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ABSTRACT

Retrieving image content with a natural language expression is an

emerging interdisciplinary problem at the intersection of multime-

dia, natural language processing and artificial intelligence. Existing

methods tackle this challenging problem by learning features from

the visual and linguistic domains independently while the criti-

cal semantic correlations bridging two domains have been under-

explored in the feature learning process. In this paper, we propose

to exploit sharable semantic attributes as “anchors” to ensure the

learned features are well aligned across domains for better object

retrieval. We define “attributes” as the common concepts that are

informative for object retrieval and can be easily learned from

both visual content and language expression. In particular, diverse

and complex attributes (e.g., location, color, category, interaction

between object and context) are modeled and incorporated to pro-

mote cross-domain alignment for feature learning from multiple

perspectives. Based on the sharable attributes, we propose a deep

Attribute-Preserving Metric learning (AP-Metric) framework that

jointly generates unique query-sensitive region proposals and con-

ducts novel cross-modal feature learning that explicitly pursues

consistency over semantic attribute abstraction within both do-

mains for deep metric learning. Benefiting from the cross-modal

semantic correlations, our proposed framework can localize chal-

lenging visual objects to match complex query expressions within

cluttered background accurately. The overall framework is end-to-

end trainable. Extensive evaluations on popular datasets including

ReferItGame [18], RefCOCO, and RefCOCO+ [43] well demonstrate

its superiority. Notably, it achieves state-of-the-art performance on

the challenging ReferItGame dataset.
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‘center short girl
in navy blue jacket’

‘guy in red on right’

Common Attribute-preserved 
Feature Space

Image Query Expressions

Attribute-preserving 
Cross-modal Feature Learning

center, blue, girl right, red, guy

Figure 1: Demonstration of our motivation. Our proposed

model learns to embed the coupled visual and linguistic

features into a common attribute-preserving feature space

where their consistency on abstracted semantic attributes

is ensured. Thus the objects can be localized accurately by

attribute-preserving metric learning across visual and lin-

guistic domains.
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1 INTRODUCTION

Nowadays data are usually represented by various media modalities

including image, text, audio, etc [22, 23]. Multimedia retrieval has

been a heated research topic, such as image and text retrieval [3,

28, 37]. In this work, we consider a new multimedia retrieval pro-

tocol, i.e., natural language object retrieval. Given an image and a

natural language expression, its goal is to localize the visual object

described by the expression with an enclosed bounding box. Solving

this problem not only requires visual and linguistic understanding

of the image content and the query expression respectively, but

also requires the search engine to understand the rich cross-modal
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correlations. Previous methods [16, 17] learn representation within

the visual and the linguistic domain independently without consid-

ering the critical semantic correlations bridging the two domains,

leading to unsatisfactory performance and poor user experience.

Although the query expression and the target image content lie

in different domains, they share common semantic attributes of

the object such as location, color, category and interactions with

context, as they refer to the same semantics about the object with

different expressions in the linguistic and the visual domain re-

spectively. Such shared semantic attributes should be explored for

promoting the consistency of cross-modal representations, which

benefits the metric learning for cross-modal representation align-

ment. Specifically, traditional metric learning is not sufficient due to

unaligned representations from different domains. The representa-

tions learned from two domains should not only contain sufficient

and representative information of the target object, but also incorpo-

rate such information in a consistent way. We propose to preserve

the shared semantic attributes bridging two domains during feature

learning, such that the representations learned from both domains

can keep representative and well aligned in the common feature

space, which is critical for valid metric definition.

We propose a deep Attribute-Preserving Metric learning (AP-

Metric) framework which embeds the visual and linguistic features

into a common attribute-preserving feature space by enforcing at-

tribute sharing constraints during feature learning for both image

content and query expression, as shown in Figure 1. In particular,

attribute sharing constraints are depicted by the attributes (e.g.,

“center", “blue", “girl") embedded in the natural language expres-

sion (e.g., “center short girl in navy blue jacket"). The proposed

AP-Metric framework optimizes the feature embedding of image

content and that of query expression by endowing both embedded

representations the capability of accurately predicting such shared

semantic attributes. Thus the learned cross-modal representation

can preserve representative information of the target object and

keep well aligned in the common feature space. In this way, the

whole framework is a new cross-modal metric learning method

that is able to align attributes from two different domains.

Specifically, the proposed AP-Metric framework first passes the

image and query expression into a region-based visual encoding

branch and a linguistic encoding branch to extract visual feature

embeddings and linguistic feature embeddings, respectively. The

visual encoding branch is constructed by a newly proposed query-

sensitive region proposal network while the linguistic encoding

branch is a recurrent Long-Short Term Memory (LSTM) [12] net-

work. In order to embed the encoded features from two domains

into a common feature space while preserving their shared semantic

attributes of the target object (i.e., location, color, category, inter-

actions with context), feature embeddings from two domains are

assessed by the attribute-preserving cross-modal feature learning,

which enables explicit learning of the attribute sharing constraints

by predicting accurate attributes using the embedded cross-modal

representation, through multi-label semantic attributes classifica-

tion in the training phase. In addition, the contrastive loss is per-

formed to narrow the distance between the embedded query fea-

tures and the embedded visual features for the target image region

and meanwhile enlarge that for the irrelevant image regions.

Moreover, we further exploit semantic correlations across visual

and linguistic domains for region proposal generation. Previous

methods [14, 43, 44] often ignore such correlations. They generally

extract query-agnostic region proposals and then select the best

matched one with the query expression as the retrieved result

independently. Therefore they have two limitations: 1) proposal

generation is independent of proposal ranking w.r.t. the linguistic

information, leading to suboptimal solution; 2) proposals extracted

by off-the-shelf region proposal algorithms (e.g., EdgeBoxes [47])

are usually irrelevant to the referred visual object, forming an

efficiency bottleneck as a large number of proposals are required

to achieve a satisfying proposal recall. An alternative is to train

dedicated object detectors such as Fast R-CNN [8] and SSD [25]

to extract proposals. However, it requires massive training data

and predefined object categories of proposals, which is usually

impractical in real-world natural object retrieval.

Intuitively, the query expression can provide useful cues for bet-

ter covering and locating the referred object during region proposal

generation. We develop a novel query-sensitive region proposal

model to effectively incorporate the linguistic cues into the pro-

posal generation. Specifically, taking the encoded query features

and the image feature map as input, the proposed model learns

to encode the correlations between the linguistic features and the

visual representations at each spatial location on the image fea-

ture map to attend to the relevant regions w.r.t. the given query

expression. Based on the produced encoded correlation maps, a set

of proposals associated with their objectness scores are output for

each spatial location on the image feature map, producing query-

sensitive region proposals with higher recall and location accuracy

compared to the traditional region proposal generation without

considering linguistic cues.

We evaluate our method on the popular ReferItGame [18], Re-

fCOCO, and RefCOCO+ [43] datasets, and experimental results

show that it makes large improvements over previous methods

with the same settings of training data, validating its superiority in

both region proposal generation and final object retrieval.

To sum up, this work makes the following contributions. 1) We

propose attribute-preserving metric learning for cross-modal re-

trieval by exploring the common semantic attribute abstraction

bridging the visual and the linguistic domain. 2) We introduce

a query-sensitive region proposal network which can generate

query-sensitive region proposals w.r.t. specific linguistic informa-

tion. 3) We are the first to embed the region proposal generation

and cross-modal metric learning into a unified deep metric learning

framework.

2 RELATEDWORK

Cross-Modal Retrieval. Cross-modal retrieval has attracted

much research attention due to explosive multimedia data. An

important but difficult issue is to measure the content similarity

between different data modalities including image and text [5, 31],

text and audio [36], image and audio [21, 45]. One popular approach

is to rely on manifold learning techniques [26, 42, 45, 46]. Zhang et

al. [45] learned cross-modal correlations between visual and audi-

tory feature spaces, and treated such correlations as complementary

information for clustering on image-audio datasets. Mahadevan et
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al. [26] proposed maximum covariance unfolding (MCU), a mani-

fold learning algorithm for simultaneous dimensionality reduction

of data from different input modalities. Another approach is to

learn correlations between modalities [21, 40]. Canonical Correla-

tion Analysis (CCA) is one of the most popular subspace learning

methods for establishing inter-modal relationships between differ-

ent modalities of data, which has been widely used for cross-media

retrieval [9, 29, 32]. Andrew et al. [1] presented a nonlinear exten-

sion of CCA, Deep Canonical Correlation Analysis (DCCA), which

is a deep learning method to learn complex nonlinear transfor-

mations of data from different modalities such that the resulting

representations are highly linearly correlated.

Grounding Objects from Image Descriptions. The methods

of grounding objects from image descriptions take an image and

its description sentence as input, and align sentence fragments to

image regions. Karpathy et al. [17] proposed a model to learn a

multi-modal embedding space for fragments of images and sen-

tences and to reason about their latent, inter-modal alignment. [16]

proposed a bidirectional recurrent neural network to compute word

representations in the sentences and aligned sentence snippets to

the visual regions described through a multi-modal embedding.

Plummer et al. [30] used CCA to learn a shared semantic space to

associate phrases in image descriptions and image regions. [20]

used a structured prediction model to estimate the text-to-image

alignment and reasoned about object co-reference in text for 3D

scene parsing. Rohrbach et al. [34] used a recurrent network to

encode the phrase and then learned to attend to the relevant image

region by trying to reconstruct the input phrase.

Natural Language Object Retrieval. Natural language object

retrieval localizes a target object within a given image based on a

natural language query of the object. The work [11] first mapped

the candidate object regions to sets of words using several learned

image-to-text projections, and then compared the natural language

query with the sets of words predicted for each candidate region

and selected the best match. Hu et al. [14] used a recurrent neu-

ral network model to learn a scoring function based on the text

query, candidate regions, their spatial configurations and global

context, and took the candidate region with the highest score as

the retrieved result. [27] scored the phrase on a set of proposals

using a caption generation framework to select the proposal with

the highest probability. Yu et al. [43] proposed to incorporate vi-

sual comparison based context into referring expression models,

showing advantages in both referring expression generation and

comprehension. Wu et al. [41] initialized a bounding box to cover

the whole image, and trained an agent with deep reinforcement

learning, which learns to move and reshape the bounding box to

localize the object according to the referring expression.

3 OUR MODEL

Figure 2 shows the overall architecture of the proposed AP-Metric

framework, which mainly includes an LSTM-based linguistic fea-

ture encoder, a region-based visual feature encoder constructed

by a query-sensitive region proposal network, two modal-specific

feature embedding sub-networks and an attribute-preserving cross-

modal feature learning module. Specifically, in the training phase,

given an image and a query expression, a recurrent LSTM-based

linguistic feature encoder is first applied to encode the query ex-

pression to a fixed-length feature vector. The input image is fed

into several convolutional layers and pooling layers to extract its

spatial feature map. Then taking the encoded query features and

the image feature map as input, a query-sensitive region proposal

network is proposed to produce region proposals w.r.t. the given

query expression. Next, region descriptors are extracted for the

generated proposals using Region-of-Interest (RoI) pooling [8] on

top of the image feature map, which are forwarded into several

fully-connected layers to produce encoded visual region features

combined with the location information for each proposal. To en-

sure the visual and linguistic features are well aligned, the visual

and linguistic feature embedding sub-networks embed the encoded

visual and linguistic features into our proposed common attribute-

preserving feature space separately by ensuring their consistency

on semantic attribute abstraction, guided by the novel attribute-

preserving cross-modal feature learning. Moreover, the contrastive

loss is applied to conduct metric learning for the alignment of the

embedded visual and linguistic features in the common feature

space. During testing, we measure the distance between the em-

bedded features of the given query expression and those of each

generated region proposal, and take the one whose embedded re-

gion features have the smallest distance to the embedded query

features as the retrieved result.

3.1 Linguistic and Visual Feature Encoding

3.1.1 LSTM-based Linguistic Feature Encoder. Given a query ex-

pression describing an object in the image, the linguistic feature

encoder aims to encode it into a fixed-length feature vector to facili-

tate subsequent retrieval and localization. Following the convention

in natural language processing, we first represent each word in the

query expression as a one-hot vector and then embed it into the

semantic space through a linear word embedding transformation

as in [14]. Then the sequence of embedded word feature vectors

is input to a recurrent Long-Short Term Memory (LSTM) [12] net-

work with Dl dimensional hidden states. Here we set Dl as 1000 in

our implementation. We use LSTM to encode the sequence of word

vectors as it has been proved effective in many language model-

ing tasks [7, 38, 39]. Denote the query expression with T words as

S = (w1, ...,wT ), where wt represents the embedded vector from

the embedding matrix for the word t . At each time step t , the LSTM
takeswt as input. In this way, we encode the query expression of

an arbitrary length word by word with an LSTM, and obtain an

encoded vector representation of the query using the hidden state

hT at the final time step T as

hT = fLSTM (S ). (1)

3.1.2 Region-based Visual Feature Encoder. Given an image and

a set of region proposals, the region-based visual feature encoder

aims to generate a representative feature representation of the

visual content for each region proposal. We first feed the whole

image into several convolutional layers and pooling layers to extract

its spatial feature map. In particular, we use the VGG16 architecture

[35] as in [14, 34] in our implementation. The resulting spatial

feature map, denoted as “Conv5_3”, has the dimension ofDv ×h×w .

Here h = H/s andw =W /s , where H and W denote the height and

Session: Fast Forward 2 MM’17, October 23–27, 2017, Mountain View, CA, USA

183



CNN

Location

RoI Feature

Query Feature

fc

Query = ‘old guy with blue trousers’
Word 

Embedding LSTM

RoI
Pooling

fcSpatial 
Feature Map

Visual Feature
Embedding

Linguistic Feature
Embedding

Region-based Visual Feature Encoder

Query-sensitive 
Region Proposal Network

LSTM-based Linguistic Feature Encoder

L2 norm

Contrastive Lossfc fc L2 norm

fc fc fc

Region Proposals

Attribute-preserving
Cross-modal Feature Learning

fc fc sigmoid

Attributes
Prediction

Figure 2: Overall architecture of the proposed AP-Metric framework. Taking an image and a query expression as input, the

model first encodes the query expression through an LSTM-based linguistic feature encoder. The region-based visual feature

encoder generates encoded visual features based on the region proposals from the query-sensitive region proposal network,

which produces query-sensitive region proposals by incorporating both visual and linguistic information. Then, two modal-

specific feature embedding sub-networks are utilized to embed the encoded visual and linguistic features into a common

attribute-preserving feature space through attribute-preserving cross-modal feature learning, facilitating cross-modal feature

alignment in the contrastive loss optimization.

Objectness
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Figure 3: Architecture of the query-sensitive region pro-

posal network. Taking the encoded query features hT and

image feature map “Conv5_3” as input, the network first

transforms hT using a 1× 1 convolution and then duplicates

it spatially to concatenate with “Conv5_3” along the chan-

nel axis, forming a combined feature map, on top of which

a 1 × 1 convolution is utilized to encode the correlations be-

tween the linguistic and visual features at each spatial loca-

tion. Finally, a 3×3 convolution followed by two sibling 1×1
convolution is implemented to output objectness scores and

regressed proposal boxes for each spatial location.

width of the input image respectively, and s = 16 represents the

pixel stride on the last convolutional layer of the VGG16 model.

Then, we use RoI pooling [8] on top of the last spatial feature map

to extract a feature descriptor of dimensionDv×7×7 for each region
proposal. Here Dv equals 512 as defined in the VGG16 model. The

generated feature descriptor is then fed into three fully-connected

layers, i.e., “fc6” and “fc7” of the VGG16 model and a newly added

layer, to transform it into a fixed-length feature vector. As the

units on the last spatial feature map produced by VGG16 model

have a very large receptive field [2], the produced feature vector

for each region proposal has the potential to aggregate contextual

information from nearby regions, which is beneficial for reasoning

about interaction between visual objects.

For better representing the image regions, we further incorpo-

rate the spatial location information for each region proposal into

feature encoding. For a specific proposal, we represent its spatial

configuration as a feature vector:

fspatial = [w,h,x1,y1,x2,y2,xc ,yc ] , (2)

where (w,h) specifies the width and the height of the region pro-

posal, and (x1,y1), (x2,y2) and (xc ,yc ) denote the coordinates of
its top-left corner, bottom-right corner and center point, respec-

tively. We normalize the width and the height of the image as 2 and

set the coordinates of the image center as (0, 0). We concatenate

the region feature vector and the spatial configuration for each

region proposal together, forming a compact feature representation

containing both visual and location information.

3.2 Query-sensitive Region Proposal Network

Based on the produced image feature map and encoded query fea-

tures, the query-sensitive region proposal network aims to generate

a set of region proposals matching the given query expression, each

of which is also associated with a predicted objectness score. This

is substantially different from traditional query-blind proposal gen-

eration methods. Exploiting the semantic correlations between

linguistic meanings and visual representation at each spatial loca-

tion can explicitly improve the recall and location accuracy of the

region proposals. Moreover, the proposal generation and ranking

process w.r.t. the given query expression can be optimized jointly

and benefit each other through a shared feature representation.

In order to output a set of region proposals associated with

their predicted objectness scores at each spatial location on the

image feature map based on its correlation with the given linguistic

information, fully convolutional classifiers over the image feature
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map and the encoded query features are utilized. Specifically, as

shown in Figure 3, the network takes as input the encoded query

feature hT for the given query expression and the image’s last

spatial feature map “Conv5_3” of dimensionDv ×h×w . To attend to

the regions on the spatial featuremapwhich aremost relevant to the

query expression, we first replicate hT to the same size of the image

featuremap spatially to obtain aDl×h×w feature blob, which is then

concatenated with the image feature map along the channel axis,

forming a combined feature map of dimension (Dv + Dl ) × h ×w
containing both visual and linguistic information. On top of the

combined feature map, a 1×1 convolution is implemented to encode

the correlations between the query features and the visual features

at each spatial location of the image feature map, to attend to the

relevant regions to the given query expression.

Next, following the Region Proposal Network (RPN) proposed in

[33], a 3 × 3 convolution is implemented to slide over the produced

correlation feature maps, followed by two sibling 1×1 convolutional
layers — a box-classification layer and a box-regression layer to

output predicted objectness scores and regressed proposal boxes for

each sliding location, respectively. To generate reference boxes, we

use 4 scales and 3 aspect ratios, yielding k = 12 anchors as defined

in [33] at each sliding position. We minimize an objective function

following the multi-task loss (denoted as Lrpn ) as adopted in [33],

which includes a classification loss and a bounding box regression

loss, to optimize the parameters of the proposed query-sensitive

region proposal network.

3.3 Attribute-preserving Metric Learning

Given encoded features for the image regions and query expres-

sion, the proposed model further learns to embed them into a com-

mon feature space for attribute-preserving metric learning. Specifi-

cally, we embed the encoded visual and linguistic features into a

common attribute-preserving feature space found by two modal-

specific embedding sub-networks, each of which consists of two

fully-connected layers followed by an L2 normalization layer. By en-

forcing attribute sharing constraints during the feature embedding

through a novel attribute-preserving cross-modal feature learning

approach, the common attributes shared by both encoded visual

and linguistic features are preserved in the transformed common

feature space, facilitating the cross-modal feature alignment in the

following contrastive loss optimization.

3.3.1 Attribute-preserving Cross-modal Feature Learning. Although

the encoded features for the target image region and query expres-

sion are from the visual and the linguistic domain respectively, they

undoubtedly share common semantic attributes of the same referred

object. We propose to preserve such shared semantic attribute ab-

straction in the common feature space by enforcing attribute shar-

ing constraints during feature embedding, which is formulated as

encouraging the embedded features from both domains to predict

attributes accurately simultaneously, through multi-label semantic

attributes classification.

Specifically, we find that location, color, category and interac-

tions with other objects are among the most representative at-

tributes for object localization. Thus, we define in total R attribute

categories which are divided into five groups. The first three groups

are spatially relevant and each group contains 2 binary attributes in-

dicatingwhether the target object resides at the left/right, top/bottom,

and center (middle)/corner of the image respectively. The fourth

group contains L binary attributes indicating the color of the target

object. The fifth group contains C binary attributes indicating the

categories of the target object and those interacting with the target

object as described in the query expression. Considering efficiency

and training samples limitation, we do not take all possible colors

and object categories into consideration. In our implementation,

we set L and C as 10 and 74 respectively, forming R = 90 binary

attributes totally. We select the top 10 colors and the top 74 object

categories according to their statistical frequencies in the query

expressions on the whole training set.

For generating labels for the location and color binary attributes,

we set each location and color label (1 indicates true while 0 indi-

cates false) according to the description of the target object in the

given query expression. For category attributes label generation,

given a query expression, if it contains any vocabulary (w.r.t either

the target or the environmental objects) among the predefined C
categories, we set the label corresponding to that category to be 1,

otherwise 0. If none of the predefined attributes in a specific group

can be inferred from the given query expression, we set all the at-

tribute labels in that group to be −1 so that no loss will be produced
in the attribute group for this instance during training (see below

for loss definition). Thus we formulate the semantic attributes of

the target object as well as the categories of its interacted objects

for contextual relationship representation in a simple yet effective

way.

We preserve the common semantic attributes during feature em-

bedding by endowing the embedded features from both domains

with the capability of predicting correct semantic attributes. Specif-

ically, we extract the embedded features of the query expression

and the target image region from the second fully-connected layer

of the linguistic and the visual feature embedding sub-network,

respectively, and feed both features into two fully-connected layers

followed by a sigmoid layer to output discrete probability estimates

for each of the R binary attributes. Thus we formulate the semantic

attributes prediction as a multi-label classification task by minimiz-

ing the sigmoid cross entropy loss as

Lattr = −
R∑

l=1

[pl log p̂l + (1 − pl ) log(1 − p̂l )], (3)

where p̂l and pl are the prediction and the target for label l , respec-
tively. In this way, both the embedded visual and linguistic features

are enforced to preserve the representative information, i.e., the

semantic attributes of the target object accurately during feature

learning. By keeping the consistency in such semantic attributes,

the embedded features from two domains can be well aligned in

the common attribute-preserving feature space.

3.3.2 Attribute-preserving based Metric Learning. We conduct

metric learning using the embedded visual and linguistic features in

the common attribute-preserving feature space, which aims to nar-

row the distance to the embedded query features from embedded

visual features of the target image region and meanwhile enlarge

such distance from embedded visual features of the irrelevant im-

age regions. In our implementation, we randomly select N = 64

training samples from the region proposals generated by the query-

sensitive region proposal network for each image, in order to gen-

erate embedded region features to conduct metric learning with
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Table 1: Accuracy on ReferItGame dataset.

Method Accuracy

LRCN [6] 8.59%

CAFFE-7K [11] 10.38%

SCRC [14] 17.93%

GroundeR [34] 28.51%

Wu et al. [41] 36.18%

Ours 44.18%

Table 2: Accuracy on RefCOCO dataset. All methods use

only RefCOCO training set for training.

RefCOCO

Method Test A Test B Validation

SCRC [14] 18.47% 20.16% 19.02%

Wu et al. [41] 54.78% 41.58% 48.19%

Ours 55.21% 46.22% 52.35%

the embedded query features. We take 50% of the samples from

region proposals that have intersection over union (IoU) of at least

0.5 with the ground truth bounding box. These samples are taken

as positive training samples and labeled with y = 1. The remaining

samples are selected from region proposals that have IoU of less

than 0.5 with the ground truth bounding box, which are taken as

negative training samples and labeled with y = 0.

We aim to encourage the distance between the embedded query

features and the embedded visual features for the positive samples

to be zero, while that for the negative samples to be larger than

some enforced marginm. To this end, we use the contrastive loss

defined:

Lcont =
1

2N

N∑

n=1

(yn )d
2
n + (1 − yn )max(m − dn , 0)2, (4)

where

dn = �
�q −vn��2 , (5)

where q denotes the embedded query features, and vn and yn rep-

resent the embedded visual features and the label for the n − th
selected training sample, respectively. We setm as 3 in our imple-

mentation. Traditional metric learning only measures the distance

between the embedded features without considering the critical

semantic correlations bridging two domains. Through attribute-

preserving metric learning, embedded cross-modal representation

can be well aligned in advance, which is critical for valid metric

definition.

Denote θ as the parameters of the whole network, we obtain θ
by optimizing the overall loss function which is formulated as a

multi-task learning problem:

θ = argmin(Lcont + αLattr + βLrpn ), (6)

where α and β represent the balancing parameters for different loss

functions, set to be 0.2 and 1.0 in our implementation.

During testing, given an input image and a query expression, we

compute the distance between the embedded query features and the

embedded visual features for the region proposals generated by the

query-sensitive region proposal network, and the region proposals

with the smallest distance are taken as the retrieved results.

Table 3: Accuracy on RefCOCO+ dataset. All methods use

only RefCOCO+ training set for training.

RefCOCO+

Method Test A Test B Validation

SCRC [14] 14.43% 13.25% 13.72%

Wu et al. [41] 40.39% 22.81% 31.93%

Ours 45.20% 32.24% 40.19%

Table 4: Comparisons of accuracy with several model vari-

ants on ReferItGame dataset.

Method Accuracy

Ours (RPN) 37.94%

Ours (w/o attributes) 40.10%

Ours (w/o spatial) 40.65%

Ours 44.18%

4 EXPERIMENTS

4.1 Datasets and Evaluation Metrics

4.1.1 ReferItGame Dataset. The ReferItGame dataset [18] con-

tains 20,000 images from IAPR TC-12 dataset [10], and over 99,000

image regions associated with natural language expressions. We

only use the bounding boxes of annotated regions provided by [14]

during training and evaluation. Following [14], the whole dataset

is split into two halves at the image level for training and testing

respectively. We construct image-bounding box-description tuples

on all annotated image regions as training instances, leading to

59,976 instances in the trainval set and 60,105 in the test set. We

train our model on the trainval set. For evaluation, we compute

the accuracy as the ratio of queries for which the retrieved box

overlaps with the ground truth bounding box by at least 0.5 IOU.

4.1.2 RefCOCO and RefCOCO+ Dataset. The RefCOCO dataset

and the RefCOCO+ dataset [43] are collected on MSCOCO images

[24], using the ReferItGame [18]. The RefCOCO dataset consists

of 142,209 referring expressions for 50,000 objects in 19,994 im-

ages, and the RefCOCO+ dataset has 141,564 referring expressions

without location words for 49,856 objects in 19,992 images. We use

the original split provided by each dataset. Both datasets provide

person vs. object splits for evaluation. The images in TestA contain

multiple people while images in TestB contain multiple objects of

other categories. For evaluation, we also compute the accuracy as

above mentioned.

4.2 Implementation Details

The implementation is based on the Caffe platform [15]. We use the

VGG16 model [35] pre-trained on ImageNet [4] for initialization.

The parameters of all other newly added layers including the LSTM

unit, word embedding layer, convolutional layers, and fully con-

nected layers are initialized from zero-mean Gaussian distributions

with standard deviation 0.01.We use images in each dataset as input

without resizing operation. The whole network is optimized using

Adam [19] with a fixed learning rate 0.0001 on a single NVIDIA

GeForce GTX TITAN X GPU with 12GB memory. During testing,

for fair comparison with SCRC [14] which uses 100 top scoring

proposals from EdgeBoxes [47], we also select 100 top scoring re-

gion proposals generated by the query-sensitive region proposal

network per image on test and validation sets.
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short palm bush in front center anywhere on the building steps on right sky

light left painting empty wall space in middle table on the right

bush to the leftground below bike blue sky above peoplepeople

girl green left sky in the middle above trees middle blue kid kid in grey

Figure 4: Examples from the test set of ReferItGame dataset. The ground-truth bounding boxes of objects are annotated with

red rectangles. The green rectangles and yellow rectangles represent the retrieved results by the proposed AP-Metric frame-

work and the model variant without performing attribute-preserving metric learning. Best viewed in color.

4.3 Performance Comparison

4.3.1 ReferItGame Dataset. Table 1 provides the comparisons of

our method with other state-of-the-arts in accuracy on ReferItGame

dataset [18]. It can be observed that ourmethod achieves the highest

accuracy of 44.18%, outperforming all the baseline methods [6, 11,

14, 34, 41] by a large margin. Particularly, the proposed method

improves the performance significantly over SCRC [14] by 26.25%.

Similarly, it outperforms the previous state-of-the-art method of

Wu et al. [41] by 8.00%, which well demonstrates its superiority.

Figure 4 shows some correctly retrieved object examples (green

rectangles) from the ReferItGame test set, where the highest scor-

ing region proposal matches the ground truth. One can see that

our method can correctly localize the referred objects given an

image with different natural language queries. We also show the

retrieved results (yellow rectangles) by the model variant without

conducting attribute-preserving cross-modal feature learning. It

can be observed that the proposed AP-Metric framework can pro-

vide more accurate localization by taking advantage of preserved

semantic attributes (e.g., category, location, and color) embedded in

the natural language expression (e.g., “light left", “bush to the left",

and “middle blue kid"), while the model variant without attribute-

preserving metric learning fails.

4.3.2 RefCOCO and RefCOCO+Dataset. For the RefCOCOdataset

and the RefCOCO+ dataset [43], we use only the original training

set of each dataset for training, and test our method on the test and

the validation set of the two datasets respectively. We compare the

results of our method with those of SCRC [14] and Wu et al. [41],

which also use no extra labeled data for training. For fair compari-

son, we do not include the results of [43] and [44] as they pre-train

dedicated object detectors using massive extra training data, i.e.,

the validation set and the trainval set of MSCOCO [24].

As shown in Tables 2 and 3, the proposed method outperforms

the methods of SCRC and [41] on both datasets by a large margin.

Specifically, on the RefCOCO dataset, our method makes a large

improvement over SCRC by 36.74%, 26.06%, and 33.33% on the

TestA, TestB and validation set respectively. It also outperforms the

method of [41]: 55.21% vs. 54.78%, 46.22% vs. 41.58% and 52.35%

vs. 48.19% on the three subsets respectively. Similarly, on the Ref-

COCO+ dataset, the proposed method makes a large improvement

of 30.77%, 18.99%, and 26.47% compared to SCRC, and 4.81%, 9.43%,

and 8.26% compared to [41] on the TestA, TestB and validation set

respectively.

4.4 Ablation Studies

We investigate the effectiveness of different components of our

model through experiments on the ReferItGame dataset.

4.4.1 Effectiveness of Query-sensitive Region Proposal Network.

The proposed query-sensitive region proposal network learns to

generate query-sensitive region proposals by incorporating the en-

coded linguistic features of each query expression. In order to verify

its advantage, we compare our model with the variant where the

query-sensitive region proposal network is replaced with Region

Proposal Network (RPN) [33] to generate general region proposals

without considering the specific linguistic information, denoted as

“Ours (RPN)”.

We first investigate the region proposals generated by both net-

works on the ReferItGame test set. In addition, we also compare

with those extracted by EdgeBoxes [47]. As shown in Figures 5

and 6, the proposed query-sensitive region proposal network out-

performs EdgeBoxes by a large margin in terms of proposal recall,

demonstrating its superiority over the off-the-shelf region proposal

algorithms. Figure 5 (a) and (b) show the proposal recall vs. the

number of proposals for different fixed IoU thresholds. It can be ob-

served that the proposed query-sensitive region proposal network

provides region proposals with much higher recalls compared to

those generated by RPN [33], especially when given a more strict

IoU threshold (e.g., 0.8), validating that the incorporated linguistic

information can provide beneficial cues for accurately localizing

the target objects. Figure 5 (c) presents the average recall between

[0.5, 1] IoU vs. the number of proposals, which summarizes pro-

posal performance across IoU thresholds [13]. One can observe that
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(a) Recall at 0.5 IoU. (b) Recall at 0.8 IoU. (c) Average recall (between [0.5, 1] IoU).
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Figure 5: Recall vs. IoU threshold comparisons of our query-

sensitive region proposal network, RPN [33] and Edge-

Boxes [47] on ReferItGame test set.

(a) 100 proposals per image. (b) 500 proposals per image. (c) 2000 proposals per image.
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Figure 6: Recall vs. number of proposals comparisons of

our query-sensitive region proposal network, RPN [33] and

EdgeBoxes [47] on ReferItGame test set.

the proposed method keeps a higher recall compared to RPN across

the entire range of region proposal number. We further evaluate

the proposal recall across the IoU threshold range of [0.5, 1] for dif-

ferent fixed numbers of region proposals, as shown in Figure 6 (a),

(b) and (c). Our method shows higher recall consistently compared

to RPN for different numbers of region proposals, validating the

superiority of the query-sensitive region proposals.

Figure 7 shows some examples of the generated region proposals

by the proposed query-sensitive region proposal network, RPN [33],

and EdgeBoxes [47]. For clear observation, we select 20 top scoring

region proposals generated from each method. It can be observed

that the region proposals generated by our method can localize and

cover the objects described by the given query expressions more

accurately compared to those produced by RPN and EdgeBoxes,

validating the effectiveness of incorporating linguistic cues for

query-sensitive region proposal generation.

A similar conclusion can be drawn based on the improvement in

the retrieval accuracy. As can be seen in Table 4, ourmodel improves

the accuracy by 6.24% compared to “Ours (RPN)”, which verifies

that the proposed query-sensitive region proposal network can gen-

erate better region proposals w.r.t. the query expression with high

recall and location accuracy, and improve the subsequent proposal

ranking process benefited from a shared feature representation.

4.4.2 Effectiveness of Attribute-preserving Cross-modal Feature

Learning. The proposed method performs attribute-preserving met-

ric learning through predicting accurate attributes using the embed-

ded features from the visual and the linguistic domains. In order to

verify the effectiveness of preserving common semantic attributes

abstraction bridging two domains in the common feature space,

we compare the results of our model with the variant where no at-

tributes sharing constraints are performed during feature learning,

denoted as “Ours (w/o attributes)”. Table 4 shows that our model in-

creases the accuracy by 4.08% compared to “Ours (w/o attributes)”,

showing that the model can better exploit the connections between

the sky above the red leaved tree the sky above the red leaved tree the sky above the red leaved tree

girl girl girl

hills on the upper left hills on the upper left hills on the upper left

Ours RPN EdgeBoxes

Figure 7: Comparisons of generated region proposals on

ReferItGame test set. The three columns show the gener-

ated region proposals by the proposed query-sensitive re-

gion proposal network, RPN [33], and EdgeBoxes [47], re-

spectively. The ground-truth bounding boxes of the referred

objects and the generated top scoring region proposals are

represented as red and green rectangles, respectively.

the visual and linguistic features by ensuring their consistency on

semantic attribute abstraction.

4.4.3 Effectiveness of Spatial Location Information. During vi-

sual feature encoding, we combine the spatial location information

for each region proposal with the extracted region features together,

forming an enhanced feature representation. To analyze the advan-

tage of incorporating spatial location information, the results of the

variant that generates encoded visual feature representation with-

out considering spatial location information are reported, i.e., “Ours

(w/o spatial)” in Table 4. It can be observed that “Ours (w/o spatial)”

decreases the accuracy by 3.53% compared to our model, verifying

that incorporating the spatial location information for each region

proposal into visual feature encoding can provide beneficial cues

for better locating the target objects.

5 CONCLUSION

In this paper we propose an end-to-end trainable deep framework

for jointly generating query-sensitive region proposals and perform-

ing attribute-preserving metric learning for natural language object

retrieval. Particularly, we encode and embed the image content and

query expression into a common attribute-preserving feature space

by keeping their consistency on semantic attribute abstraction to

enable attribute-preserving based metric learning across visual and

linguistic domains. Moreover, a query-sensitive region proposal

network is designed to extract specific region proposals w.r.t the

query expression with high recall and location sensitivity. Exten-

sive experiments have well demonstrated the superiority of the

proposed method.
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