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Abstract—This paper proposes a discriminative model that
represents an object category with a batch of boosted image
patches, motivated by detecting and localizing objects with
sparse features. Instead of designing features carefully and
category-specifically as in previous work, we extract a massive
number of local image patches from the positive object in-
stances and quantize them as weak classifiers. Then we extend
the Adaboost algorithm for learning the patch-based model
integrating object appearance and structure information. With
the learned model, a few features are activated to localize
instances in the testing images. In the experiments, we apply
the proposed method with several public datasets and achieve
advancing performance.

Keywords-discriminative model; object detection; sparse fea-
tures;

I. INTRODUCTION

In the research of object detection and recognition, there
are two open and critical problems, particularly for the object
categories with large intra-variance:

• How many exemplars need to be collected for modeling
an object category?

• How many features need to be activated for localizing
an object instance?

Addressing these problems, this paper presents a discrim-
inative model that implicitly represents an object category
with a batch of boosted image patches, as illustrated in Fig.1.

In the literature, there are two categories of learning-
based methods related to our work. Firstly, the bag-of-
feature models [8], [10] achieve great success on natural
scene classification and object category recognition, which
often construct the dictionary of visual words by detecting
and clustering key features from positive samples, and learn
the generative latent topic models, such as LDA [1], PLSA
[7], through the EM-type algorithms. Cao et al. [2] extend
to solve segmentation and categorization simultaneously by
integrating the spatial coherency of words. However, with
these models, it is difficult to encode the structure infor-
mation of objects and scenes due to ignoring the location
and scale of visual words. In addition, the number of visual
words is often decided empirically without an analytical
solution. Secondly, the boosting model [5] and its variations
provide an alternative way to represent object categories
by a set of selected features (weak classifiers), and lead

Figure 1: (a) Massive image patches are extracted from positive
object samples to form a set of weak classifiers. (b) An object
model is learned that implicitly represents an object category with
a batch of boosted feature patches. This model naturally integrates
object appearance and structure. (c) An object instance is localized
in the testing image where few and sparse patches are activated.

the state-of-art performance on many public datasets. These
methods, nevertheless, need to design feature carefully and
category-specifically, which leads to the inconvenience for
many applications.

In our method, we first extract a massive number of local
patches from a set of positive object instances, (see Fig.1
a), and quantize them by a distinctive descriptor based on
gradient orientation in transformed color space. Plus a small
fluctuation denoted by δ, each quantized feature patch is
then defined as a binary weak classifier that explains objects
locally and compactly. In the training stage, we extend
the Adaboost algorithm by introducing a default random
guesser for calculating error rates. Given the strong classifier,
a validation procedure is proposed to find the threshold
of detection, which decides how many features should be
activated for one shot testing. In the test stage, a simple and
efficient strategy of sliding windows is adopted to search
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objects with multiple scales in the testing images.
Compared to the previous work, the contribution of the

proposed approach is as follows. (1) We automatically
generate features (boosted image patches) to capture the
variability of object categories rather than designing global
features carefully and category-specifically. (2) Our models
naturally integrate the appearance and structure information
for objects. (3) The activated features for object localizing
are few and sparse, which increase the detection robustness
against the occlusion.

II. FEATURES VIA PROTO IMAGE PATCHES

Instead of designing global features, we first extract
massive image patches from a set of positive object samples
at a small range of size and aspect ratio. Then we quantize
these patches to generate features that evolve into weak
classifiers. We define the extracted patches, namely “proto
patches”, as

Sproto = {p1,p2, . . . ,pM}, (1)

where an instance of proto patch, pi = (ui, vi,Λi), includes
the width and height (ui, vi), and the image domain Λi,
(both ui and vi ∈ [15, 25] pixels in our experiments and
M ≈ 104). Note that our proto patches are location sensitive,
thus the structure information is well captured.

A. HOG with transformed color space

Recently, the HOG (Histogram of Oriented Gradients)
descriptor [3] demonstrates good performance in describing
inhomogeneous texture properties. In this work, follow-
ing [9], we compute the HOG descriptor in the trans-
formed color space for each patches, which is proved more
robust and invariant to illumination change. Our feature
Hist(p) is generated from a proto patch by computing
color transformed HOG. To counteract illumination change,
we calculate histogram of oriented gradients in three color
channels R, G, B respectively with pixel value distributions
normalized as⎛

⎜⎝
R′

G′

B′

⎞
⎟⎠ =

⎛
⎜⎝

R−μR

σR

G−μG

σG

B−μB

σB

⎞
⎟⎠ , (2)

where μ and σ denote the mean and standard deviation of the
distribution in each channel. Then the histogram of oriented
gradients is pooled over the image domain in 3 transformed
color channels, which are discretized into 24× 3 bins. And
the distance measure d(p,q) between proto patch p and q
is defined as

d(p,q)=K(Hist(p)‖Hist(q)), (3)

where K(·) is the Kullback-Leibler divergence.

B. Weak classifiers

Given the massive quantized proto patches, we further
define the weak classifiers by introducing a small fluctuation
δ, as

hz(Ok) =

{
1, d(pi,qj) ≤ δ,∃qj s.t. Xi ≈ Xj

−1, otherwise
(4)

where Ok is an object instance with its label lk ∈ {1,−1},
and qj is a patch from Ok at locationXj . Xi and Xj indicate
the relative location of patch q and p with respect to their
respective object center. Xi ≈ Xj denotes that qj and pi are
almost at the same location with respect to the object center.
Each weak classifier can be viewed as a ball in the quantized
metric space with the proto patch viewed as its center. These
balls can explain the images locally and independently.

Figure 2: A subspace can grow based on a proto patch in the
quantized metric space with a certain threshold δ given. Then
samples that have similar structure at almost the same location fall
into the subspace. Given different δ, we can obtain weak classifiers
with different discrimination.

Now we discuss the computing of threshold δ for each
weak classifier. First we define a big similarity matrix as

D = [d(pi,pj)],d(pi,pi) = 0, (5)

where we can compute the neighborhood connections be-
tween patches. We propose an empirical method to compute
δ efficiently as showed in Fig. 2. For each proto patch p , we
generate a small number K(K = 3 in our experiments) of δ
according to the number of neighboring patches falling into
the weak classifier. In the experiments, the discretized value
of δ is computed by the weak classifier containing 0.1%,
0.2% and 0.4% amount of total proto patches, and thus we
have 3 × M weak classifiers in total.

III. LEARNING PATCH-BASED MODEL

We propose a discriminative learning algorithm with
the weak classifiers. A validation process is presented to
calculate a threshold for the output strong classifier. As the
detection result, the bounding box of each object is predicted
based on our model.

Training process. In the training process, we use the
AdaBoost algorithm [5] to select a subset from the total
set of the various weak classifiers we obtain. AdaBoost is a
classical algorithm to train strong classifier by boosting weak
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classifiers and improve the performance efficiently. A strong
classifier is a combination of a number of weak classifiers,

H(x) = sign(
T∑

i=1

λi hi(x)), (6)

Default random guesser: Being different from conven-
tional AdaBoost algorithm, the threshold of each weak
classifier is not picked automatically. Unlike the discrim-
inative boundary just divide the training samples without
deep meaning, our manner to compute the threshold δ (see
Sec.2.2) makes samples falling to a weak classifier look like
the corresponding proto patch as much as possible. Thus
only a small number of positive training samples fall into
each classifier. While for most negative samples, most weak
classifiers consider them to be negative. This would result
in strong correlation between features, and the weighted
error of each weak classifier would increase in the next
iteration. To avoid strong correlation between all features,
we introduce a default random guesser outside each weak
classifier. The label of samples inside the weak classifier
is still 1, but the guesser separates samples outside into
two parts randomly and averagely, and assigns samples in
one part label 1. In other words, we assume that all weak
classifiers own the same error rate 0.5 outside. Therefore,
the error rate of each weak classifier is calculated as

Err =
N∑

i=1

Dt(i)1(yi �= ht(xi))1(ht(xi) = 1)

+
1
2

N∑
i=1

Dt(i)1(ht(xi) = −1), (7)

where Dt(i) denotes the distribution over the training sam-
ples. The error rate of each weak classifier is composed of
two parts, while error rate outside is fixed on 0.5 as a result
of default random guess.

Actually, from the view of statistics, given thousands of
weak classifiers, a certain sample is considered to be positive
by half of random guessers. That is to say, the introducing
of default random guesser would not affect the training
process. Then in each round the learning algorithm selects
the weak classifier with the lowest weighted error rate on the
training samples. The output of the learning algorithm is a
strong classifier which is a combination of the selected weak
classifiers. The training process is summarized in Algorithm
1.

Validating process. The situation caused by default ran-
dom guesser outside weak classifiers can not be predicted
in the testing set. Since the effect of random guesser can be
ignored, the weak classifier that selected for testing can be
redefined as

hz(Ok) =

{
1, d(pj ,qi) ≤ δ,∃qi s.t. Xi ≈ Xj

0, otherwise
(8)

Algorithm 1: Training process

Input: A set of proto image patches Sproto; A training
set STrain contains N labeled training samples (xi, yi)
with yi ∈ {-1,1} and xi ∈ STrain; An initial
distribution D1(xi) over the samples.
Output: A strong classifier
1. Train weak classifiers based on SProto;

(1) Extract features from SProto;
(2) Computing a δ for each classifier;

2. Generate random guesser for each weak
classifier;

3. Select features by weighted error and update
data weights like Adaboost;

4. Output the strong classifier.

i.e. it is only the inside part of weak classifiers enabled in
the testing procedure. Thus a validation process is necessary.
We obtain a threshold of the strong classifier according
to the scores our detector give on the validation set. The
validation set consisting of a certain number of normalized
positive samples and negative samples has no intersect with
the training set. Given the validation scores, we adjust the
threshold of the strong classifier from +∞ to −∞ to create a
Receiver Operating Characteristic (ROC) curve, then choose
a threshold according to the ROC curve.

Testing process. The goal of our object detection system
is to predict the bounding box of objects in the testing
images. In the testing process, the detection window is
scanned across the testing image at multiple scales densely.
And the image region within the window is normalized to a
certain scale according to the training samples. Each window
that achieves higher score than the validation threshold
is used to predict a bounding box of an object. After
the scanning process, we have a set of detection results
for a certain image. Then we adopt the Non-Maximum
Suppression method proposed by [4] to prune those results,
that have too much overlap with others but lower score.

IV. EXPERIMENTS

We evaluate our method on three object categories from
two challenging datasets: motorbike and aeroplane from the
Caltech [6] dataset both have about 800 images; pedestrian
from the INRIA [3] dataset contains 1805 images. For each
category, we randomly divide the image set into 4 subsets:
the first for feature generation, the second for training, the
third for validation and the last for testing. The ground
truth in learning stage is roughly annotated. For proto patch
extraction, we resize the objects into 150× 150 pixels. The
patch size is in a range, (15, 15) ∼ (25, 25). We consider
that the flatness patches has less information, therefore they
are simply removed. For each category, the number of proto
patches is more than 2× 104. In the testing stage, we adopt
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Methods Motorbike Aeroplane Pedestrian
SVM+HOG 67.25% 75.39% 41.81%
Our method 76.41% 83.81% 58.63%

Table I: Average precision compared to SVM+HOG.

Figure 3: A few results of object localization. For each category,
the first frame shows a model comprised of a batch of proto patches.
The next two frames demonstrate an instance detected and the
activated proto patches of the model.

Figure 4: PR curve obtained by our method and SVM+HoG on
Caltech dataset and INRIA dataset.

windows in a set of scales with a factor of 1.25 apart.
A few example images and results are summarized in

Fig.3. We compare the performance with the SVM-classifier
with the HOG feature [11]. Fig.4 shows the PR (precision
recall) curves obtained by the two methods. And the average

precision (AP) of the two methods on the three categories
are summarized in Table I.

V. CONCLUSION

We present a discriminative model to represent an object
category by quantizing a massive number of proto image
patches. We extend the Adaboost algorithm by introduc-
ing a default random guesser for calculating error rates.
Then a validation process is proposed to find the threshold
of detection. In the experiments, we show the advancing
performance of our method on several typical categories.
We intend to improve our work by combining hierarchical
models in the future work.
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