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Depthwise Non-local Module for Fast Salient
Object Detection Using a Single Thread

Haofeng Li, Guanbin Li, Binbin Yang, Guanqi Chen, Liang Lin, Yizhou Yu

Abstract—Recently deep convolutional neural networks have
achieved significant success in salient object detection. How-
ever, existing state-of-the-art methods require high-end GPUs
to achieve real-time performance, which makes them hard to
adapt to low-cost or portable devices. Although generic network
architectures have been proposed to speed up inference on mobile
devices, they are tailored to the task of image classification or
semantic segmentation, and struggle to capture intra-channel and
inter-channel correlations that are essential for contrast modeling
in salient object detection. Motivated by the above observations,
we design a new deep learning algorithm for fast salient object
detection. The proposed algorithm for the first time achieves
competitive accuracy and high inference efficiency simultaneously
with a single CPU thread. Specifically, we propose a novel depth-
wise non-local moudule (DNL), which implicitly models contrast
via harvesting intra-channel and inter-channel correlations in
a self-attention manner. In addition, we introduce a depthwise
non-local network architecture that incorporates both depthwise
non-local modules and inverted residual blocks. Experimental
results show that our proposed network attains very competitive
accuracy on a wide range of salient object detection datasets
while achieving state-of-the-art efficiency among all existing deep
learning based algorithms.

Index Terms—salient object detection, deep neural network,
non-local module.

I. INTRODUCTION

SALIENT object detection, which aims to identify the most
visually distinctive objects within an image, has been

well studied. Developing an accurate salient object detection
model benefits a series of applications, such as person re-
identification [1], robotic control [2], object detection [3],
visual tracking [4] and content-aware image editing [5]. Salient
object detection usually serves as a pre-processing component,
which not only requires acceptable accuracy but also fast speed
and small memory consumption on low-cost devices. Recent
deep convolutional neural networks (CNNs) exhibit remark-
able performance on many computer vision tasks including
salient object detection, due to its strong fitting capacity.
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In particular, dense labeling methods, which make use of
fully convolutional network (FCN) architecture, enjoy high
accuracy and efficiency offered by end-to-end training and
inference. However, the acceleration of convolution operations
is highly dependent on high-performance GPUs, which are
typically not supported by mobile devices, embedded devices
and low-cost personal computers. Developing a deep learning
based salient object detection algorithm, that achieves both
fast inference and high-quality results using a single thread,
remains a challenging task.

Generic low-cost deep network architectures have been
proposed recently for mobile devices. Most of them replace
conventional convolutional operators with a combination of
depthwise separable convolutions and 1×1 convolutions. The
inverted residual block [6] is one of such neural network mod-
ules based on depthwise separable convolutions. For example,
an inverted residual block first expands the feature at each
spatial position to a higher dimension, and then independently
applies a convolution operation on each channel slice. Such
methods demonstrate desired inference speed on CPUs but
their prediction quality is far from satisfactory. The most es-
sential reason behind is that these lightweight methods directly
discard correlation modeling at different channels and spatial
positions. Such correlation can be taken as context informa-
tion, which plays an important role in modeling coherence,
contrast and uniqueness for salient object detection. Simply
borrowing existing generic lightweight network architectures
to salient object detection does obtain high efficiency, but their
prediction accuracies are far from competitive.

Driven by the above insights, this paper proposes a novel
depthwise non-local module, and a fast salient object de-
tection network framework based on the proposed module.
This module aims at exploiting relationships among features
located at different channel slices or positions. In contrast
to traditional convolutional layers that take the vector across
all channels at the same spatial position as a feature, the
depthwise non-local module considers one column vector or
row vector in the same channel as a feature unit, which is
described as ‘depthwise’. The proposed module then learns
an attention map via calculating pairwise similarity among
non-local features within each sub-region. From the resulting
attention map, a feature residual is computed in a self-attention
way to update the feature map.

Our proposed module has the following strengths. First,
the depthwise non-local module overcomes the limitations of
inverted residual blocks by explicitly inferring correlations
among features that are neither in the same channel nor in the
same spatial position. Second, the DNL module can implicitly
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Fig. 1. Comparison among UCF [7], PAGRN [8] and our DNL algorithm. The
proposed algorithm not only achieves practical inference time consumption
using a single thread, but also presents saliency maps of competitive quality.

model connectivity, contrast and coherence for salient object
detection. For example, if image parts are visually similar, their
visual features have high attention scores. Thus, their salient
features likely update each other and these image parts can be
labeled with close saliency values. When a target feature is
widely apart from other surrounding features in their latent
space, the image region corresponding to the feature may
have a different saliency value from other surrounding regions.
Third, our proposed module segments an input feature map
into sub-regions and only applies self-attention within each
sub-region, which lowers its computational cost. As a result,
the proposed module adds a very small amount of computation
while it considerably enhances the accuracy of a baseline.

This paper has the following contributions.
• We propose a novel depthwise non-local module, which

aims at mining intra-channel and inter-channel corre-
lations in context. The proposed module enhances the
fitting capacity of inverted residual blocks at the cost of
negligible extra inference time.

• We present a fast depthwise non-local neural network,
which not only demonstrates state-of-the-art inference
speed with a single CPU thread but also attains com-
petitive detection accuracy (as shown in Fig. 1) among
deep learning methods.

• We have conducted extensive experiments, which verify
the effectiveness and efficiency of the depthwise non-
local module and the proposed network framework.

II. RELATED WORK

A. Salient Object Detection

Salient object detection can be solved by computing saliency
map with prior knowledge and handcrafted features [9], [10],
[11], [12], [13], [14], [15], [16], or training a deep learning
model for prediction [17], [18], [19], [20], [21], [22], [23],
[24], [25], [26], [27], [28], [29]. MBS [12] exploits the cue that
background regions are usually connected to the image bound-
aries, by computing an approximate minimum barrier distance
transform. MST [13] employs a similar prior with MBS,

but computes an exact distance transform with a minimum
spanning tree to measure boundary connectivity. MDC [14]
suggests that background pixels display low contrast in at least
one dimension and proposes minimum directional contrast
as raw saliency for each pixel. Priors based methods enjoy
real-time efficiency but cannot attain state-of-the-art results.
Deep learning based salient object detection models can be
roughly divided into two groups, including sparse and dense
labeling. MDF [17] employs deep CNNs to extract multi-scale
features and predict saliency values for image segments of
different levels. Zeng et al. [30] formulate saliency detection
as a non-cooperative game, where image regions as players
choose to be foreground or background. Zhang et al. [31]
convert an image into a sparsely-connected graph of regions,
and compute saliency via an absorbing Markov chain. Qin
et al. [26] develop Single-layer Cellular Automata (SCA) that
can utilize the intrinsic correlations of similar image patches to
locate salient objects, based on deep learning features. These
sparse labeling methods require dividing an input image into
hundreds of segments and estimating saliency value for each
segment, which is not efficient for real-time applications. To
name a few dense labeling methods, DSS [32] introduces a se-
ries of side output layers and short connections to combine the
advantages of low-level and high-level features. PAGRN [8]
is a progressive attention driven framework based on multi-
path recurrent feedback. Wang et al. [33] propose a global
recurrent localization network to locate salient objects, and a
local boundary refinement network to capture pixel relations.
Liu et al. [34] integrate a global guidance module and a feature
aggregation module into a U-shape architecture.

B. Fast Convolutional Neural Network

Designing efficient and lightweight neural networks [35],
[36], [37], [38], [39], [40], [41], [42], [43] has recently become
popular in the community. Han et al. [36] propose a network
pruning pipeline that is first trained to learn which connections
are important, and then discards the unimportant connections.
Factorized Convolutional Neural Networks [41] unravel the
3D convolution operation in a convolution layer as spatial
convolutions in each channel and a linear projection across
channels, to reduce the computation. He et al. [42] introduce
a channel pruning method which alternatively select the most
representative channels based on a LASSO regression, and
reconstruct the output feature maps with linear least squares.
ShuffleNet [43] proposes a pointwise group convolution that
separates convolution filters into groups, and ‘channel shuffle’
that permutes the channels in a group. MobileNetV2 [6]
utilizes an inverted residual structure that is composed of two
pointwise convolutions and a depthwise separable convolution.
Some existing state-of-the-art fast deep neural networks em-
ploy depthwise separable convolutions that are lightweight but
lack intra-channel and inter-channel correlations mining.

C. Self-Attention and Non-local Modeling

Computational models that exploit pairwise similarities as
self-attention scores among dense positions or nodes within
some non-local regions, have been widely studied in the field
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Fig. 2. (a) Standard Convolution. (b) Inverted Residual. Before the element-
wise addition in inverted residual, the shapes of the two feature maps are
aligned with each other. Notice that the correlation of two spatially close
scalars (in orange and blue colors respectively) is not directly captured in an
inverted residual, while a standard convolution can predict outputs based on
them together. (c) Our proposed depthwise non-local module. The proposed
module can capture the correlation between two feature vectors, which are
located at different channels and spatial positions.

of natural language processing and computer vision [44], [45],
[46], [47], [48], [49], [50], [51], [52]. Self-attention model for
machine translation [50] learns a feature for some node by
attending to all other nodes in the same sequence and taking
weighted summation of their embedded features in some latent
space. Non-local means algorithm [45] denoises an image by
replacing a pixel with a non-local averaging of all pixels in
the image. The non-local averaging utilizes similarity between
pixels as weights. Block-matching 3D (BM3D) [53] applies
collaborative filtering on a group of similar non-local image
patches and achieves competitive image denoising results,
even compared to deep learning based methods. Efros and
Leung [47] synthesize texture by growing one pixel at a time.
They determine pixel value by locating all image patches
matching with the target position to fill. Dense conditional
random field (CRF) [48] models long-range dependencies
by introducing a pairwise energy term that is weighted by
the similarity of two nodes. Li et al. [54] propose a non-
locally enhanced encoder-decoder network which can learn
more accurate feature for rain steaks and preserve better
image details during de-raining. Besides from low-level tasks,
Wang et al. [51] propose a non-local neural network that
can harvest long-range spatiotemporal relations for high-level
problems, such as video classifications. Such models can learn
features from long-range dependencies that are potential to
model contrast and coherency in salient object detection. Most
existing non-local models work in the spatial dimensions of
images or the spatiotemporal dimensions of videos.

III. METHOD

A. Depthwise Non-local Module

In this section, we introduce a novel depthwise non-local
module, that efficiently enhances inverted residual blocks
with channel-wise coherence and contrast learning. Inverted
residual is an efficient neural network block built on top
of depthwise separable convolutions. In the following, we
briefly review inverted residual blocks and depthwise separable

convolutions as preliminaries. Let I be a C × H ×W input
feature map. C, H and W denotes the channel number (depth),
the height and the width of I respectively. k, i and j are used
as the indices of depth, height and width respectively. For
example, Ii,j is a vector of length C and Ik,i has W elements.
Consider a regular K × K convolution layer with C output
channels. Its total number of weights is CK2 × C. The time
complexity of applying convolution at one position is C2K2.
As for a depthwise separable convolution layer with C output
channels, it has C independent convolution kernels, each of
which has a total of K2 × 1 weights. Performing depthwise
separable convolution at one position costs CK2. As shown
in Fig. 2(b), an inverted residual block is composed of a
1× 1 convolution, a depthwise convolution and another 1× 1
convolution. These two 1× 1 convolutions aim at aggregating
features across channels. However, for a pair of positions (the
orange and blue feature scalars in Fig. 2), Ik,i,j and Ik′,i′,j′

(k 6= k′ and (i, j) 6= (i′, j′)), their correlation cannot be
directly captured by the depthwise separable convolution or
the pointwise 1× 1 convolutions even when they are located
within each other’s neighborhood.

To efficiently harvest intra-channel correlations, the depth-
wise non-local module considers Ik,i or Ik,j (shown in
Fig. 4(b) ) rather than Ii,j (shown in Fig. 4(a) ) as a feature
vector. Ik,i and Ik,j represent some feature of their corre-
sponding horizontal and vertical image region respectively.
The proposed module is a residual block with two possible
types of residual layers. One type of layers is called vertical
or vertical-split layer and the other is horizontal or horizontal-
split layer. In a vertical-split layer, we take Ik,j as a feature
vector. In a horizontal-split layer, Ik,i is taken as a feature
vector. These two types of layers are designed in a similar
and symmetric way.

In the vertical-split layer shown in Fig. 3, the input feature
map can be seen as C ×W feature vectors and each vector
has H elements. To exploit cross-channel features, we first
compute an attention map by measuring pairwise similarities
among these CW vectors. Thus the attention map A is of size
CW × CW . Consider two arbitrary features, Ik,j and Ik′,j′ ,
whose indices in the attention map are p and q. Their attention
score can be calculated in a bilinear form.

Ap,q = ITk,jU
T
θ VφIk′,j′ , (1)

where Uθ and Vφ are two learnable matrices of two embedding
layers θ and φ. The size of Uθ and Vφ is HA×H . The bilinear
form can be seen as mapping Ik,j and Ik′,j′ into a latent
space RH

A

by linear transformations, and then computing the
dot product between the transformed features as similarity.
Importantly, we discuss whether all C × W feature vectors
share the same transform matrix Uθ in the following. Ik,j
with the same k but different j, which denotes different
spatial region within the same latent space, can share the
same transform matrix. Ik,j with different k should not utilize
the same transform matrix, since different k implies different
latent space. Thus, only feature vectors with the same channel
share the same parameter Uθ. Since the layers θ and φ embed
different channels of an input feature with different weights,
we name θ and φ as ‘Channel-wise Embedding Layer’ as



JOURNAL OF LATEX CLASS FILES, VOL. 14, NO. 8, AUGUST 2015 4

Softmax
Layerinput 

feature   

reshape

Pairwise Correlation Layer 

𝐴𝑝,𝑞 = 𝐼𝑘,𝑗
𝑇 𝑊𝜃,𝑘

𝑇 𝑊𝜑,𝑘′𝐼𝑘′,𝑗′

Channel-wise 
Embedding Layer 𝜃
with parameter 𝑊𝜃

of size: 𝐶 × 𝐻𝐴 ×𝐻

Channel-wise 
Embedding Layer 𝜑
with parameter 𝑊𝜑

of size: 𝐶 × 𝐻𝐴 ×𝐻

Channel-wise 
Embedding Layer 𝑔
with parameter 𝑊𝑔

of size: 𝐶 × 𝐻′ × 𝐻

𝐶 × 𝐻 ×𝑊

Affinity Matrix 𝐴 of
size: 𝐶𝑊 × 𝐶𝑊

Matrix 
Multiplication

Elementwise
Addition

𝐶𝑊 × 𝐻𝐴

(reshape as) 𝐻𝐴 × 𝐶𝑊

identity connection

residual 
connection

Channel-wise 
Embedding Layer 𝑓
with parameter 𝑊𝑓

of size: 𝐶 × 𝐻 × 𝐻′

𝐶𝑊 × 𝐶𝑊

𝐶𝑊 × 𝐻′ 𝐶𝑊 × 𝐻′

(reshape as) 
𝐶 × 𝐻 ×𝑊

𝐶𝑊 × 𝐻

Fig. 3. Vanilla Depthwise Non-Local Module (vertical-split). The proposed module contains four channel-wise embedding layers, a pairwise correlation layer
and a softmax layer. The softmax layer normalizes each row of the affinity matrix A. The matrix multiplication serves as taking weighted summation of the
output of Layer g, with the softmax output as attention weights.
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Fig. 4. (a) Vanilla (Spatial) Non-local Module; (b) Vanilla Depthwise Non-local Module (vertical-split); (c) Divide-and-Conquer Depthwise Non-local Module
(vertical-split, split number, s=2); (d) split number, s=3. Dense pairwise similarity is computed between each pair of feature vectors (the orange bar and the
blue bar) within the same region/sub-region. In (c), the C ×W plane is split into 2 sub-regions.

displayed in Fig. 3. We reformulate the bilinear form (shown
as ‘pairwise correlation’ in Fig. 3) in the below.

Ap,q = ITk,jW
T
θ,kWφ,k′Ik′,j′ (2)

where Wθ and Wφ are C × HA × H matrices. Wθ,k and
Wφ,k′ are HA×H matrices corresponding to Uθ and Vφ. We
claim that the above attention model is promising in modeling
contrast and connectivity for salient object detection. Small
Ap,q indicates high contrast between Ik,j and Ik,j′ . If Ik,j
and Ik,j′ are spatially close to each other, large Ap,q suggests
that their corresponding regions are connected in the saliency
map.

To leverage these cues, we conceive a strategy to propagate
contrast information or saliency value from Ik′,j′ to Ik,j ,
according to their correlation. The strategy learns a feature
residual by taking attention weighted transformation of the
feature map.

Ĩ = f(softmax(A)g(I)), (3)

where Ĩ denotes the above-mentioned feature residual.
softmax(·) normalizes each row of matrix A. g(·) de-
notes a transformation of the input feature map I . As de-

fined below, g(·) adopts linear transformations with differ-
ent parameters for different channels of I . Let g(I) =
[IT1 Wg,1, ...I

T
k Wg,k, ...I

T
CWg,C ], where Ik is a H × W ma-

trix representing the k-th channel of feature map I , Wg,k

is a H × H ′ matrix representing the linear transformation
for the k-th channel of the feature map, [·] denotes the
concatenation along the first dimension. Thus g(I) is a
CW × H ′ matrix. softmax(A)g(I) is an attention weighted
linear transformation of g(I), shown as ‘Matrix Multipli-
cation’ in Fig. 3. Since the size of softmax(A)g(I) is
CW × H ′, another transformation f is required to map
it into the RH space. Let y = softmax(A)g(I). Then
f(y) = [(y1Wf,1)

T , ...(ykWf,k)
T , ...(yCWf,C)

T ], where y is
a CW × H ′ matrix, and y is reshaped into a C ×W × H ′
tensor before f(·) is applied, Wf is a C×H ′×H tensor, and
f(y) is a CH ×W matrix. Finally, f(y) is reshaped into a
C×H ×W residual tensor Ĩ , and I is updated by adding the
residual tensor and I together. The output of DNL modules is
calculated as O = I + Ĩ = I + f(y), where O represents the
output feature map, and the reshaping operators are omitted.

The horizontal-split layer is a symmetric form of the
vertical-split layer. We simply summarize its process and
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describe the differences from the vertical one.

Ap,q = ITk,iW
T
θ,kWφ,k′Ik′,i′ , (4)

g(I) = [I1Wg,1, ...IkWg,k, ...ICWg,C ], (5)
O = I + [y1Wf,1, ...ykWf,k, ...yCWf,C ], (6)

where the size of attention map A is CH × CH , and Ap,q
denotes pairwise similarity between two arbitrary features Ik,i
and Ik′,i′ (1 ≤ k, k′ ≤ C, 1 ≤ i, i′ ≤ H), whose indices in the
attention map A are p and q. Ik,i is a feature vector of length
W . Wθ, Wφ, Wg and Wf are C ×WA ×W , C ×WA ×W ,
C × W × W ′ and C × W ′ × W tensors, respectively. y is
computed in the same way as in the vertical-split layer, and is
reshaped into a C ×H ×W ′ tensor before f is applied. f(y)
is converted to a C×H×W tensor before I is updated. Note
that all channel-wise embedding layers, θ, φ, g(·) and f(·),
have bias parameters. For example, ykWf,k should actually
be [y∗Tk , 1]T [W ∗f,k, Bf,k]. For simplicity, all bias terms have
been omitted in the above formulations.

B. Divide-and-Conquer

In this section, we accelerate the naive depthwise non-
local module by dividing an input feature map into multiple
sub-tensors. A few rationales support the divide-and-conquer
strategy. First, the naive DNL module computes dense pairwise
similarities, which is too computationally expensive for a
fast neural network module. Second, the divide-and-conquer
strategy still maintains spatial coherence in the resulting
saliency map. If there is a strong similarity between spatially
adjacent features, it is most likely that these two features
or segments belong to the same object. Propagating saliency
values between such pairs of features can likely improve the
accuracy of saliency prediction. In the naive vertical-split DNL
module, all pairs of feature vectors on the C × W plane
are used to measure similarity, as shown in Fig. 4(b). For
the divide-and-conquer DNL shown in Fig. 4(c), the feature
tensor is divided into 2 sub-tensors, and vector pairs are only
sampled from the same sub-tensor. For each sub-tensor, a
smaller affinity matrix is obtained by calculating the pairwise
correlation. The softmax operation is separately applied for
each affinity matrix. Different sub-tensors still share the same
Wθ and Wφ. The number of sub-tensors is controlled by split
number s.

C. Complexity Analysis

In this section, we analyze the space and time complexities
of the vanilla depthwise non-local module and its divide-
and-conquer version. This analysis can help us determine the
values of hyper-parameters and the location of the proposed
module in our network architecture.

Let us first discuss the space complexity of a vanilla
depthwise non-local module. We assume that all variables
are released after inference. Only parameters and intermediate
variables are considered. The size of Wθ, Wφ, Wg and Wf in
a vertical-split layer is respectively C×HA×H , C×HA×H ,
C×H×H ′ and C×H ′×H while their size is C×WA×W ,
C×WA×W , C×W×W ′ and C×W ′×W in a horizontal-split

TABLE I
COMPLEXITY OF VANILLA DEPTHWISE NON-LOCAL MODULE AND ITS

DIVIDE-AND-CONQUER VARIANT.

Complexity Vanilla Divide-and-Conquer

Space O(C2(H2 +W 2)) O( 1
s
C2(H2 +W 2))

Time O(C2HW (H +W )) O( 1
s
C2HW (H +W ))

layer. Without taking bias terms into account, the total number
of parameters is 2C(H(HA + H ′) + W (WA + W ′)). The
size of intermediate variables A, g(I), y and Ĩ is respectively
CW×CW , CW×W ′, CW×W ′, and C×H×W in a vertical
layer. In a horizontal one, their size is CH ×CH , CH ×H ′,
CH×H ′, and C×H×W . The space complexity of interme-
diate variables is C2(H2+W 2)+2C(HH ′+HW +WW ′).
The space complexity of a depthwise non-local module is
O(C2(H2 +W 2)).

For time complexity, we count the number of multipli-
cations and additions (MAdds). In a vertical-split layer, ap-
plying transformations Wθ and Wφ costs CWHHA while
computing pairwise similarity costs C2W 2HA. The time
complexity of softmax(·), g(·), f(·) and softmax(A)g(I) is
respectively C2W 2, CWHH ′, CWHH ′ and C2W 2H ′. In
a horizontal-split layer, computing A costs 2CHWWA +
C2H2WA. The time complexity of softmax(·), g(·), f(·) and
softmax(A)g(I) is respectively C2H2, CHWW ′, CHWW ′

and C2H2W ′. The total number of multiplications and addi-
tions is C2W 2(HA + H ′ + 1) + C2H2(WA + W ′ + 1) +
2CHW (HA +H ′ +WA +W ′). The time complexity of the
proposed module is O(C2HW (H +W )).

Next, we analyze the computational cost of a divide-and-
conquer depthwise non-local module. Its space complexity
is reduced by a factor of s since the size of A becomes
1
sC

2W 2 in a vertical layer and 1
sC

2H2 in a horizontal
layer. As for time complexity, computing attention scores in
a vertical-split layer costs 2CWHHA + s(CWs )2HA. The
time complexity of softmax(·), g(·), f(·) and softmax(A)g(I)
is respectively C2W 2

s , CWHH ′, CWHH ′ and s(CWs )2H ′.
The computation in a vertical-split layer costs 1

sC
2W 2(HA+

H ′ + 1) + 2CHW (HA + H ′) and a horizontal-split layer
1
sC

2H2(WA + W ′ + 1) + 2CHW (WA + W ′). The time
complexity of the accelerated variant is O( 1sC

2HW (H+W )).
Notice that HA/H’ and WA/W’ are set as H/2 and W/2
respectively in our implementation.
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D. Model Architecture

In this section, we develop a depthwise non-local neural
network based on our proposed module. The proposed network
consists of an encoder, an atrous spatial pyramid pooling
(ASPP) module [55] and a decoder, as shown in Figure 5.
The encoder contains 7 inverted residual modules, 2 depthwise
non-local modules and several regular convolution layers. Each
inverted residual (IR) module is composed of one or multiple
inverted residual blocks. The hyper-parameters of these above-
mentioned IR modules follow the setting in [6].

Our proposed depthwise non-local modules are located
between some of the inverted residual modules to strengthen
non-local correlations among all feature map channels. Since
the computational complexity of the proposed module grows
quadratically with respect to the number of channels and
cubically w.r.t the spatial resolution of input feature map, we
place the proposed module at middle levels of the network.
The first depthwise non-local module is placed behind the
third inverted residual module. The second one is inserted after
the fourth inverted residual module. After the third inverted
residual module, the feature map has shrunk to the smallest
spatial size, 1/8 of the original image size, while the number
of channels is still reasonably small. Thus positioning the pro-
posed modules at middle levels helps lower the computational
cost incurred by these modules. Theoretically DNL modules
can be placed at any position of a backbone network. How
the position of a DNL module affect its performance and
efficiency is investigated in Section IV-C.

The atrous spatial pyramid pooling module in Fig. 5 con-
catenates the feature maps produced from the five parallel
layers along the depth dimension. These five parallel layers are
respectively a 1× 1 pointwise convolution, three dilated 3× 3
convolutions and an image pooling layer. The dilation rates of
the three atrous convolutions are 6, 12, and 18 respectively.
All of these five parallel layers produce 256-channel feature
maps. The image pooling layer consists of a global spatial
averaging sub-layer and a pointwise convolution that converts
the number of output channels to 256. The ASPP module
produces a 1280-channel feature map. The decoder takes the
output of both the ASPP module and the third inverted residual
module as a combination of high-level and low-level inputs.
The decoder reduces the number of channels in the high-level
input to 256 while increasing the number of channels in the
low-level input to 48 using pointwise convolutions following a
2D batch normalization layer. Finally, the low-level and high-
level features are concatenated to predict a dense saliency map
via a 1× 1 convolution.

IV. EXPERIMENTS

In the experiment section, salient object detection methods
are tested on DUT-OMRON [56], ECSSD [57], HKU-IS [58]
test set, PASCAL-S [59] and DUTS [60]. All the above
datasets provide dense pixel-level annotations. DUT-OMRON
contains 5168 challenging images which has one or more
salient objects. ECSSD has 1000 images. HKU-IS includes
a train set of 2500 images, a validation set of 500 images and
a test set of 1447 images. PASCAL-S consists of 850 images.

Threshold is chosen as 0.5 to binarize masks of PASCAL-S,
as suggested in [59]. Notice that all salient object detection
models are not trained on any subsets of DUT-OMRON and
all 5168 images are utilized as testing samples. Thus DUT-
OMRON is a challenging benchmark which can reveal the
generalization capability of a salient object detection model.
HKU-IS is another challenging dataset in which many images
contain multiple ground-truth objects. Our proposed method is
trained with 5000 images from MSRA-B train set and HKU-
IS train set. The optimization algorithm is SGD with weight
decay 5e-4, momentum 0.9 and initial learning rate 1e-7. We
adopt poly policy with power 0.9 to tune the learning rate. The
proposed network is trained for 300 epochs. Pytorch 0.4.1 with
MKL backend is used for all deep learning methods. For the
methods whose released model is not trained with Pytorch,
their model weights are copied to an implementation of
Pytorch. For fair comparisons, the efficiency of the mentioned
salient object detection algorithms are evaluated on the same
personal computer, which has an Intel i7-6850k CPU with 3.60
GHz base frequency, a GeForce GTX 1080 Ti GPU and 32GB
memory.

A. Comparison on Quality of Saliency Maps
To evaluate the quality of saliency maps, we adopt max-

imum F-measure (maxF) [61], mean absolute error (MAE)
and structure-measure [62] (S-m) as criteria. To compute
maximum F-measure, we first sample a list of thresholds.
Given a threshold, the average of precision and recall is
computed for all saliency predictions in a dataset. Then Fβ
is defined as:

Fβ =
(1 + β2) · Precision ·Recall
β2 · Precision+Recall

(7)

where β controls the relative importance between precision
and recall. β2 is selected as 0.3, according to [61]. MAE
is computed as the average of pixel-level absolute difference
between predictions and ground-truth annotations, as shown
in:

MAE =
1

HW

H∑
h=1

W∑
w=1

|Ph,w −Gh,w| (8)

where P denotes a binarized saliency prediction and G denotes
its corresponding binary ground-truth. H and W are height
and width of images. h and w are the corresponding in-
dices. Different from estimating pixel-wise errors, S-measure,
recently proposed in [62] is adopted to estimate structural
similarity between predictions and ground-truth. It is defined
as a weighted sum of an object-aware measure and a region-
aware measure. Formal definition of structure-measure can be
found in [62].

As shown in TABLE II and Fig. 6, the proposed DNL net-
work is compared with existing salient object detection mod-
els, RAS [27], PAGRN [8], UCF [7], NLDF [22], DSS [32],
RFCN [23], DCL [63], DS [20], MDF [58] and two generic
lightweight architectures originally proposed for image clas-
sification and semantic segmentation, including MobileNet-
V2 [6] and ShuffleNet [43]. As suggested in [6], MobileNet-
V2 serves as an encoder integrated with a DeepLab-V3+ ar-
chitecture [55] to solve semantic segmentation tasks. To detect
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TABLE II
COMPARISON AMONG THE STATE-OF-THE-ART AND OURS. ∗ METHODS ARE ORIGINALLY PROPOSED FOR IMAGE CLASSIFICATIONS AND

SEGMENTATIONS.

DUT-OMRON ECSSD HKU-IS PASCAL-S DUTS
maxF MAE S-m maxF MAE S-m maxF MAE S-m maxF MAE S-m maxF MAE S-m

RAS 0.7848 0.0633 0.8119 0.9203 0.0551 0.8935 0.9116 0.0449 0.8875 0.8319 0.1021 0.7978 0.8310 0.0591 0.8281
PAGRN 0.7709 0.0709 0.7751 0.9268 0.0609 0.8892 0.9187 0.0475 0.8891 0.8531 0.0921 0.8190 0.8541 0.0549 0.8254
UCF 0.7365 0.1318 0.7578 0.9097 0.0790 0.8816 0.8866 0.0749 0.8643 0.8217 0.1292 0.7999 0.7700 0.1178 0.7710
NLDF 0.7532 0.0796 0.7704 0.9050 0.0626 0.8747 0.9017 0.0480 0.8782 0.8278 0.0990 0.8036 0.8156 0.0649 0.8052
DSS 0.7604 0.0744 0.7892 0.9078 0.0620 0.8836 0.9005 0.0499 0.8805 0.8262 0.1029 0.8025 0.8130 0.0647 0.8168
RFCN 0.7332 0.0782 0.7503 0.8867 0.0765 0.8368 0.8832 0.0572 0.8361 0.8284 0.0996 0.7895 0.7702 0.0744 0.7506
DCL 0.7260 0.0944 0.7498 0.8884 0.0717 0.8672 0.8823 0.0584 0.8650 0.8053 0.1092 0.7930 0.7756 0.0787 0.7859
DS 0.7449 0.1204 0.7502 0.8824 0.1217 0.8206 0.8661 0.0791 0.8531 0.8109 0.1472 0.7715 0.7756 0.0894 0.7916
MDF 0.6944 0.0916 0.7208 0.8316 0.1050 0.7761 0.8605 0.1291 0.8101 0.7655 0.1451 0.6935 0.7285 0.0995 0.7232

∗MoblieNetV2 0.7446 0.0871 0.7595 0.8901 0.0737 0.8614 0.8979 0.0537 0.8756 0.7716 0.1318 0.7592 0.7613 0.0806 0.7720
∗ShuffleNet 0.7300 0.0946 0.7506 0.8763 0.0830 0.8443 0.8914 0.0558 0.8701 0.7856 0.1216 0.7709 0.7698 0.0845 0.7740

ours 0.7795 0.0779 0.7981 0.9096 0.0646 0.8851 0.9133 0.0451 0.8974 0.8229 0.1065 0.8031 0.8081 0.0731 0.8071

salient objects, the output channels of the last convolution
in DeepLab-V3+ is adjusted to 1. Similar to MobileNet-V2,
ShuffleNet is also modified as an encoder with DeepLab-
V3+. We fine-tune these two generic frameworks with our
training data for saliency prediction. The proposed method
significantly outperforms MobileNet-V2 and ShuffleNet on all
four benchmarks and three criteria since they fail to capture
the contrast as well as the channel-wise coherence information
which is essential for saliency inference. Our proposed model
obtains the second best maximum F-measure of 0.7795 and the
best S-measure of 0.7981 on the large and challenging dataset
DUT-OMRON. The DNL network outperforms the third best
PAGRN by 0.9% maxF and DSS by 0.9% S-measure. Noted
that our method is not trained on any subsets of DUT-OMRON
but tested on the all 5168 images, which suggests that the
DNL network possesses strong generalization capability to
achieve stable performance in real applications. The proposed
DNL network presents the second best maxF, the second
smallest MAE and the best S-measure on the HKU-IS dataset.
Particularly, the proposed method surpasses the second best
PAGRN by 0.8% S-measure. Our proposed method show the
best results on two challenging benchmarks DUT-OMRON
and HKU-IS, which indicates that the proposed network enjoys
superior generalization and is comparable to the state-of-the-
arts.

B. Comparison on Efficiency

To evaluate the efficiency of the proposed methods and
existing neural network models, this section utilizes CPU
time, GPU time, memory usage (denoted as Mem), number
of parameters (denoted as Params), MAdds [6] and time
complexity as criteria. CPU time is computed using a single
CPU thread while GPU time is measured with a single
GPU. Batch size is set as 1 for all neural models. Time
cost by file input/output is not included but time-consuming
preprocessings such as computing prior maps and superpixel
segmentation are taken into accounts. Each model sequentially
infers 50 randomly selected images from HKU-IS. The peak
memory cost during inference is logged as the memory usage.
Params is the number of learnable parameters in a neural

model and it determines the disk space consumed. MAdds
is the number of multiplications and additions, calculated by
setting the input size of each method as its default size.
Time complexity denoted as ‘Complexity’ in TABLE III is
the number of multiplications and additions with respect to
input size that is viewed as variables H and W .

TABLE III
EFFICIENCY OF THE STATE-OF-THE-ART AND OURS.

CPUTime GPUTime Mem Params MAdds Complexity
/secs /secs /MB /M /B /HW

RAS 2.0457 0.0355 5023 20.23 54.56 421.0K
PAGRN 23.63 100.4 805.8K
UCF 3.4696 0.0886 5307 29.43 123.3 614.4K
NLDF 2.6051 0.0340 1709 35.48 354.6 2863K
DSS 3.4451 0.0339 1587 62.22 127.5 984.0K
RFCN 2.7190 0.0691 4833 53.00 113.9 455.7K
DCL 2.5820 0.0867 4069 66.31 797.6 3031K
DS 2.4588 0.0609 4799 50.37 106.7 426.7K
MDF 897.68 24.996 1591 75.68 7533 149.9M
ours 0.3993 0.0113 605 5.320 9.567 73.82K

As shown in TABLE III, MB denotes million bytes. K, M
and B denote thousands, millions and billions respectively.
HW represents the product of input height and width. Since
the implementation of PAGRN is not available, we only
present its theoretical efficiency including parameters, MAdds
and time complexity. Most existing CNN based methods
predict a saliency map with more than 2.5 seconds on CPU
while our proposed network takes less than 0.4 seconds to infer
an image. Achieving the fastest CPU inference, our method is
5× faster than the second best RAS. The proposed method also
demonstrates the most efficient inference with GPU, and it is
3× faster than the second best DSS. Most methods use 1500-
5000 MB memory during inference, which is too expensive for
a preprocessing component. Meanwhile our proposed method
costs 600 MB running memory, less than 40% of the second
best. Besides, our proposed method has the least parameters,
less than 25% of the second least. Most models consume more
than 100 MB storage while our method only costs about 20
MB. Our proposed method obtains the minimum MAdds less
than 20% of the second best. The time complexity of the
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input MDF [58] DS [20] DCL [63] RFCN [64] NLDF [22] DSS [32] UCF [7] PAGRN [8] ours GT

Fig. 6. Qualitative comparison among the state-of-the-art and ours. As shown in the above, the proposed method is compared with MDF, DS, DCL, RFCN,
NLDF, DSS, UCF and PAGRN on the DUT-OMRON benchmark. Our proposed method successfully segments complete foreground objects with consistent
saliency value and sharp boundaries.
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(a) Smeasure-CPU time (b) Smeasure-Mem (c) Smeasure-MAdds (d) Smeasure-Params

Fig. 7. Comparisons on Efficiency and Quality. To measure the efficiency and quality of salient object detection models at the same time, the above scatter
diagrams take an efficiency metric as horizontal axis and a quality metric as vertical axis. Our proposed method is always located at the upper left of these
diagrams, which indicate the best trade-off between efficiency and accuracy.

DNL network is also the lowest and 6 times less than the
second lowest RAS. Note that the time complexity of DNL
modules actually contains terms with respect to HW (H+W ).
For convenient comparison we simplify the formula by fixing
input size H ×W as default size 360× 360. To sum up, our
proposed network enjoys the fastest inference speed on both
CPU and GPU, consumes the least memory and disk storage,
and shows the lowest theoretical complexity, in comparison to
existing deep learning models.

To simultaneously evaluate the efficiency and quality of our
proposed method, we plot an efficiency metric and a quality
metric on the same scatter diagram (shown in Fig. 7), with
the efficiency metric as horizontal axis and the quality metric
as vertical axis. For quality metric, larger S-measure means
more accurate predictions while smaller value means lower
cost for efficiency metric. Thus the best method balancing
accuracy and efficiency should be located at the upper-left in
an Efficiency-Quality scatter diagram. As shown in Fig. 7,
our proposed method achieves the best trade-off between
efficiency and quality, on the scatter diagrams of Smeasure-
CPU time, Smeasure-Mem, Smeasure-MAdds and Smeasure-
Params.

C. Ablation Study

This section verifies the effectiveness of DNL module and
investigates how the number of splits affects the performance
of the proposed network. The baseline is built by removing all
DNL modules from the proposed network. The baseline has
exactly the same architecture as MobileNetV2 but has different
input size. We use Precision-Recall curves and Threshold-
Fβ measure curves to compare our proposed method with
the baseline. To draw these curves, a list of evenly spaced
thresholds is sampled. For each threshold, a tuple of precision,
recall and Fβ measure is calculated, with β2 = 0.3. Then we
plot the pairs of (recall, precision) in Fig. 8, and the pairs
of (threshold, Fβ measure) in Fig. 9. As shown in Fig. 8 and
Fig. 9, the proposed module effectively improve the prediction
accuracy of the baseline on all three benchmarks.

As TABLE IV displays, Split-9 denotes an accelerated DNL
module that divides the input feature tensor into 9 sub-tensors.
For Split-s (s = 1, 3, 5, 9), DNL modules are located after IR-
3 and IR-4 shown in Fig. 5. For IR6-splits (s = 1, 5, 10), a
DNL module is inserted after IR-6. As shown in TABLE IV,
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Fig. 8. Ablation Study on Precision-Recall Curves. In the above graphs,
the blue curve denotes the baseline model without deploying any proposed
modules, while the orange one denotes our proposed DNL network. Our
proposed method obtains higher precision than the baseline, for the same
recall value.

Split-9 surpasses the baseline by 3.9% maxF, 1.2% MAE and
4.1% S-m on the HKU-IS dataset. The performance of Split-5
is quite close to that of Split-9. Split-9 marginally outperforms
Split-1 by 0.11% maxF and 0.22% S-measure. For IR6-splits,
similarly, IR6-split10 exceeds IR6-split1 by 0.9% maxF, 0.3%
MAE and 0.7% S-m. The above results suggest that DNL
modules effectively improve the baseline and the splits number
does not affect much of the prediction quality. Larger splits
number could lead to slight improvement, since it helps to
maintain better spatial coherence as discussed in Section III-B.
If the splits number is larger, then the spatial size of each
sub-region becomes smaller. Feature vectors within the same
sub-region are more likely to belong to background or the
same object. In such cases, non-local pairwise correlations
help propagate saliency score of a feature to its adjacent
features, which models spatial coherence. Compared with IR6-
split1 whose DNL module is at high level, Split-1, whose DNL
modules are at middle level, achieves better maxF, MAE and
S-m. It suggests that placing the proposed module at middle
level better improves the performance.

The baseline obtains the fastest CPU inference and the
lowest MAdds. As the splits number decreases, both CPU time
cost and MAdds of the corresponding DNL network become
larger. Because smaller splits number results in computing
more pairwise similarities. Since CPU time is measured for
a whole network, we need to compute difference between
some network and the baseline to obtain the time cost of DNL
modules. For examples, DNL modules in Split-9 additionally
costs 399.3 − 390.6 ∼ 9 ms and 9.567 − 9.325 ∼ 0.24B
MAdds while DNL modules in Split-1 additionally takes
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Fig. 9. Ablation Study on Threshold-Fβmeasure Curves. As shown in the
above, the Fβ measures of our proposed method are considerably higher than
those of the baseline, for most thresholds within the range of [50, 200].

TABLE IV
THE EFFECTIVENESS OF DNL MODULE.

HKU-IS CPUTime MAddsmaxF MAE S-m /secs
Baseline w/o DNL 0.8745 0.0572 0.8563 0.3906 9.325B
Split-9 0.9133 0.0451 0.8974 0.3993 9.567B
Split-5 0.9133 0.0451 0.8969 0.4019 9.657B
Split-3 0.9131 0.0452 0.8967 0.4103 9.781B
Split-1 0.9121 0.0458 0.8952 0.4549 10.42B
IR6-split10 0.9125 0.0459 0.8922 0.5138 12.25B
IR6-split5 0.9069 0.0479 0.8873 0.5447 12.90B
IR6–split1 0.9036 0.0489 0.8851 1.1384 18.13B

454.9 − 390.6 ∼ 64 ms and 10.42 − 9.325 ∼ 1.1B MAdds
when compared with the baseline model. Compared with Split-
1, DNL modules in Split-9 speed up 7× CPU time from 64
ms to 9 ms, and reduce 5× MAdds from 1.1B to 0.24B.
For IR6-splits, the difference is larger. The DNL module in
IR6-split10 reduces 1.1384 − 0.5138 ∼ 0.6 s CPU time and
18.13−12.25 ∼ 6B MAdds, in comparison to IR6-split1. The
above results indicate that the divide-and-conquer variant of
DNL module indeed accelerates the inference. To understand
the difference between positioning DNL modules at middle
level and high level, we compare Split-1 with IR6-split1. DNL
modules are located at the middle level of Split-1 and the high
level of IR6-split1. IR6-split1 spends more CPU time (0.7
s) and larger MAdds (7.7B) than Split-1. Thus positioning
DNL modules at high level causes more computational cost.
Because the time complexity of DNL modules is in proportion
to squared number of input channels.

V. CONCLUSIONS

This paper introduces a novel DNL module that effectively
enhances the accuracy of an inverted residual block. A divide-
and-conquer variant of DNL is proposed to further accelerate
inference. Moreover, we develop a light-weight DNL based
network architecture with low memory cost, high inference
speed and competitive accuracy. Numeric results declare that
our method achieves not only competitive accuracy but also
state-of-the-art efficiency among deep CNN based methods.
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