamDrop to ResNet-50 architecture
reduces image classification error rate from 23.41% to 22.93% on
ImageNet and to ResNet-110 from 5.58% to 4.19% on CIFAR10.

(2) We find that dropout family makes the upper bound of the
magnitude of gradients tighter, which benefits the optimization.
This enables us to use a broader range of learning rates. In this
regard, we give both theoretical and experimental validation.

(3) We also explore the feasibility of CamDrop for defending
adversarial examples on ImageNet validation images and show that
CamDrop reduces the attack success rate of PGD from 30.89% to
20.16%.

2 RELATEDWORK
Visualization of CNNs To explicitly identify which parts convo-
lutional neural networks play a role in classification prediction,
many techniques[30, 32, 34, 45] have been proposed. They visualize
the internal representation learned by deep models in an attempt
to better understand their properties. One of the typical work is
the Class Activation Mapping (CAM)[48], which can highlight the
discriminative object parts detected by CNN.

Non-structured Dropout. Dropout[35] is an effective regular-
ization to alleviate the overfitting of deep networks, which ran-
domly sets input elements to zero in the training phase while mak-
ing it inoperative during validation. Dropout is usually used for fully
connected layers in neural networks. Most of the non-structured
methods focus on the optimization based on Bayesian learning
framework following its variational interpretation[6, 7, 17, 20, 25]
or estimate hyperparameters from a prior specific distribution[18,
41, 46].

Structured Dropout. Recently, to better integrate dropout into
convolution layers, there have been growing interest in finding
structured dropout, such as DropPath[21], SpatialDropout[38],
DropbBlock[9], etc[8, 11, 16, 37, 40, 44, 49]. Instead of attaching
dropout to the internal features, there are also some data augmen-
tation methods which drop a fixed-size block from the raw images,
like Cutout[5], [33] and RandomErasing[47]. Our method is in-
spired by [9] and [48], and it is different from DropPath which
zeroes an entire layer out of training or SpatialDropout, which
drops an entire channel from a feature map. CamDrop discards the
contiguous regions only on the selected regions and channels. Our
experiments show that CamDrop is more effective than any other
dropout variants.

3 METHODOLOGY
In this section, we first give a general formulation of the dropout
family, and then naturally introduce our CamDrop in this formu-
lation. Then, we elaborate on how CamDrop zeroes out units in
feature maps under the guidance of the salient image regions gen-
erated by CAM. Finally, we also reveal the internal mechanisms by
which this model works in terms of optimization.

3.1 Notations
For the sake of understanding, we first provide some definitions of
notations and necessary introductions. A typical deep neural net-
work (DNN) classifier with N layers can be generally expressed as
a mapping function f (X ,y) : RC×H×W → RK , where X and y de-
note the input of the network and ground-truth label withK classes
respectively. Suppose the input of the l-th layer of DNN isX l−1 and
X l being its output, every basic layer of a DNN can be constructed as
X l = σ (WlX l−1+bl )with the parameter matrixWl , the bias vector
bl and the compound operators σ (·) (i.e. Pooling, Norm and ReLU).
Let Z ∈ RC

′×H ′×W ′

be the output feature map of the penultimate
layer. Then, global average pooling is performed to reduce the spa-
tial dimensions and the resulting vector z ∈ RC

′×1 is fed into a fully-
connected layer with weight matrix A =

{
α1 · · · ,αK

}
∈ RC

′×K

and softmax layer to predict the probabilities y′k ′ for class k
′, which

can be expressed as y′k ′ = P(y = k ′ |z) = exp
(
Sk

′
)
/
∑K
k=1 exp

(
Sk

)
(we omit bias term for simplicity). The unnormalized score Sk

′

for
class k ′ is:

Sk
′

= zT αk
′

=

C ′∑
c=1

Ac ,k ′

global average pooling︷          ︸︸          ︷
1

HW

H∑
h=1

W∑
w=1

Zc ,h,w (1)

The above training procedure intends to minimize the objective
function L (usually the cross-entropy loss) on training data by
stochastic gradient descent (SGD) to obtain the optimal parameters.

3.2 Dropout variants
AGeneral Form. LetMl ∈ {0, 1}Q be a binarymask tensor applied
for X l along each dimension, where Q is the product of the size of
all axes. The general form of dropout methods can then be denoted
as Eqn.(2) following the most popular setting[35], which scales X l

by 1/γ when training and remains unchanged during validation.

X̃ l = Ml ⊙ X l /γ

Ml
c ,h,w ∼ Ber(γ ), γ ∈ [0, 1]

(2)

where γ is the retaining rate and ⊙ is the element-wise product of
tensors (also known as the Hadamard product). More specifically,
the resulting masked outputs X̃ l can be written as:

X̃ l
c ,h,w =

1
γ

{
Ml
c ,h,wX

l
c ,h,w |(c,h,w) = (1, 1, 1), . . . , (C,H ,W )

}
(3)

In this subsection, let {·} be a bernoulli sampler yielding all se-
lected locations within the range of input. Many types of structured
dropout methods mainly differ in the relation of selected index
(Figure 1), discussed as follows.
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Figure 1: Several variants of structured dropout methods. Each subplot stands for a feature map tensor indexing by (C, H, W). The units
in orange will be suppressed while the black will survive in this round. Our CamDrop is guided by the class activation mapping and its
importance weights (bolded and colored) to selectively abandon the dominant regions in important channels.

• For Dropout[35]: Ml
[{C ,H ,W }]

= 0. This means that the
units indexing by (c,h,w) are zeroed out individually.

• For SpatialDropout[38]: Ml
[{C },:,:] = 0. This means that

SpatialDropout drops several channels along the (H ,W ) axes
together for each sample.

• For DropbBlock[9]:Ml
[{C },∀q ∥q−{H ,W } ∥1=r ]

= 0 with
apothem r . This means that DropbBlock drops spatial contin-
uous squares centered by {H ,W } across each feature channel
together for each sample.

• For DropPath[21]: Ml
[:,:,:] = 0. This means that DropPath

drops the whole layer instead of a particular unit if such
branch or input is not selected.

CamDrop. As for CamDrop, Ml
[{C }∗,∀q ∥q−{H ,W }∗ ∥1=r ]

= 0,
where {·}∗ is denoted as a guided sampler. The main difference
of CamDrop from the above four methods is that it connects the
dependency of feature assignments to the input covariates rather
than dropping out units randomly. The panorama of CamDrop can
be described as following:

Ml = F (M, r ) M = φ(ψ,T(X l ,y)) ψ ∼ Ber(γ ) (4)

with φ(·, ·) mappingψ , X l and y to a boolean 3D-tensor M and F

expanding the specific units of resulting tensor by the size of r . In
the above four random dropout methods, T and φ(·, ·) degenerate
to zero mapping and identity mapping respectively. Next, we’ll give
more details about the affine function T and φ(·, ·).

3.3 Cam-Guided Mechanism
Intuitively, it is reasonable to expect a robust DNN to find as much
correlated evidence on corresponding image regions as it can. To
achieve this goal, DNN should be discouraged from ‘outsmarting’
itself by cutting corners, as clinging to the most obvious point may

be one-sided or false positive. Therefore, we expect (1) more spatial
elements would be activated to determine the final decision rather
than the current dominant only. (2) more visual patterns will have a
positive influence on the particular category. In fact, global average
pooling acts as a bridge between channels in the last feature map
and the final categories, for which the weight vector αk

′

∈ RC
′×1

indicates the importance of each channel for a specific class k ′ of y
and the class activation maps Jk

′

∈ R1×H
′×W ′

is the weighted sum
of these channel patterns at different spatial locations:

Jk
′

=

C ′∑
c=1

αk
′

c Zc ,:,: (5)

In other words, Jk
′

can be considered as a set with H ′ ×W ′ ele-
ments

{
j1,1, . . . , jH ′×W ′

}
, each of which implies the significance of

units at spatial grid (h,w). LetT sn be the set of the n most important
pixels up to the moment and its initial state T0 = Jk

′

. Then T sn
can be defined recurrently as T sn+1 = T

s
n \

{
j ∈ R : −max

{
−T sn

}}
,

where \ is used to denote the difference of set. Thus, we can create
the spatial-wise binary maskM(1) as:

M
(1)
h,w =

{
0, Jk

′

h,w > inf
{
T sn

}
1, Jk

′

h,w < inf
{
T sn

} (6)

Since the number of channels are doubled layer by layer, when it
comes to the shallow layers, we compress the length of α to match
and replace Eqn.(6) with Eqn.(7):

Jk
′

= T(X l ,y) =
C ′′∑
c=1

(

⌊
C′

C′′

⌋∑
j=1

αk
′

j )X l
c ,:,: (7)

where C ′′ stands for the number of channels in the shallow layers.
Because the class activation map is always upsampled to the size of
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the input image to visualize the regions of interest of a particular
category, we adaptively select n for different layers according to
their resolution by n = (1 − 1

r 2 ) × H ′W ′.
Although Jk

′

can identify regions where DNN is considered
important, the weighted sum loses the intensity information of
every present visual pattern. For example, suppose the highest
response region of Jk

′

centers around (h,w), but meanwhile it
may have another dominant region distant from (h,w) in channel
c ′, which not displayed in Jk

′

for being counteracted by another
high activation with negative influence at the same location in
channel c ′′. This shows thatα is also important for the final decision.
Analogously, we can give the depth-wise binary maskM(2) as:

M
(2)
c =


0, αk

′

c > inf
{
Tdn′

}
1, αk

′

c < inf
{
Tdn′

} (8)

wheren′ is a hyperparameter and inf {·} is the infimum of a set. The
definition of Tdn′ is similar to T sn but performed on αk

′

. Combined
with the valid seed regionM(3) whose expanded mask with the size
of s fully contained inside the feature map, the tensor of sampled
center pixels can be given as:

M = ¬ψ ∧ (
∧
i
¬M(i)) (9)

where ¬ and ∧ (
∧
) are "logical not" and "logical and" (logical con-

junction). Finally, we sweep overM and set all pixels as zero if and
only if the pixels belong to {∀q | ∥q − u∥1 = r } where u is the zero
entries in M, and then normalize the mask to get the final mask
tensorMl :

Ml =
CHW∑C ,H ,W

c=1,h=1,w=1Mc ,h,w
(10)

3.4 CamDrop for Optimization
From the above analysis, we have already given an intuitive de-
scription that CamDrop brings more opportunities for those disad-
vantaged areas in the current iteration. In this section, we attempt
to provide a new perspective for CamDrop from optimization. The
new understanding suggests that CamDrop increase the amount of
gradient information flowing through layers since it makes every
update of parameters smoother.

In retrospect, SGD decreases parameters in the direction of the
negative gradient of loss with a small step size. At the t-th update
iteration, the weights and biases in the l-th layer will be updated
as:

Wl
t :=Wl

t−1 − η
∂L

∂Wl
t−1

blt := blt−1 − η
∂L

∂blt−1

(11)

The derivative terms in Eqn.(11) (disregarding η) can be factorized
as:

∂L

∂Wl
t−1
= (Wl+1 ⊙ M)T

∂L

∂S
⊙ σ ′

(
WlX l−1 + bl

)
X l−1T

∂L

∂blt−1
= (Wl+1 ⊙ M)T

∂L

∂S
⊙ σ ′

(
WlX l−1 + bl

)
1T

(12)

where ∂L/∂S = softmax(S) − y. Here we see the gradients after
the traditional dropout operation flow through the neurons that
are not killed off during the forward pass and the remaining are
unchanged. The number of dropout neurons determines how far
the direction of descent will be deviated from the true, which is
the primary reason for bringing predictive uncertainy in its output.
But on the other hand, it coincidentally prevents units from falling
into saturation areas when M decreases ∂L/∂b. For the ease of
deduction, we simplify Eqn.(12) according to the chain rules as:

∂L

∂blt−1,i
=
∂L

∂S
∂S

∂blt−1,i
(13)

Actually, the upper bounds of the loss with respect to the layer
biases can be given by the Hölder inequality:����� ∂L∂blt−1,i

����� ≤ max
k ′

���� ∂L∂Sk ′
����  ∂S

∂blt−1,i


1

(14)

We can further expand the term
��� ∂L∂yk′

��� as:
Since the absolute value of every element in ∂L/∂S = softmax(S)−

y = y′−y cannot exceed 1 for anyyk ′ , k ′ ∈ {1 · · ·K}, the inequality
in Eqn.(14) can be reduced to:���� ∂L∂bt−1,i

���� ≤  ∂S
∂bt−1,i


1

(15)

This is an upper bound of the update without dropout techniques
(withoutM in Eqn.(12)). And based on the above filtering rules in
Eqn.(6) and Eqn.(8), CamDrop always masks out the several notable
neurons after rectified linear unit, which translate the bounds to a
more favorable worst-case bound on the landscape with respect to
layer biases:����� ∂L∂blt−1,i

����� ≤
 ∂S

∂blt−1,i

(c)
1

≤

 ∂S

∂blt−1,i

(t )
1

≤

 ∂S

∂blt−1,i


1

(16)

where ∥·∥(c) and ∥·∥(t ) stand for the L1-norm of derivative with
Cam/traditional dropout mask respectively. Eqn.(16) reveals that
CamDrop further gives a tighter upper bound of the update of biases
∂L/∂b at each iteration, which smoothes the updating procedure
of biases term and would benefit more from using high learning rate.
The upper bounds of layer weightsW can be similarly derived as in
Eqn.(13)- Eqn.(16). These help DNN avoid learning large negative
biases term of parameters even in the early phases of training,
which is different from traditional ideas that dropout is just a tool
intended for solving overfitting.

4 EXPERIMENTS
In the following sections, we investigate the effectiveness of Cam-
Drop mainly for image classification and verify the correctness of
our theorem in Sec. 3.4. In addition to performance gains, we also
demonstrate the robustness of the proposed CamDrop to resisting
against adversarial examples.

4.1 Classification on CIFAR10
As it is extremely time-consuming to train the ImageNet[4] from
scratch, we apply CamDrop to ResNet-110[13] with extensive ex-
periments on CIFAR10[19]. CIFAR10 dataset consists of 60k RGB
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Figure 2: Comparison of the validation error curves on CIFAR10. We show the error rate vs. the numbers of training iterations. The baseline
model is ResNet-110. For better visualization, we only select the curves of baseline and the best method to compare. Our CamDrop achieves
much lower top-1 validation error than both baseline and model with DropBlock.

images across ten classes. The following experiments are trained
on the training set with 50k images and evaluated on the testing
set with 10k images. We fix γ = 0.9 and r = 8 since the size of last
feature maps is 8. The learning rate is decayed by the factor of 0.1
at 150, 250, and 350. Other settings are the same as in [42]. Figure 2
shows the error curves and Table 1 shows the final results.

Model Top-1 Error (%)
ResNet-110 5.58
ResNet-110+dropout[35] 5.47
ResNet-110+Droppath[21] 5.39
ResNet-110+SpatialDropout[38] 5.28
ResNet-110+DropBlock[9] 5.23
ResNet-110+CamDrop 4.19

Table 1: Comparison of error rates (%) of ResNet-110 in the Ima-
geNet validation set. The error curves are in Figure 2. We report the
median error rate of the best 5 results.

Figure 2 demonstrates that CamDrop has higher training error
(left) but lower validation error (right) than DropBlock, indicating
that CamDrop makes DNN more robust. To further illustrate the
effectiveness of CamDrop, we perform more ablation studies to
investigate different components of CamDrop.

The effectiveness of CAM. An evaluation of our proposed
CamDrop is shown in Table 2. With a regular setting, ResNet-110
trained with dropout guided by CAM enjoys performance gains
when compared to simply average maps across (C,H ,W ) dimen-
sions of feature maps. Actually, DropBlock is comparable to the
method adding simply average maps, which indicates that not all
guided modes are effective for dropout. We also show the class
activations of original ResNet-50 and the ones trained with Drop-
Block/CamDrop on ImageNet in Figure 3. The results demonstrate

that CamDrop can catch the more semantic meaning of images
than any others.

Top-1 Error (%)
Avg guided 5.07
CAM guided 4.19

Table 2:Comparison of twomechanisms onCIFAR10 classification
dataset, better guidance brings expected gains.

Across all channels vs. Dominant channels only To verify
the necessity of the guidance of important weights, we make a
comparison with abandoning dominant regions of CAM across
all channels or just performing on the dominant channels. Table
3 shows that CamDrop guided by both CAM and its important
weights works better, which stresses the differences in visual pat-
terns.

Top-1 Error (%)
All 4.51
Dominants 4.19

Table 3: Across all channels vs. dominant channels only. Impor-
tance weights improve results as they catch the position of every
visual pattern.

The proportion of dominant visual patterns. Although the
number of dropout points along spatial dimensions can be adap-
tively calculated, it remains to be determined how many visual
patterns should take into consideration as discussed in Sec. 3.3.
Thus far all reported results are trained with n′ = C

8 . As shown
in Table 4, CamDrop performs reasonably better than DropBlock
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Figure 3: Visualization of the class activation map of ResNet-50 model trained with CamDrop/DropBlock and without any dropout method
on ImageNet.

for all values of n′ we studied. Actually, CamDrop is equivalent
to DropBlock when n and n′ are equal to their spatial resolution
and the number of channels. Note that the accuracy decreases with
the increment of proportion on the whole because the meaning
of ‘dominant’ disappears in the extreme case of n′ = C . This in-
directly implies the effectiveness of selecting the most dominant
visual patterns of CAM.

Top-1 Error (%)
n′ = C/16 4.39
n′ = C/8 4.19
n′ = C/4 4.75
n′ = C/2 4.78

Table 4: Comparison of different number of dominant visual pat-
terns. The best accuracy is achieved by using n′ = C/8.

More than overfitting. As a warming up of the next section,
we set the learning rate 20 times larger than the default at every
stage. As a result, using CamDrop can still achieve considerable
improvements (1st/2nd rows) without a carefully designed schedule.
More importantly, when inversing the linear scheme in [49] by
gradually increasing γ over time from the target value to 1, we
find that the validation errors of models trained with CamDrop are
close even though the inversed one is overfitting at the final phase
(2nd/3rd rows, Table 5). But in sharp contrast, there is a large gap
between the two overfittings with and without CamDrop (1st/3rd
rows). All of these suggest that overfitting reduction is not the main
reason for the accuracy improvements of CamDrop.

Model Val Error (%) Train Error (%)
ResNet-110, lr = 2.0 7.16 2.22e-4
ResNet-110, lr = 2.0 with CamDrop 5.94 8.53e-2
ResNet-110, lr = 2.0 with CamDrop, inversely 6.29 1.66e-4

Table 5: Comparison of the top-1 error on both training and
validation set of CIFAR10 at high learning rate. Note that
the model trained with CamDrop performs better than the
baseline model even if it is overfitting as well.

4.2 Analysis on MNIST
To verify our theorem in Sec. 3.4, we investigate the connection
among the learning rate lr , the retaining rate γ and accuracy on
MNIST. MNIST[22] is a collection of handwritten digits with a
training set of 60k images and a test set of 10k image. Specifically,
we consider training a ResNet-8 architecture onMNIST by sweeping
over several learning rates and remaining rates, and visualize all 64
results in Figure 4 and have several observations.

First, as shown in Figure 4(b), it is clear to see that ResNet-8 can
be easily trained with and without CamDrop when lr ≤ 1.0, but
none of them can give a tolerable result when lr ≥ 10.0 since the
update of parameters in Eqn.11 acutely jitters at every iteration.

Second, when compared with ResNet-8 trained with and without
CamDrop (γ = 1), Figure4(a) shows a significant difference in such
performance change between γ = 1 and γ = {0.9, 0.8, 0.7, 0.6, 0.5},
especially when 3.0 ≤ lr ≤ 10.0. As expected, the experimental
phenomena is in line with our theoretical analyses in Sec. 3.4.
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Figure 4: To clearly show the relationships among the learning rate (lr ), the remaining rate (γ ) and top1-accuracy (z-axis), we set (a) the
learning rate and (b) the remaining rate as the major axis by turns. The remaining rate ranges from 0.5 to 1.0, while the learning rate covers
several values between 15.0 and 0.03. The z-axis is used to plot the value of accuracy. The results show that CamDrop saves some cases which
cannot be trained at high learning.

Moreover, the front rows in Figure4(b) demonstrate that the side
effect of high learning rate cannot be handled by a lower remaining
rate. The update of gradient and dropout are contested with each
other in optimizing. On the one hand, dropout decreases L1-norm
of the gradient to smooth the updating procedure by suppressing
units. On the other hand, the direction of the gradient is directly
affected by every anticipated unit. However, like generative ad-
versarial networks (GAN)[10], it is not a zero-sum game based on
the experience and suggested that dropout with more effective
guidance will further improve results.

4.3 ImageNet Classification and Adversarial
Defense

The ILSVRC 2012 classification dataset[4] contains ~1.28M training
images and 50k validation images labeled with 1,000 categories.
Following the common practice[15, 36], we perform horizontal flip,
scale, and aspect ratio augmentation for training images and apply
a single center crop of 224 × 224 pixels during evaluation. We refer
to [42] for other implementation details. We evaluate the top-1 and
top-5 classification error on the validation set.

Implementation Details.We adopt ResNet-50 as implemented
by [42] with default hyperparameters settings, which is a strong
baseline to compare with. The implementation of DropBlock is
based on the official release code. Note that different from [9], we
curtail the number of training epochs from 270 to conventional 105
and perform all experiments with a regular batch size of 256 on 4
GPUs rather than 1024 on TPUs, which is more friendly to those
lack of resources. The learning rate is decayed by the factor of 0.1
at 50, 80, 100, 105 epochs. We report the median error rate of the
final 5 epochs in Table 6.

Comparison with DropBlock. Results in Table 6 show the
effectiveness of CamDrop. Actually, we also see that the error rate
of ResNet-50 with/without DropBlock is roughly the same after
reducing the epochs of training while our CamDrop can adapt to

such settings. This suggests that CamDrop may perform much
better under the same configuration as DropBlock claimed in [9].

Model Top-1 Error (%) Top-5 Error (%)
ResNet-50 23.61 6.93
ResNet-50+dropout[35] 23.63 6.89
ResNet-50+Droppath[21] 23.57 6.85
ResNet-50+SpatialDropout[38] 23.51 6.83
ResNet-50+DropBlock[9] 23.41 6.82
ResNet-50+CamDrop 22.93 6.67

Table 6: Comparisons of top-1 and top-5 error rate on the val-
idation set of ImageNet by using ResNet50. We apply Cam-
Drop and DropBlock after both convolution layers and skip
connections with r = 7 and γ = 0.9. We report average over
last 5 runs.

Defense against Adversarial Examples. To verify the robust-
ness of DNN trained with CamDrop, we choose the Projected Gra-
dient Descent (PGD)[26] as our white-box attacker, which projects
the perturbation on an Lp -ball of specified radius and clips the
values of the adversarial sample into the permitted data range. We
perform experiments with fixed L∞ norm of 5 and use the ResNet-
50 as our baseline. The remaining hyper-parameters of the PGD
attacker are: the iteration of attack= 2, the step size of attack= 1.
Since it is less meaningful to apply untargeted attacks on ImageNet
for its numerous closely related classes, all accuracies we report
on ImageNet are for targeted attacks. As [1, 43] recommend, we
construct targeted adversarial examples with target classes selected
uniformly at random. A targeted attack is considered successful if
the image is classified to the target label. We present both the error
rate (%) of our model and the attack success rate (%) of attack on
ImageNet also in Tables 7. Moreover, results in Tables 7 show that
using CamDrop can obtain more robust predictions for adversarial
examples.
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Model Error Rate (%) Success Rate (%)
PGD 82.21 30.89
PGD/CamDrop 65.73 20.16

Table 7: The model of target networks is Resnet-50. We pro-
vide both the error rate (%) of our model and the attack suc-
cess rate (%) of adversarial examples by PGD attack.

5 DISCUSSION
We present a novel dropout method called CamDrop to improve the
robustness of DNN models by masking the dominant regions with
the guidance of class activation mapping. Our method performs
well on several classification datasets and has a positive influence on
defending against adversarial examples. Moreover, we give a new
explanation of dropout from the view of optimization, showing
that dropout techniques actually make the upper bound of the
magnitude of gradients much tighter to a certain extent.

One potential issue with hiding spatial regions dependent on the
CAM is that the input data for the algorithm must be image-like.
Otherwise there is no CAM for them. Thus, CamDrop cannot be di-
rectly applied to other tasks (e.g., text, audio). However, lots of data
with non-Euclidean structure (such as social network and knowl-
edge management) can be converted into graphs with correspond-
ing relationships between vertices and edges. Therefore, graph
convolutional network (GCN) [2, 3] and its variants[23, 24, 39] can
be used to establish graph and then extract spatial features to solve
the above problem.
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